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Abstract: The expected increase in the presence of electric vehicles raises numerous questions
regarding their impact on the market relations. Depending on the agreement between the involved
parties, the position of EVs changes from passive (traditional role) to active. Active EVs are beneficial
for variability and uncertainty-intense modern power systems. To enable this transition, a suitable
framework in the form of agreements is required in order to establish the terms and responsibilities.
Following the presented agreements, we propose a novel method for evaluation of the benefits that the
newly added EVs bring to the portfolio. The method comprises two steps, a Monte Carlo simulation
of the EV driving/charging patterns and an optimization model for market related decision making.
The method results in the estimates on economic savings resulting from adding EVs to portfolios.
An illustrative example is used in order to give an idea of the range of the benefits.

Keywords: market aggregator; EV fleet management; virtual storage; Monte Carlo simulation;
stochastic optimization

1. Introduction

Following the recent changes in the power system development, several new components entered
the electricity utilization industry. Among them, electric vehicles (EVs) are expected to introduce
substantial changes in the system operation and energy trading. EVs, although primarily serving as
the means of transportation, can be seen as electric storages with stochastic availability. The value of
the storages to the power system with an increasing amount of variable and unpredictable generation
is essential [1–3]. Development and valuation of the framework for utilization of these storages are
two basic issues and this paper addresses it.

It is useful to recognize the major benefits of storages in modern power systems. Depending on
the size and the type of the storage, the available flexibility can be used for the exploitation of the
variations in electricity prices on different temporal scales [4]. This rather obvious benefit has been
recognized in early days of electric energy utilization and the hydro reservoirs, and the hydro-pumped
plants were used for this purpose. Recently, with the increase in renewable generation presence,
the necessity for short-term balancing of the variations in renewable generation emerged. In this sense,
both the issue of variability and the uncertainty have to be addressed and the storages provide a
suitable solution for this problem [5,6]. Finally, the storages can provide numerous ancillary services
(frequency control [7,8], voltage control [9], congestion management [10,11], etc.) and gain profits
accordingly.

The second important question is how EVs fit into this context. Obviously, the EV storages
primarily power the vehicles for transportation while the interaction with the rest of the power system
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occurs when an EV owner recharges the storage. In this sense, EVs can be seen as storages with
stochastic availability related to human commuting habits. With aggregation, EV storage flexibility
and availability increases as well as the opportunities for exploitation of the same. One part of this
paper is focused on this issue where we attempt to understand how this aggregation affects the overall
EV availability. In the second part of the paper a modeling framework for analysis of economic
benefits of exploitation of EV fleets in renewable generation portfolios is presented. A term market
aggregator (MA) emerged in this context for describing the entity performing an EV fleet related
trading. Market aggregator is an agent that aggregates smaller electric market subjects (EVs) into
a single subject and interacts with system operator [12]. From the system operator’s perspective,
the aggregator is seen as a large source of generation or load, which could provide ancillary services
such as spinning and regulating reserve.

Hence, the major question we want to address in this paper is how beneficial is it for a market
aggregator to manage a portfolio with EVs and renewable generation. In order to answer this question
it was necessary to develop several novel models which present the major contributions of this paper.

In order to exploit the EV fleet storages it is necessary to estimate the flexibility available in
these storages which could be used by the MA. Since our purpose is to give an estimation of the
benefits of adding EVs to an existing portfolio, we assume that MA has no historical data on the actual
commuting patterns. Rather, we want to address this issue from a general perspective assuming some
typical behavioural patterns in vehicle usage. The proposed model is based on sequential Monte
Carlo simulation which yields different EV fleet parameters used for the estimation of these benefits.
The model is general and the required input data are typically available.

Once the flexibility in the EV fleet has been estimated, it is necessary to establish a suitable
contractual agreement for its exploitation. In this paper we follow three agreements proposed in [13]
that the MA and the EV owner can form. This step is essential in the transformation of this concept
from a theoretical to a practical one.

Finally, with the estimates on EV fleet flexibility and terms of agreements, a stochastic
optimization can be applied for modeling the decision making on day ahead and sub-daily trading.
When accumulated, these costs can be compared to a benchmark and the corresponding benefits can be
evaluated. We apply the presented framework on different case studies emphasizing different factors
regarding the fleet or an agreement.

The integral part of the model we propose is the management of an EV fleet. This issue has
been investigated intensively recently. In relation to our work we would like to emphasize [14–16].
All these papers capture the management problem while taking into account the market opportunities.
However, Reference [14] focuses on a single market, neglecting the opportunities in other markets.
In [15], authors propose a management model which takes different markets into account. However,
the model is not suitable for the environment we consider for different reasons. First, decision making
for a renewable portfolio with an EV fleet managed by a market aggregator differs from that of
an EV fleet. Secondly, the aim of the model presented in [15] is real-time management, while we
focus on a long-term estimation of the trading benefits. The model presented in [16] assumes a
multi-market organization for a system with renewable generation and storage but considers a classic
storage. Therefore, we present a novel model which assumes a multi-market scheduling of a renewable
portfolio with an EV fleet from the MA’s perspective. It is also important to emphasize that the model
follows a typical European market organization.

The following items summarize the contributions of this paper:

• A novel Monte Carlo based model for stochastic characterization of the EV
driving/charging patterns

• Multi-market EV fleet scheduling model based on the virtual storage. The model considers
different agreements

• An estimation of the benefits of adding EVs to a renewable portfolio for MA (or Power supplier)
under different agreements
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The paper contents can be briefly described as follows: The first part of the first section gives
a description of the contracts that the market aggregator and an EV owner can form. Through the
first section, a stochastic parameter modeling approach is presented in a general context, as well as in
the terms of each individual stochastic parameter used in the proposed model. Within this section,
a particular focus is given to the modeling of EV-fleet-related parameters. The second section provides
the model for calculation of the contract value. Finally, in the last section, the proposed model is
validated through a representative case study. Furthermore, this section provides a comparison of
different contracts for different fleet sizes.

2. Modeling Approach

The purpose of this model is to provide a framework for the estimation of the benefits of adding
EVs to the existing portfolios managed by a market aggregator. Since this estimation will be performed
prior to the actual integration of the EVs, it is assumed that the data on EV patterns is unavailable
unlike the data on existing portfolio performance. Overview of the complete model is depicted in
Figure 1. The model comprises two components, the simulation of the stochastic parameters and the
simulation of the trading. The first component includes the simulation of the EV event dynamics
and the simulation of market and portfolio parameters. These two sets of data form a complete set
of parameters which, after being subjected to the scenario reduction, serve as an input to the trading
simulation component.

The input data used in the model are:

• Commuting patterns (distribution of daily commuting habits)
• Historical portfolio data (Residual consumption, forecast error, etc.)
• Historical market data (Day ahead prices, intraday prices, etc.)

Finally, the terms of agreement have to be specified and incorporated in the trading simulation.
We will reduce the broad range of possible agreements to three types. The following subsection gives a
detailed description of these contracts. The result of the model is a measure of the contract value. As a
representative measure, we use a discount that could be given to the EV owners or the whole portfolio
as a result of the savings earned with the virtual storage of the EV fleet.

Commuting patterns

EV arrival/departure 
dynamics scenarios

Historical portfolio 
and market data

Scenarios of 
stochastic parameters

Monte-carlo model of 
fleet events

Scenario reduction

Simulation of optimal 
trading

Type of 
contract

Yearly profit
Contract value

Autoregressive model

Stochastic parameters simulation

Market and portfolioEV event dynamics

Optimization 
model

Figure 1. Complete model overview.
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Contract Specification

The benefits of exploiting EV storages shown in this paper are related to any EV fleet being
managed by a single MA (also managing renewable generation). The fleet could be composed out
of EVs owned by individuals or an entire fleet could be owned by a single company. The second
important assumption is that this service is provided through the charger interface. If the EV is charged
by the charger with no interface to MA, the terms of the contract will not be applied.

The first type of contract is denoted as Traditional. In this contract, the charging process starts
when the vehicle connects to a charger. Charging is performed with the maximal available power until
the vehicle is fully charged. In traditional power systems, this contract corresponds to the contract
between the power supplier and a passive load. The market aggregator performs the demand forecast
and buys the power on the market.

In the second contract type (denoted as Flexible), the market aggregator can exploit the storage
flexibility and shift the load. However, this form of contract assumes one-direction power-flow
charging stations.

In the third contract type (denoted as Prosumer), bi-directional power-flow charging stations
are assumed.

The available flexibility in a Flexible/Prosumer contract has to be constrained through several
terms of agreement. The following procedure is assumed. The EV owner connects to the charging
station and sets the required level of the state-of-charge and the time of departure. This requirement
has to be met by the market aggregator. If the EV is disconnected from the charging station before
the set departure time, the EV is left with the state-of-charge at that moment and the aggregator
loses the storage. Additional terms can be set in order to enable a minimal state-of-charge for
emergency car usage. A graphical depiction of the proposed contacts is given in Figure 2 with
possible power/energy trajectories. Each subfigure is related to the presented contracts. The gray area
represents the availability of the storage and the maximal charging power/state-of-charge. In each
subfigure, charging power P (bars) and the State-of-charge SoC (line) are displayed.

t2 t3 t4t1

t2 t3 t4t1

t2 t3 t4t1

6 12 18 24

t2 t3 t4t1

t2 t3 t4t1

t2 t3 t4t1

Traditional

Flexible

Prosumer

P

P

P

SoC

SoC

SoC

Figure 2. Possible power/energy trajectories in proposed contracts.

3. Stochastic Parameter Modeling

According to Figure 1, the three main components in the Stochastic parameters simulation are
the EV dynamics, the Market/Portfolio data and the scenario reduction. This section gives a detailed
description of these components.



Energies 2020, 13, 2315 5 of 19

3.1. EV Event Dynamics

The problem of EV related events simulation has been an omnipresent topic in recent publications.
In the Introduction, an overview of the existing EV events models has been given and, here, we adopt
a Monte-carlo based simulation.

At the core of this model, a single vehicle is modeled following the typical human habits.
This single EV simulation model is the basic component in a general Monte-carlo model for the
simulation of an entire EV fleet. The specific data to be simulated with this model have to emulate a
virtual storage. The necessary data for this emulation together with those for the Traditional case are:

• Charging power for the “Traditional” contract (Ptrad
t )

• Virtual storage bounds-Available minimal/maximal virtual storage capacity (Emin/max
t ) and

available minimal/maximal charging power (Pmin/max
t )

• Departure/Arrival of the virtual storage energy (Edep/arr
t )

3.1.1. Charging Power for “Traditional contract”

In order to simulate this data for an entire EV fleet it is necessary to model them for a single vehicle.
In the case of the “Traditional” contract, the vehicle is charged with the maximal available charging
rate upon connection to the charging station until the maximal capacity is reached or the vehicle is
disconnected. Initial condition in these dynamics is the first disconnection occurring in the morning
upon departing to the workplace. This time is denoted with t1,c for car c and the state-of-charge
at this time is assumed to be full Edep

t1,c = Emax
c . The next event in the EV dynamics is the arrival at

the workplace occurring at t2,c = t1,c + ∆tc, where ∆tc denotes the trip duration for car c. The new
state-of-charge in the moment of arrival is Earr

t2,c = Edep
t1,c − Pdr

c ∆tc, where Pdr
c denotes the power used

for driving car c. The next event is determined with the availability of the charger at the workplace
denoted with binary parameter wc. Under the “Traditional” contract, the following charging power
is used:

Ptrad
t,c = min

{
Pchr,work

c ,
Emax

c − Etrad
t−dt,c

dt

}
· wc (1)

where Pchr,work
c denotes the installed power of a car c charger and Et,c denotes the car c battery energy

content at time t. The dynamics of the battery energy content are defined in the following:

Etrad
t,c = Etrad

t−dt,c + Ptrad
t,c dt (2)

As it is described with (1), when the maximal energy content is reached, charging falls to zero
until the departure to Home, which occurs at t3,c. The EV arrives at Home at t4,c = t3,c + ∆tc with new
state-of-charge Earr

t4,c = Edep
t3,c − Pdr

c ∆tc when the same charging pattern repeats through the household

charger with the charging rate Pchr,home
c and full availability:

Ptrad
t,c = min

{
Pchr,home

c ,
Emax

c − Etrad
t−dt,c

dt

}
(3)

The equations defined above describe the charging dynamics for a single vehicle, and the
introduced variables are stochastic. In order to simulate an entire fleet, a Monte-carlo framework will
be adopted as described later in this section.

3.1.2. Virtual Storage Bounds

In the case of “Flexible” and “Prosumer” contract, event dynamics are used for the determination
of the charging flexibility. This flexibility is depicted in Figure 3. As it was explained above, arrival at
the workplace occurs at t2,c = t1,c + ∆tc with the new state-of-charge Earr

t2,c = Edep
t1,c − Pdr

c ∆tc. If there is a
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charging station at the workplace, EV owner places the planned departure time t3,c and the desired
energy content Edep

t3,c (feasibility of the desired energy content is checked through the charging system).
During the period of connection to the charging station (t2 − t3), operator can charge (“Flexible”) or
charge/discharge (“Prosumer”) the battery in a flexible manner (shaded area in Figure 3), as long as
the desired energy content is reached.

max

cE

dep

tcE
1,

arr

tcE
2,

dep

tcE
3,

arr

tcE
4,

min

cE

1t 2t 3t 4t
commuting to 

work
commuting to 

home
work homehome

t t

Charger at workplace

No charger

Figure 3. Event dynamics for a single EV.

As it was the case with the “Traditional” contract, departure to Home occurs at t3,c and the EV
arrives at Home at t4,c = t3,c + ∆tc with the new state-of-charge Earr

t4,c = Edep
t3,c − Pdr

c ∆tc when the same
user specification repeats through the household charger.

The basic parameters determining the flexibility during the charging is the maximal/minimal
charging rate and the energy content. Maximal charging rate is determined with:

Pmax
t,c =


Pchr,work

c · wc ∀t ∈ {t2,c, t3,c}
Pchr,home

c ∀t ∈ {0, t1,c} ∪ {t4,c, T}
0 ∀t ∈ {t1,c, t2,c} ∪ {t3,c, t4,c}

(4)

where T denotes the planning horizon. Minimal charging rate is defined with:

Pmin
t,c =

{
0 “Flexible”

−Pmax
t,c “Prosumer”

(5)

Maximal energy content Emax
t,c serves as an upper bound during the charging and is determined

with the battery capacity. Similarly, the minimal energy content Emin
t,c is determined with the battery

safety requirements during the connection. Both of these parameters resemble the maximal charging
power determined with (4). Instead of Pchr,work and Pchr,home the battery capacity Emax

c is used in the
case of maximal energy content and the minimal safety state-of-charge Emin

c in the case of the minimal
energy content.

The model described above covers a single EV and in order to model an entire EV fleet,
a Monte-carlo based generalization can be adopted. Parameters used in the single EV model above
become a stochastic parameter with its respective distribution. The sum of these parameters over
an entire fleet now describes the virtual storage. Monte-carlo model of an EV fleet virtual storage is
depicted in Figure 4.

Departure times and trip duration used in the Monte-carlo model are based on analyses performed
in [17]. Trips to work or home are distributed over a day (workday or non-workday) according to
Figure 5. The first four subfigures depict the fraction of trips per each hour in the day for four
characteristic trips (to work and to home for weekends and weekdays). In the fifth subfigure,
the fraction of trip durations is depicted.
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Figure 4. Commuting patterns and trip duration.

Figure 5. Commuting patterns and trip duration.

The battery sizes and the charger sizes are distributed according to Tables 1 and 2.

Table 1. Portions of different charging power.

Outlet (kW) 11 17 26

Portion 40% 50% 10%

Table 2. Portions of different storage capacity.

Capacity (kWh) 20–30 30–40 40–50 50–60 >60

Portion 35% 25% 20% 15% 5%

Since the availability of workplace chargers varies significantly, we consider three different
availability scenarios in terms of the portion of EVs having chargers at their workplaces, as depicted
in Table 3. These scenarios will provide an insight on the benefits of installing charging stations
at workplaces.

Table 3. Availability of charging stations at workplace.

Scenario Low Mid High

Portion 20% 50% 80%



Energies 2020, 13, 2315 8 of 19

The model and the data presented above are used for the simulation of EV driving/charging
patterns for a fleet with 1000 and 10,000 EVs. This simulation yields the EV fleet driving patterns
and the charging availability in terms of the maximal charging power and maximal storage capacity.
Figure 6 depicts these results for 1000 vehicles commuting on a single workday. In a closer examination
of the first subfigure (storage power used for driving on workdays), it can be seen that the driving
power increases steeply in the morning during the period of to-work commuting. The second peak
occurs in the afternoon when the return to-home occurs. The second peak is more distributed due to
difference in work times. The second subfigure depicts the aggregate storage availability. This value
represents the aggregation of the connected storage capacities, i.e the maximal capacity of the virtual
storage. During the night, all vehicles are connected to their charging station and this can be seen
in the subfigure. During the morning, a steep disconnection can be noticed due to the to-work
commuting. This fall is restored with the latter connection to workplace chargers in proportion to the
storage availability.

0 6 12 18 24
Time

0
100
200
300
400
500
600

kW

Storage power used for driving - Workday

0 6 12 18 24
Time

10
14
18
22
26
30
34
38

M
W

h

Aggregate storage availability (capacity/charging rate) - Workday

20 %
50 %
80 %

Figure 6. EV fleet workday driving scenarios and virtual storage capacity scenarios for different charger
availability at the workplace.

Figure 6 depicts an interesting phenomenon: Even in the cases of dense commuting
(workdays-to-work), just a small dispersion in commuting times can lead to a high overall availability
of EV storages, assuming a high availability of the workplace chargers. In that case, storage availability
has a maximal decrease of 35% for couple of hours. In cases of moderate and low availability,
this decrease reaches 75%.

3.1.3. Virtual Storage Energy Arrival/Departure

In the case of the Flexible/Prosumer agreements, it is necessary to simulate the arrival and the
departure of virtual storage energy. For this purpose, we can adopt the observations presented above.
Energy departure is determined with the user specified state-of-charge. Assuming that EV owners
want the storages to be full by the time they go to work/home, the time-dependent user-defined
energy content can be determined based on the distributions of the departures in these directions
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through Monte Carlo simulation, as depicted in Figure 7. In order to determine the uncertainties in
actual departure times compared to the planned ones, normally distributed random variations in
departure times are simulated and superposed on these scenarios.

Departure t1, t3

Sample

Ʃ

Uncertainty

Normal

Battery size

Sample

Figure 7. Monte carlo model for simulation of storage departure.

The arrival of virtual storage energy can be determined in the same manner as it was described
for the “Traditional contract”, using Earr

t2,t4
= Edep

t1,t3
− Pdr∆t.

This model is applied on the same set of vehicles used in the previous simulation. Figure 8 depicts
the results for the cases of low, mid and high availability of the workplace chargers.

time
0

500

1000

1500

2000

2500

3000

kW
h

User specified state-of-charge at the end of charging - low availability

time
0

500

1000

1500

2000

2500

3000

kW
h

User specified state-of-charge at the end of charging - mid availability

time
0

500

1000

1500

2000

2500

3000

kW
h

User specified state-of-charge at the end of charging - high availability

Figure 8. User specified EV fleet departure state-of-charge.

3.2. Market and Portfolio Data

In this section, we give a generic mathematical simulation framework for the stochastic parameters
and the deployment of this framework on each specific parameter considered in the optimization
model. These stochastic parameters are:

• EV fleet parameters,
• Portfolio consumption
• Day ahead and intraday electricity prices,
• Day ahead and hour-ahead portfolio forecast error.

These parameters are used for the scenario tree generation representing the uncertainties a market
aggregator faces in the decision making at different stages. Three characteristic stages are: day ahead
market, intraday market, and imbalance settlement. This represents the typical electricity market
organization. First, the energy is traded for each hour in the next day followed by market closure
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before the next day starts. Once the next day is entered, market participants have the opportunity
to correct their bids (typically to follow the realizations of uncertainties) for the next hour. After this
stage, the real-time operation is performed. During real-time operation, the realizations differ from the
bids and penalties are charged in the imbalance settlement procedure.

Secondly, it is necessary to build up a set of representative days composed of all these uncertain
parameters which can then be used to estimate the annual costs. Altogether, the scenario tree
corresponding to the decision-making process in a multi-market organization is depicted in Figure 9.
The complete scenario tree in Figure 9 comprises several independent trees each related to a
representative day.

Figure 9. The scenarios tree of the uncertainties in the multi-market decision making.

The details on EV-fleet-related parameters simulation are given in the previous section.
The remaining three categories of uncertain parameters are an omnipresent topic in the relevant
literature, and only a brief explanation of the adopted modeling approach is given in the following text.

For the day ahead prices, a set of historical prices is used. These daily realizations are used as the
basis for the superposition of the uncertain realization of the subsequent stages. These scenarios are
simulated using different orders of multiplicative autoregressive integrated moving average (ARIMA)
models [18] with transformations based on the theory of Copula [19]. Autoregressive models have
been widely applied in electricity prices modeling and forecasting [20,21] and portfolio forecast error
modeling [22–24]. The basic idea behind autoragressive models is that each value in a series is a linear
combination of past values and white noise. Based on the historical data, the parameters of such linear
model are fit through optimization. On the other hand, the Copula theory allows for simulation of
multivariate distributions with specific distribution types and correlation matrix. This framework
allows for the simulation of different realizations of uncertain parameters forming the scenario tree.

Using the presented framework, 1000 scenarios are generated. Figure 10 depicts these scenarios
for day ahead price, intraday price, portfolio consumption and day ahead forecast error of the portfolio
consumption. These scenarios, together with previously depicted fleet-related scenarios form a
complete set of scenarios required in the model. These scenarios will be reduced using the reduction
technique described in the following section.
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Figure 10. Prices and portfolio consumption scenarios.

3.3. Scenario Reduction

The reduction in the number of scenarios is necessary in order to reduce the computational
complexity. For the same reason, it is necessary to select representative days instead of optimizing
over the whole year. The scenario reduction technique presented in [25] is adopted here. This method
is based on the elimination of all the similar scenarios except for one which then takes over their
probabilities. The same method can be applied for the selection of the representative days where
instead of probability, the remaining day will have a greater weight in the summation of the total
annual cost.

It is important to point out that in the case of EV fleet dynamics scenarios, due to the substantial
differences in stochastic EV fleet parameters related to workdays/non-workdays commuting,
the scenario reduction and the representative days selection is applied on these two subsets separately.

4. Portfolio Value Model

In this section, the mathematical model for estimation of the portfolio value on an annual level
is presented. In the case of the Traditional contract, this value is calculated through a set of algebraic
equations. Multi-stage stochastic optimization is required for portfolio value estimation in the case of
Flexible and Prosumer contracts.

4.1. Traditional Contract

The estimation of Traditional contract value is performed through the simulation of the charging
scenarios and the summation of the corresponding costs at different stages. We assume that each
EV is connected to a charger as soon as it reaches the destination (if the charger is available at this
destination). Upon connection, the vehicle is charged with the maximal available charging rate till it
reaches the full state-of-charge as it was described in the Section 3.1.
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Calculation of the total annual costs for supplying the portfolio under consideration can be done
with the following expression:

∑
ξ

πξ

T

∑
t=1

(
λda

t,ξ

(
Pport

t,ξ + Ptrad
t,ξ

)
+ λid

t,ξ εda
t,ξ + pt,ξ DEVt,ξ

)
(6)

with:
πξ the weight of scenario ξ,
λda/id

t,ξ the day ahead/intraday electricity price,

Pport
t,ξ the day ahead portfolio consumption/production forecast,

εda
t,ξ the day ahead portfolio consumption/production forecast error,

DEVt,ξ the imbalance determined as (generation− consumption) + (purchase− sales),
pt,ξ the imbalance price.

If we assume the day ahead error balancing on the intraday market, the only deviations that
remain are the hour-ahead deviations. Therefore, the imbalance DEVt,ξ can be determined with:

DEVt,ξ = εha
t,ξ +

(
E{Ptrad

t,ξ } − Ptrad
t,ξ
)

(7)

with:
εha

t,ξ the hour-ahead portfolio consumption/production forecast error.

The price pt,ξ in the two-price imbalance settlement procedure depends on the relation between
the the portfolio error direction and the system error εS

t,ξ direction according to Table 4.

Table 4. Two-price imbalance settlement system.

εS
t,ξ > 0 εS

t,ξ < 0

DEV > 0 k1 · λid k2 · λid

DEV < 0 −k2 · λid −k3 · λid

Different system error direction scenarios are simulated in order to capture the two-price
procedure. In practice, the MA will have historical data on its portfolio error, while the data on
the system error are publicly available. From this, the correlation could be determined and reproduced.
Here, a correlation in error directions of 0.8 is assumed. Such a correlation could be expected since
the system error is the sum of errors of all portfolios in the system including the examined portfolio.
Portfolios are within certain geographical area and are correlated accordingly [26].

Results of the portfolio cost estimation are shown in Table 5 expressed as the cost per MWh of the
actual consumed power (over the counter) for different availability of workplace chargers.

Table 5. Portfolio cost-Traditional contract.

Low Mid High

Cost [e/MWh] 24.52 24.58 24.59

4.2. Flexible/Prosumer Contract

The model presented in the following text is the modification of the storage scheduling model
proposed in [16].

The market aggregator forecasts portfolio consumption/production and, based on these forecasts,
buys/sells power on the day ahead market. We also assume the market aggregator is a balancing
responsible entity. This means that the aggregator is financially penalized for mismatches in forecasts.
Since our aim is to analyze the value of different contracts that the aggregator can offer to newly added
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electrical vehicles, it is necessary to consider this component of the portfolio separately. The three-stage
stochastic optimization model describes these market operations, and a detailed description is provided
in the following paragraphs.

The first stage is related to the day ahead market. The market aggregator decides the EV
fleet charging/discharging power for the day ahead market Pev,da

t,ξ based on the expected gains
determined with:

min
Pev ∑

ξ

πξ

T

∑
t=1

λda
t,ξ

(
Pport

t,ξ + Pev,da
t,ξ

)
+R1 (8)

subject to:
Pev,da

t,ξ = Pev,da
t,ξ́

, ∀ξ, ξ́ s.t.
(
λda

t,ξ
)
=
(
λda

t,ξ́

)
, ∀t (9)

Objective (8) comprises the expected revenues in the day ahead market. These gains consist of the
profit/cost of the residual load of the portfolio and the profit/cost for the purchase/sale of the power
related to EVs. The term R1 denotes the revenues related to the forthcoming stages. Constraint (9)
enforces non-anticipativity.

The second stage is related to the intraday market. This market primarily serves to correct the
day ahead bids. Hence, the aggregator corrects the day ahead bids on the intraday market with
sales/purchases denoted with Pid

t,ξ following updates on parameter forecasts. The objective describing
the expected gains/costs in the intraday market is:

min
Pid

∑
ξ

πξ

T

∑
t=1

λid
t,ξ Pid

t,ξ +R2 (10)

subject to:
Pid

t,ξ = Pid
t,ξ́ , ∀ξ, ξ́ s.t.

(
λda

t,ξ , λid
t,ξ
)
=
(
λda

t,ξ́ , λid
t,ξ́

)
, ∀t (11)

(1− da
t,ξ)ε

da
t,ξ ≤ Pid

t,ξ ≤ da
t,ξ εda

t,ξ , ∀t, ∀ξ (12)

where:

da
t,ξ =

{
1 if εda

t,ξ > 0

0 else
(13)

Objective (10) comprises the costs/revenues in the intraday market. The term R2 denotes the
forthcoming trading. The term Pid

t,ξ́
is primarily a trading quantity and not necessarily related to

physical processes. Constraint (11) ensures non-anticipativity. Constraint (12) ensures that the intraday
market is used only for forecast error correction.

The final stage is related to the real-time operation and post-realization tradings. At this moment,
the actual errors in planned vs. delivered power are known. Hence, the penalties can be charged
through the imbalance settlement. On the other hand, these imbalance costs will motivate for error
correction through real-time operation. This is expressed in the following objective:

min
Pev ∑

ξ

πξ

T

∑
t=1

cdev
t,ξ (14)

In Objective (14), cdev
t,ξ denotes the costs for imbalances charged after real-time operation.

Again, the imbalance settlement procedure follows the so-called two price mechanism. The prices
for different combinations in system and portfolio error directions are depicted in Table 4.
Here, DEVt,ξ denotes the real-time portfolio imbalance ((generation− consumption) + (purchase−
sales)). The following constraint captures these imbalance costs:

cdev
t,ξ ≥ −

[
k1db

t,ξ + k2

(
1− db

t,ξ

)]
λid

t,ξ DEVt,ξ , ∀t, ∀ξ (15)
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cdev
t,ξ ≥ −

[
k2db

t,ξ + k3

(
1− db

t,ξ

)]
λid

t,ξ DEVt,ξ , ∀t, ∀ξ (16)

where:

db
t,ξ =

{
1 if εS

t,ξ > 0

0 else
(17)

Here, db
t,ξ denotes the system error direction, while the the sign of DEVt,ξ shows the portfolio

error direction.
The charging dynamics are captured with the following constraints:

Et,ξ = Et−1,ξ + ∆t(Pev,da
t,ξ + Pev,ad

t,ξ )− Edep
t,ξ + Earr

t,ξ , ∀t, ∀ξ (18)

Emin
t,ξ ≤ Et,ξ ≤ Emax

t,ξ , ∀t, ∀ξ (19)

Pmin
t,ξ ≤ Pev,da

t,ξ + Pev,ad
t,ξ ≤ Pmax

t,ξ , ∀t, ∀ξ (20)

E0,ξ = ET,ξ , ∀ξ (21)

where a new variable Pev,ad
t,ξ represents the additional power produced in this stage relative to the

preceding actions. The sum Pev,da
t,ξ + Pev,ad

t,ξ represents the power produced/consumed in real-time.
As such, it is used in the constraint (18) and drives the Virtual storage energy dynamics. In this
constraint the energy departure and arrival defined in the previous section is introduced as well.
Constraints (19) and (20) bounds the virtual storage energy content and the real-time charging power
between minimal and maximal value defined in the previous section. Constraint (21) enforces the
temporal continuity.

5. Case Study

This section provides the details on the solution of the proposed optimization problem together
with the details of the case study. In the second part, three proposed contracts are analyzed.

5.1. Solution Technique and Case Study

The proposed contracts are analyzed with different workplace charger availabilities and with
scenarios simulated in Section 3. The portfolio integrates an EV fleet with 1000 vehicles, and the
complete set of scenarios is reduced to 10 × 5 × 20 scenarios for three stages.

The presented optimization model is modeled in Python and solved with GUROBI solver
[27]. GUROBI is a state-of-the art solver specialized for mixed-integer linear optimization problems.
A python library allows for easy integration of the solver into a python programming framework.

Complete trading in a single scenario is shown in Figure 11. Day-ahead-related trading suggests
exploitation of daily price differences . The second opportunity exploited by virtual storage is
the imbalance penalty avoidance. Exploitation of this opportunity is clearly depicted in Figure 11.
However, some errors remain unbalanced due to the lack of flexibility, greater gains on day ahead
market, etc. The intraday market is used for day ahead error balancing, and these errors are
balanced completely.
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Figure 11. Single scenario trading example.

5.2. Comparative Analysis

The Traditional contract serves as the benchmark in the comparative analysis. The Flexible/Prosumer
contracts are compared to the Traditional with:

pcont. =
Costcont. − Costtrad.

Pchr./port.
(22)

In this expression, the difference in portfolio supply costs under the Flexible/Prosumer contract,
Costcont. is given (form of discount) to EV owners in one case Pchr. or to the complete portfolio in the
other Pport.. The price pcont. can be seen as a discount that can be given to the EV owners or to the
complete portfolio under a certain contract and still have the same profit as in the case of Traditional
contract. Table 6 depicts these results. In both cases of contract a significant discount can be given
to the EV owners. In case of Prosumer this discount exceeds the traditional price meaning that the
supplier can pay the EV owner to supply his/her EV. On the other hand, if the benefits would be given
to the complete portfolio, the possible discount is negligible. This is primarily due to the size of the
fleet in comparison to the rest of the portfolio. Installing charging stations on the workplace does not
increase the benefits significantly. In fact, in the case of Flexible contract, costs for traditional charging
are higher than the benefits of the contract, resulting in a slight decrease of the discount. This smaller
gain is the result of the charging enforcement during the day (when the prices are higher) as a result of
user-defined specifications on the departure state-of-charge when commuting to home.
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Table 6. Comparison of different contracts in terms of e/MWh.

Chr. Availability

Low Mid High

Contract Flexible 16.51/0.25 16.16/0.24 15.89/0.24

Prosumer 53.58/0.62 55.23/0.64 57.04/0.66

In order to understand the effect of the workplace charging station availability, a probabilistic
depiction of the state-of-charge can be used. Figure 12 depicts the mean and the standard deviation
of the state-of-charge trajectories in workday scenarios for a Prosumer contract. Obvious differences
in the charging patterns depict the exploitation of the available flexibility. The above mentioned
increase in the departure state-of-charge prior to work-to-home commuting is visible in this depiction
during afternoons.

Figure 12. Virtual storage energy content trajectories.

In the comparison above it was stated that when the savings are given to the portfolio, the discount
is negligible due to the size of the fleet compared to the rest of the portfolio. It is therefore useful to
consider a larger EV fleet under the same contract. Assuming a Prosumer contract and high charger
availability an EV fleet of 10,000 vehicles is considered. Table 7 shows the discounts in this and the
previous case. Now, the benefits are large enough to result in a significant discount for the whole
portfolio (7.1e/MWh). However, the discount given to the fleet has decreased compared to the
1000 EV fleet. This is due to the saturation effect in terms of imbalance reduction requirements.
Namely, the capacity of the virtual storage exceeds the imbalance error and hence the profit in this
market is completely exploited and can not be increased with the increase of virtual storage capacity.

Table 7. Comparison of different Fleet sizes in terms of e/MWh.

High

Fleet size 1000 57.04/0.66

10,000 40.26/7.1
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6. Conclusions

In this paper a novel method for the estimation of the economic benefits of adding EVs to the
existing renewable portfolios is given. The perspective of a market aggregator is assumed. The method
is suitable for the planning stage when the actual data on vehicle commuting patterns is unavailable.
Furthermore, different supply contracts have been proposed in order to set the terms of storage usage
that satisfy the requirements of both an EV owner and a market aggregator.

In order to get an indicative assessment of these benefits, a realistic case study is used. It was
recognized that the integration of EVs in renewable portfolios can be highly beneficial in terms of
economic gains. The flexibility introduced through this integration can be used for exploitation of
the price variations or for the portfolio imbalance correction. A characteristic measure of economic
benefits is adopted for valuation of economic benefits: The savings on the portfolio level (compared
to traditional contract) are divided with the driving energy (given to EV owners) in one case and
divided with the energy of the whole portfolio (distributed over the whole portfolio) in the second
case. The results show that in the case of “Flexible” contract a total amount of approx. 16 e/MWh
can be given to each EV owner which is more than half the price they paid for charging. In the case
of “Prosumer” contract, this amount reaches up to 57 e/MWh exceeding the price paid for charging.
This means that the aggregator can pay EV owner to charge his/her vehicle. The second major
conclusion drawn from the conducted analyses is the saturation effect. Namely, if the fleet size would
increase, the benefits would decrease relative to the number of EVs. This effect is the consequence of
the over-sized storage capacity compared to imbalance correction needs. However, the other gains
still remain and the benefits are still significant. Furthermore, in the case of an increased fleet size,
the benefits are large enough to result in savings for the whole portfolio.

It is important to point out that these conclusions are related to the case study under consideration
and should not be used as general conclusions. Furthermore, the proposed model neglects several
important factors. The cost of the charging infrastructure is not considered, and in order to get a
realistic assessments of the benefits, these costs should be analyzed. The second major assumption is
the neglect of the battery deterioration caused by increased cycling. However, the obtained results
point to a large opportunity in combining the EVs with the renewable portfolios.

7. Model Limitations and Further Research

The basic assumption behind the EV storage exploitation is that this service is provided through
the charger interface. If the EV is charged by the charger with no interface to MA, the terms of contract
will not be applied. This is one of the basic limitations since it can be expected that other chargers will
be used as well. However, the EV owners outside of this category (with different traveling habits) will
not be motivated to sign such a contract. Furthermore, we can expect that, in the future, all charges
will have such communication capabilities and these services will become a standard.

In this paper, the category of interest are commuting EVs. However, other categories of vehicles
can fit this role as well. For example, delivery EVs and public transportation are interesting categories
to be investigated in this context. The continuing research could cover this and other categories
of vehicles.

The possibility of delivering other ancillary services could be investigated as well. For example,
voltage and frequency control could be provided by EV storages and additional profit could be gained.
Such research could show even greater benefits of integrating EVs in power system operations.

Finally, an important research topic in this context is the control system design for provision
of services presented in this paper. Namely, these services are based on the exchange of control
signals between central entity and numerous charging devices. Desired change in EV power
consumption/production would have to be evenly distributed over active storages.

Author Contributions: Model development, algorithm implementation and writing original draft, J.V.;
Model validation, D.J. and P.S. All authors have read and agreed to the published version of the manuscript.
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The following abbreviations are used in this manuscript:

MA Market aggregator
EV Electric vehicle
ARIMA Autoregressive integrated moving average

References

1. Wong, S.; Pinard, J.P. Opportunities for Smart Electric Thermal Storage on Electric Grids With Renewable
Energy. IEEE Trans. Smart Grid 2017, 8, 1014–1022. [CrossRef]

2. Su, H.I.; Gamal, A.E. Modeling and Analysis of the Role of Energy Storage for Renewable Integration:
Power Balancing. IEEE Trans. Power Syst. 2013, 28, 4109–4117. [CrossRef]

3. Huda, M.; Tokimatsu, K.; Aziz, M. Techno economic analysis of vehicle to grid (V2G) integration as
distributed energy resources in Indonesia power system. Energies 2020, 13, 1162. [CrossRef]

4. Faessler, B.; Kepplinger, P.; Petrasch, J. Field testing of repurposed electric vehicle batteries for price-driven
grid balancing. J. Energy Storage 2019, 21, 40–47. [CrossRef]

5. Salvatti, G.A.; Carati, E.G.; Cardoso, R.; da Costa, J.P.; de Oliveira Stein, C.M. Electric vehiclesenergy
management with V2G/G2V multifactor optimization of smart grids. Energies 2020, 13, 1191. [CrossRef]

6. Uncertainty, D. Optimized Scheduling of EV Charging in Solar Parking Lots for Local Peak Reduction under
EV. Energies 2020, 13, 1275. [CrossRef]

7. Pham, T.N.; Trinh, H.; Hien, L.V. Load Frequency Control of Power Systems With Electric Vehicles and
Diverse Transmission Links Using Distributed Functional Observers. IEEE Trans. Smart Grid 2016, 7, 238–252.
[CrossRef]

8. Casaleiro, Â.; Amaro, R. Plug-in Electric Vehicles for Grid Services Provision: Proposing an Operational
Characterization Procedure for V2G Systems. Energies 2020, 13, 1240. [CrossRef]

9. Esmaili, M.; Shafiee, H.; Aghaei, J. Range anxiety of electric vehicles in energy management of microgrids
with controllable loads. J. Energy Storage 2018, 20, 57 – 66. [CrossRef]

10. Khodayar, M.E.; Wu, L.; Li, Z. Electric Vehicle Mobility in Transmission-Constrained Hourly Power
Generation Scheduling. IEEE Trans. Smart Grid 2013, 4, 779–788. [CrossRef]

11. Hu, J.; You, S.; Lind, M.; Østergaard, J. Coordinated Charging of Electric Vehicles for Congestion Prevention
in the Distribution Grid. IEEE Trans. Smart Grid 2014, 5, 703–711. [CrossRef]

12. Bessa, R.J.; Matos, M.A. The role of an aggregator agent for EV in the electricity market. In Proceedings of
the 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and
Energy Conversion (MedPower 2010), Agia Napa, Cyprus, 7–10 November 2010; pp. 1–9.

13. Vasilj, J.; Gros, S.; Grauers, A.; Krasic, I. Valuation of Contract Between Market Aggregator and Electric
Vehicle Owner. Eur. Energy Mark. 2017, 2017, 1–6.

14. Vayá, M.G.; Andersson, G. Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead
Electricity Markets Under Uncertainty. IEEE Trans. Power Syst. 2015, 30, 2375–2385. [CrossRef]

15. Vagropoulos, S.I.; Kyriazidis, D.K.; Bakirtzis, A.G. Real-Time Charging Management Framework for Electric
Vehicle Aggregators in a Market Environment. IEEE Trans. Smart Grid 2016, 7, 948–957. [CrossRef]

16. Vasilj, J.; Gros, S.; Jakus, D.; Saraijcev, P. Multi-market Scheduling of Battery Storages Within Renewable
Portfolios. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; pp. 1–6.

17. Krumm, J. How People Use Their Vehicles: Statistics from the 2009 National Household Travel Survey;
SAE International: Pittsburgh, PA, USA, 2012.

18. Hamilton, J. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994.
19. Schoelzel, C.; Friederichs, P. Multivariate non-normally distributed random variables in climate

research–introduction to the copula approach. Nonlin. Process. Geophys. 2008, 15, 761–772. [CrossRef]

http://dx.doi.org/10.1109/TSG.2016.2526636
http://dx.doi.org/10.1109/TPWRS.2013.2266667
http://dx.doi.org/10.3390/en13051162
http://dx.doi.org/10.1016/j.est.2018.10.010
http://dx.doi.org/10.3390/en13051191
http://dx.doi.org/10.3390/en13051275
http://dx.doi.org/10.1109/TSG.2015.2449877
http://dx.doi.org/10.3390/en13051240
http://dx.doi.org/10.1016/j.est.2018.08.023
http://dx.doi.org/10.1109/TSG.2012.2230345
http://dx.doi.org/10.1109/TSG.2013.2279007
http://dx.doi.org/10.1109/TPWRS.2014.2363159
http://dx.doi.org/10.1109/TSG.2015.2421299
http://dx.doi.org/10.5194/npg-15-761-2008


Energies 2020, 13, 2315 19 of 19

20. Nogales, F.J.; Contreras, J.; Conejo, A.J.; Espinola, R. Forecasting next-day electricity prices by time series
models. IEEE Trans. Power Syst. 2002, 17, 342–348. [CrossRef]

21. Contreras, J.; Espinola, R.; Nogales, F.J.; Conejo, A.J. ARIMA models to predict next-day electricity prices.
IEEE Trans. Power Syst. 2003, 18, 1014–1020. [CrossRef]

22. Vasilj, J.; Sarajcev, P.; Jakus, D. Estimating future balancing power requirements in wind–PV power system.
Renew. Energy 2016, 99, 369–378. [CrossRef]

23. Vasilj, J.; Sarajcev, P.; Jakus, D. Wind Power Forecast Error Simulation Model. Int. J. Electr. Comput. Energ.
Electron. Commun. Eng. 2015, 9, 38–143.

24. Vasilj, J.; Sarajcev, P.; Jakus, D. PV power forecast error simulation model. In Proceedings of the 2015 12th
International Conference on the European Energy Market (EEM), Lisbon, Portugal, 19–22 May 2015; pp. 1–5.

25. Growe-Kuska, N.; Heitsch, H.; Romisch, W. Scenario reduction and scenario tree construction for power
management problems. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings,
Bologna, Italy, 23–26 June 2003; Volume 3, p. 7.

26. Olauson, J.; Bergkvist, M. Correlation between wind power generation in the European countries.
Energy 2016, 114, 663 – 670. [CrossRef]

27. Gurobi Optimization, Incorporate. Gurobi Optimizer Reference Manual; Gurobi Optimization, Incorporate:
Houston, TX, USA, 2015.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPWRS.2002.1007902
http://dx.doi.org/10.1109/TPWRS.2002.804943
http://dx.doi.org/10.1016/j.renene.2016.06.063
http://dx.doi.org/10.1016/j.energy.2016.08.036
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Modeling Approach
	Stochastic Parameter Modeling
	EV Event Dynamics
	Charging Power for ``Traditional contract''
	Virtual Storage Bounds
	Virtual Storage Energy Arrival/Departure

	Market and Portfolio Data
	Scenario Reduction

	Portfolio Value Model
	Traditional Contract
	Flexible/Prosumer Contract

	Case Study
	Solution Technique and Case Study
	Comparative Analysis

	Conclusions
	Model Limitations and Further Research
	References

