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Abstract: This paper investigates the influence of a stochastic variation of both energy and economic
parameters in an optimization loop applied to a refurbished social housing building. Usually, energy
and economic optimization procedures rely on the results of an underlying numerical deterministic
model which influences both energy gains and economic figures. However, an analyst must always
face the random variation of input and parameter data. The unknown data can represent poor initial
information or data that can change in a long time; this is the case of fuel cost and economic indexes in
particular. This paper deals with both problems for building refurbishment optimization, the former
related to the initial state of a building, and the latter to the energy cost variability. Reliability analysis
considers a stochastic variation of parameters looking for solutions that incorporate a risk level; in this
case, it deals with optimization objectives related to different impacts on economic, environmental
and health aspects. The considered building represents a social house, and the energy reduction
measures involve the application of internal insulation layers to the walls and the replacement of
existing windows with more efficient ones.

Keywords: optimization; reliability analysis; building refurbishment; discounted cash flow analysis;
polynomial chaos

1. Introduction

Energy consumption in the residential sector in Italy covers 36% of the national final energy use,
a large amount, especially if compared to the transport sector that absorbs 32%, and the industrial
sector, responsible for a 23% share [1]. Furthermore, the highest share of energy in the residential
sector is due to building heating, especially in northern Italy, due to the age of constructions with poor
building fabric and insulation characteristics.

Italy is committed to reducing its energy consumption and limiting emissions with an undoubtable
benefit to the environment and citizens’ health.

Large efforts have been conducted in order to increase plant efficiencies, especially with
the substitutions of old boilers with newer condensing ones, and the exploitation of renewable
energy sources. To extend the process, important investments should also be focused on refurbishment
activities [2]. However, when an operator faces the refurbishment of existing buildings, he faces
the problem of large investment costs, which can become a limiting factor; in this case, investors should
carefully carry out risk assessment for each intervention [3].

The task is clearly multidisciplinary and involves both accurate energy and economic analysis, in
order to define a suitable approach. However, the impact of restructuring measures on the health of
inhabitants must also be considered.
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In [4], a retrofit proposal was studied which led to a significant reduction in the overall energy
demand in a social house in Spain; moreover, the retrofitted building showed an increase in comfort
conditions. The overheating risk in refurbished social buildings was described in [5], where 86 rooms
in 46 homes were monitored by recording the internal temperatures; the authors highlighted that
living rooms with vulnerable occupants showed an increased risk of overheating due to their behavior,
confirming the requirement to prevent such situations. In [6], the effect of refurbishment solutions in
post-war office buildings was studied; however, even if significant reductions in energy consumption
were found, the solutions failed to deliver thermal comfort in summer due to overheating, requiring
greater attention in providing summertime cooling measures. Energy simulation techniques are
nowadays widespread; they allow for previewing the effect of energy refurbishment efforts and
the results are also the base to perform cost evaluation procedures. For example, the beneficial effect of
subsidies was highlighted in [7], where the economic feasibilities of different energy efficiency retrofits
for social houses are compared. Different energy efficient measures and their economic impact for
a heating system were analyzed in [8] using different energy cost escalation rates.

The energy retrofit of a building is a typical case where different solutions characterized by a great
number of parameters should be taken into account at the same time. In this case, in the literature,
optimization techniques are gaining great interest since they allow one to restrict the possible solutions
to an optimal subset based on specified goals.

When dealing with building refurbishment, one of the optimization goals takes into account
the economic feasibility of the intervention, prompting users to select solutions with an adequate
trade-off between energy and economic prospects. As an example, Ascione in [9] searched for
the optimal solutions for building refurbishment taking into account both energy and the costs of
the intervention. Lupato [10] highlighted the effect of climatic data on the results of an optimization
loop for the refurbishment of a social house, using as objectives the overall energy consumption and
the present net value of the investment. A similar approach [11] highlighted the beneficial effect
of subsidies.

Usually optimization techniques apply a deterministic approach, fixing some parameters, while
changing others during the optimization process. However, while dealing with economic analysis, it is
common to incur in situations where parameters are not under control and can vary during the time,
especially with long building’s lifetime. In order to introduce this approach into an optimization
process, uncertainty in searching for optimal designs should be added to the process. This is even
more important in a refurbishment process, where an investor requires not only a cost analysis, but
also must evaluate the economic risk intrinsic in each investment.

Some authors have pointed out the requirement to analyze the effect of uncertain parameters
in building simulation. In [12], a probabilistic method for risk assessment was used in computing
the energy requirement and utility cost using a reference commercial building; they computed mean
values and standard deviation for identifying the risk associated with a project. In [13], Chary et al.
performed a stochastic assessment of the energy performance of buildings considering twelve different
regions in Europe, identifying the factors with the greatest impact on energy use. In [14], the authors
analyzed the uncertainty propagation of the material properties in energy simulations, emphasizing
the problem of a correct assessment of physical properties in existing buildings in order to optimize
energy refurbishment. In [15], Di Giuseppe et al. worked on a case study performing a sensitivity
analysis and identifying the main parameters affecting the life cycle cost of a building. The research
found the financial factors, inflation, discount rate and the energy trend uncertainty as the most
influential parameters. Other works are related to the use of different methods for carrying out
sensitivity and uncertainty propagation, different methods can be applied as reported in [16], where
uncertainty analysis methods were tested to determine an appropriate energy consumption threshold
for energy performance contracting. The authors also developed a sort of guideline for applying such
techniques in different situations.
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While in the literature sensitivity analysis of energy building simulation is a well-established
field of research, the problem of the optimization under uncertainty is less studied. A study by Cano
et al. [17] applied a stochastic multi-staged optimization algorithm, highlighting the requirement
to introduce stochastic variables for risk assessing and decision making. The effect of boundary
conditions can affect the results of an optimization; in [18], a form optimization was carried out, taking
into account the uncertainties of the parameters; however the uncertainty was not directly entered
into the optimization loop, since the authors performed a parametric analysis introducing uncertain
quantities. It is interesting to note that, considering the uncertainty, in some cases it could lead to an
optimized solution performing worse than the original one.

In this work, a true reliability-based design optimization (RBDO) is carried out; that is,
the optimization results are obtained by integrating a genetic algorithm with a stochastic object
resulting from stochastic inputs related to economic parameters, therefore the results are not reported
as a set of optimized solutions, but instead as solutions that can be obtained with a defined probability
given the possible values of stochastic inputs. In particular, the problem considered the refurbishment
of an existing building considering also the economic impact of energy conservation measures. Two
optimizations are carried out. The former considers two objectives related to the energy performance and
economic feasibility of the intervention, and the latter adds an objective related to the comfort conditions
during the summer period. For both cases, uncertainties have been embedded into the numerical
process in order to develop a methodology to support potential investors in making decisions.

2. Building Description

An existing building in Trieste, a city in north-east Italy, whose main features have already
been described [11], was chosen to run the reliable optimization. It is composed by four blocks with
apartments adjacent to each other. Each block consists of four floors with two small apartments
each. The ground floor apartments consist of a kitchen, a bathroom and a bedroom. Each level
above the ground floor features two apartments which, respectively, contain one and two bedrooms,
a bathroom and a kitchen. The ground level floors and the third level ceilings are adjacent to
aerated spaces. The base building was built with massive structures without insulation; the thermal
characteristics of external walls have been measured using a heat flow meter, as reported in [19].
The energy refurbishment was carried on by adding insulating layers to the vertical and horizontal
internal surfaces in order to preserve the facades. Figure 1 presents the façade of the buildings, while
Figure 2 presents the floor plans with five types of flats; Table 1 presents the percentage of characteristic
area for each one.
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Table 1. Distribution of the spaces for each flat.

Configuration Living Room + Kitchen Other Conditioned Spaces

Apt 1 34.00% 66.00%
Apt 2 30.00% 70.00%
Apt 3 26.00% 74.00%
Apt 4 28.00% 72.00%
Apt 5 31.00% 69.00%

3. Building Model Description

The basic model was created using DesignBuilder and the input file in idf EnergyPlus format
was saved as the basis for subsequent calculations. During the optimization cycle, the base file
was continuously modified according to the required configurations and the calculation phase used
EnergyPlus as a simulation engine. It is worth noting that this approach was also allowed to operate in
parallel during optimization runs by exploiting the multicore features of the hardware. A simplified
approach was used for building’s modelling in order to speed up energy computation. Every single
apartment was modelled as a unique space while keeping partitions between each other and between
apartments and common spaces. However, in order to consider the physical presence of the partitions
inside each apartment, equivalent internal masses were added to assure the correct thermal inertia to
the system. Internal gains due to people and equipment followed the pattern for residential buildings
of EN ISO 13790. The equipment loads were weighted using the percentages of the areas reported in
Table 1 obtaining the total internal gain for each type of apartment, as shown in Table 2. The people
contribution was inserted into the model considering two metabolic activities: sleeping condition,
with 85 W/person and light working, with 110 W/person. The metabolic rates were multiplied by
the number of persons, maximum two due to the size of the flats, to obtain people internal gains.
These loads were subtracted from the equipment ones, since EN ISO 13790 already considers this
contribution. No gains were modelled for entrances, circulation spaces and bathrooms and lighting
gains were considered as included in internal gains.
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Table 2. Distribution of internal gains.

Day Hours

Flat Type

1 2 3 4 5

W/m2

Monday
-

Friday

07:00 to 17:00 3.38 3.10 2.82 2.96 3.17
17:00 to 23:00 7.46 6.70 5.94 6.32 6.89
23:00 to 07:00 4.64 4.80 4.96 4.88 4.76

Saturday
-

Sunday

07:00 to 17:00 4.04 3.80 3.56 3.68 3.86
17:00 to 23:00 9.44 8.80 8.16 8.48 8.96
23:00 to 07:00 4.64 4.80 4.96 4.88 4.76

Air infiltration was computed in a simplified manner considering an air change rate of 0.50 vol/h
for each apartment during winter, while a variable air flow was adopted for summer conditions in order
to mimic the opening of windows during summertime, only when external temperatures were lower
than internal ones. This approach was implemented in order to account for the impact of refurbishment
measurements on dwellers comfort conditions [20]. Windows were considered open when external
temperature falls below 2 K of the internal operative temperature. The opening of windows occurs only
from May to September and when internal temperatures exceed 24 ◦C. The WindandStackOpenArea
model of EnergyPlus was used to compute ventilation, considering wind effect only.

The heating set-point temperature was 20 ◦C from 7 a.m. to 2 p.m. and from 4 p.m. to 11 p.m.
During the remaining time, a setback temperature of 18 ◦C was set.

The building blocks had a separate heating plant system which was modelled with an HVAC
system composed of a gas boiler and water radiators as terminals in each flat.

Pumps were modelled as variable speed ones. According to Italian law for climatic zone E,
the boiler availability was set from the 15th of October until the 15th of April. The heating system
water temperature was modelled as modulating through outdoor air temperature sensor.

Circulation spaces and entrances were considered as unheated. Finally, no cooling system was
considered, and therefore free floating temperatures were present during the summer season. Domestic
hot water was not included into the simulation, and therefore energy consumption takes into account
heating energy only.

The weather input file was generated using data recorded between 2001 and 2010 by a weather
station 1.6 km away from the building site; with a base temperature of 18 ◦C, the cooling degree days
is equal to 1671. All weather quantities were recorded at 10-minute time intervals, and also comprise
measured direct and global radiation avoiding the use of split methods for radiation.

The model could not be calibrated due to the lack energy consumption data. However, the modeling
of the baseline building led, for the heating season, to a net energy for space heating of 65 kWh/(m2year).
Corrado et al. [21] reported for a similar building located in Milan, with an Heating Degree Day (HDD)
value of 2404, a net energy of about 100 kWh/(m2 year), recalibrating this energy value to Trieste climate
through the comparison of HDD values, yields a space heating requirement energy of 78 kWh/(m2 year).
The calibrated result [22] for a social house in Torino, HDD 2617, reports a net energy need for space
heating of 57.6 kWh/(m2 year), corresponding to 46 kWh/(m2 year) for the climate data used in present
paper. It appears that the obtained value can be considered representative for the considered type of
building. It is worth noting that the difference in the results can be attributed both to the different
modeling techniques and to the characteristics of the reference constructions.

4. Optimization Approach

The base building external wall is composed by two layers of full-bricks each 25 cm thick.
The thermal conductance of the external wall has been measured in [19], while the other characteristics
are reported in Table 3 from design projects. The ground floor, the roof and the third level ceilings
present a concrete structure whose thickness varies from 15 to 22 cm. External fenestrations consist of
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a single-layer glass with high Solar Heat Gain Coefficient (SHGC ) and poor thermal transmittance
(Base type in Table 4). Two windows sizes are present; the large size fenestrations with a surface of
1.65 m2 are placed on the north and south walls, the small one 0.262 m2 of surface are present on south
wall only.

Table 3. Opaque overall thermal transmittances and insulation layers’ characteristics and costs.

Opaque
Constr.

Ubase
[W/m2 K]

Uref
[W/m2K] tins [cm] Cins [€/m2] λins

[W/m K]
ρins

[kg/m3]
cins

[J/kg K]
max min min max min max

Wall 1.55 0.822 0.215 2 14 9.24 40.60 0.035 25 1400
Ceiling 14.71 1.565 0.173 2 25 4.93 39.61 0.036 140 1030

Roof 5.88 1.35 0.170 2 20 13.07 71.15 0.035 25 1400
Floor 2.89 1.090 0.165 2 20 9.42 53.49 0.035 35 1400

Table 4. Glass solar properties.

Type of Window Parameter Value Cost €

Small Large

Base
Ug [W/(m2 K)] 5.7 - -

SHGC [-] 0.87

Type 0 Ug [W/(m2 K)] 1.4
226.2 417.8SHGC [-] 0.66

Type 1 Ug [W/(m2 K)] 1.2
227.3 423.2SHGC [-] 0.425

Type 2 Ug [W/(m2 K)] 0.8
244.3 500.6SHGC [-] 0.398

In order to improve the thermal characteristics of the building, a number of refurbishment activities
were devised. Building fabric insulation characteristics were improved through the insulation of roof,
floors and ceilings that separates the heated areas from crawl spaces. Internal insulation layers were
added to the vertical walls, and additionally three types of window were considered to substitute
the low performing original ones: double-glass with air gap, double-glass with an argon-filled gap and
triple-glass with argon-filled gaps (Type 0, 1 and 2, respectively, in Table 4).

Therefore, the optimization of building refurbishment has been implemented using ten discrete
parameters, each representing a different refurbishment action on building elements: seven are related
to the opaque surfaces, and in particular four describe the added insulation to vertical walls for each
orientation, three for floor, roof, and ceiling, and three are related to windows replacement.

Table 3 reports the lower and higher insulation thicknesses which are changed with discrete
values with 1-cm steps. The table also reports the base, lower and higher ranges of overall thermal
transmittances for opaque surfaces, along with the insulation material characteristics. The values of
the original building are highlighted in grey in the first column.

The economic impact of each solution was computed taking into account the costs of the material
of the insulation layers along with the cost of installation. Prices were obtained from the public
regional administration price list Prezzario Regionale dei Lavori Pubblici [23], and Table 3 also reports
the maximum and minimum cost for each internal insulation intervention. Window prices were
acquired from real quotes, adding transport and installation costs—the individual processes for each
kind of window are reported in Table 4. Two optimization runs were performed with two and three
objectives, respectively. The first run takes into account the economic and environmental impact
of refurbishment activities by maximizing the tenth percentile of the net present value (NPV) of
the investment and by minimizing the primary energy (PE) consumption of the building. The second
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optimization adds as an objective the minimization of the maximum number of hours during which
the operative temperature of each apartment is higher than 28 ◦C (N28).

4.1. Optimization under Uncertainties – Robust Design and Reliability-Based Design Optimization

Optimization under uncertainties is achieving more and more agreement in the design practice.
In fact, most human processes are permeated by uncertainties and this is true especially when dealing
with long-term projects involving cost analysis. In energy economics issues, the economic parameters
are not fixed, but characterized by some fluctuations that can change the problem outcome and have to
be estimated in some manner, usually projecting into the future known past behaviors.

This uncertainty is commonly transferred to the performance of the system, which cannot be
determined with an exact and single value, but which is better described by a statistical distribution
of results.

In the literature, the main approach to deal with this kind of problems is robust design
optimization [24,25], which basically consists in evaluating, for each candidate design proposed
by the optimization algorithm, the stochastic distribution of its performances, and in defining objectives
based on mean and standard deviations of the same. For instance, it maximizes mean performances and
minimizes their standard deviations, in order to optimize the stability at the fluctuations. The strategy
is particularly efficient, also because it may take advantage of the polynomial chaos expansion [26,27]
regression model, an efficient methodology which exploits proper orthonormal polynomials to
analytically estimate with high accuracy the mean and standard deviation, through a reduced number
of sampling evaluations. The limitation of this approach is that it normally requires doubling
the number of objectives for each performance criteria, having the need to optimize both the mean
performance and to minimize its standard deviation, that normally produce an high computational
effort to solve the optimization problem.

In this context, another frequent design requirement is the satisfaction of constraints or limits,
which should be achieved for a certain percentage of the performance distribution, or for which
the percentage of solutions that do not meet the limits or the probability of failure, it must be minimized
as much as possible to improve product reliability and quality [24]. The same approach can be extended
to the optimization of energy consumption in buildings, where the desired performance must be
achieved, but where the design parameters can vary with a statistical distribution.

The main approach followed in the literature to deal with reliability analysis is the one which
implements methodologies like FORM or SORM [16,28], which evaluate the failure probability of any
candidate design on the basis of its uncertainties distribution and of the given limits to be respected.
One limit of this methodology can be represented by the high number of evaluations that may
be required by the algorithm to compute the failure probability with accuracy, which makes often
practically unfeasible its application to optimization problems.

For these reasons, we adopt in this paper an alternative formulation of a reliability-based
optimization problem, introducing a method which conjugates accuracy and reduced number
of evaluations.

The methodology takes advantage of the accurate polynomial chaos expansion regression
model [26,27] normally applied to robust design problems, to evaluate the complete cumulative
distribution function of the performances of the design, from which it is possible to accurately retrieve
the percentiles of designs not meeting the prescribed performance (failure probability) or to be
maximized/minimized as optimization objectives. In this way, for each performance criterion, it is
possible to define a single objective (maximization/minimization of the percentile) instead of two (mean
and standard deviation).

In this approach, the evaluation of the performance function, which can generally be time
consuming depending on the simulation software applied, is required only to determine the coefficients
of the polynomial chaos expansion during the sampling phase.
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Once the coefficients are found, it is possible to express the cumulative distribution function
(CDF) of any response performance using the polynomial chaos expansion (PCE) directly, which can
be considered as a meta-model of the response, practically free in terms of CPU load. Once the CDF
is accurately obtained, we can easily retrieve the value corresponding to the needed percentile of
the distribution.

4.2. Introduction to Polynomial Chaos Expansion

In order to describe in a probabilistic way, the response of a system subjected to uncertainties,
one of the most efficient methodologies to be applied is non-intrusive polynomial chaos expansion
(PCE) [26,27]. By sampling the input uncertain parameters according to their probabilistic distribution,
the PCE regression model, described by Equation (1), allows us to accurately compute the system
performance’s probabilistic distributionΦ, which is a function of the input variables of the optimization
problem (x), and of the uncertainties ξ, function of a random event θ.

φ(x,θ) =
∞∑

i=0

φi(x) ·ψi(ξ(θ)) (1)

In Equation (1), the spectral expansion is given by the combination of particular Polynomials ψi
function of the uncertain variable θ, and which are orthogonal to their corresponding distribution
function: in the case of normal distribution, the polynomials are called Hermite polynomials. For
practical reasons, the series is normally truncated to a finite p number of terms, which is function of
the Polynomial order considered and of the number of uncertain parameters.

The unknown weight functions φ are computed for each design proposed by the optimization
algorithm (x being fixed) by the minimization of the regression error of the function Φ computed by
the sample points, evaluated according to the distribution ξ of the uncertain variables θ.

The accuracy of the regression model is normally evaluated by performance indexes like
Leave-one-out R-square, which consists of iteratively leaving one design out of the training set
and evaluating the R-square index by training the regression model with the remaining part of the set,
and then averaging the results. It can be proved [29] that the convergence rate to the exact momentum
of distributions using polynomial chaos regression is exponential with the number of samples, assuring
therefore a high accuracy by a low number of sampling points evaluation.

In the application of the method to the problem described in this paper, it was possible to achieve
a Leave-one-out R-square index of over 0.99, with only 40 samples for design and a polynomial degree
of the third order.

4.3. Economic Indexes and NPV Computation of Investment Performances

The evaluation of the economic performances of the proposed technological solutions was carried
out using discounted cash flow (DCF) analysis and with reference to the net present value (NPV) of
costs and savings generated by the various solutions, discounted at an appropriate rate (r).

The costs are essentially due to the investment (C0) necessary to implement the technological
solutions considered, while the savings are calculated from the differences (Si) between the current
operating costs and those of the obtained applying the technological solutions. Currently, the operating
costs refer to energy consumption only. Assuming an evaluation at constant prices, it is necessary to
adopt a real discount rate (rr), removing the effect of inflation (ri) from the nominal discount rate (rn),
using the following equation:

rr =
rn − ri
1 + ri

(2)
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The net present value is given by:

NPV = −C0 +
n∑

i=1

Si

(1 + rr)
i (3)

Moreover, hypothesizing a constant Si Equation (3) becomes:

NPV = −C0 + Si
(1 + rr)

n
− 1

rr(1 + rr)
n (4)

The economic performances assessment must take into account, in addition to the most likely
values of the economic parameters, also their variability and the possible future trends of the main
components of operating cost, energy first. Assuming that it is equal to re, the real annual rate of
increase in operating costs, Equation (4) becomes:

NPV = −C0 + Si

(
1+rr
1+re

)n
− 1

rr−re
1+re

(
1+rr
1+re

)n (5)

Rearranged as:

NPV = −C0 + Si
1 + re

rr − re

[
1−

(1 + re

1 + rr

)n]
(6)

The simulation of the economic performances of the technological solutions considered was
carried out assuming the values shown in Table 5.

Table 5. Economic parameters for the simulation.

Parameter Value Unit Source

Gas (*) 0.899 €/m3 EUROSTAT
Electricity (*) 0.255 €/kWh EUROSTAT

Inflation rate (ri) (**) 1.173 % Worldwide Inflation Data; [30]
Discount rate (rn) 4.090 % Bank of Italy

Energy price trend (re)
1.59

(s.d. 1.40) % Energy Information
Administration

(*) Mean last 10 years prices (constant price 2017) for household consumers all taxes and levies included. (**) Mean
last 10 years.

Most of the economic parameters were assumed constant and equal to the average of the values
recorded in the last ten years. In order to investigate the influence of stochastic variables, the future
trend in the energy price (re) was considered to variate following a stochastic normal distribution and
the investment cost (C0) follows an uniform distribution, since prices often change between the times
of design and final construction [15].

The introduction of stochastic input variables obviously implies a stochastic output. This implies
the assumption of a “decision rule” with which to deal with the uncertainty induced by the stochastic
variables on the NPV.

There are various ways to introduce the effect of uncertainty in a DCF analysis [31]:

• Deterministic DCF where the inputs are fixed and the risk is represented by the incremental risk
premium on the risk free discount rate and the output is fixed NPV;

• Deterministic DCF where the inputs are fixed and valued at “certainty equivalent” and the discount
rate is risk free and the output is fixed NPV [32];

• Probabilistic DCF where the inputs are distributions and the discount rate is risk free and the output
is a NPV distribution.
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In this paper, the third solution was adopted and the optimization process requires the assumption
of a “confidence limit” in the NPV to be optimized [33]. Assuming a risk-neutral decision maker and
a normal distribution of the NPV, the value to be optimized is the average or modal one. Normally,
the decision maker is risk-averse and therefore optimizes a NPV with a probability to be overcame
greater than 50%. Unfortunately, to our knowledge, there are no studies that have examined this aspect
with reference to the energy requalification choices. Therefore, a very cautious attitude was assumed,
hypothesizing a reference NPV with a probability of being exceeded by 90%.

4.4. Methodology

The inspection of Equation (6) shows that the two stochastic parameters have an effect on the NPV
computation only. This suggests a two-step approach for implementing the optimization loop. First
the numerical solution with EnergyPlus is performed once per design, then the energy consumption is
used to compute the cash flow Si and, thanks to the polynomial chaos expansion, to generate the VAN
distribution from which it is possible to obtain the desired percentiles.

Once the NPV percentiles have been computed, a RBDO can be performed by applying suitable
optimization algorithms. modeFRONTIER allows us to operate with nested projects so this capability
has been exploited to carry on the optimization: an external project carries on the true optimization
step while an inner project performs the polynomial chaos expansion on the economic computation,
providing the external one with the 10th percentile value to be used as objective.

With reference to Figure 3, a Python script has been created in order to allow modeFRONTIER
to drive the optimization. The Python script implements the “eppy” library using the parameters
provided by the optimizer. It modifies the building model characteristics, creating IDF objects,
the script than runs the EnergyPlus simulation, and reads the results of a single run providing
the optimizer with the Primary Energy PE, the number of exceeding hours in summer period N28 and
computes the investment cost C0 and the cash flow Si. The second modeFRONTIER project is then
invoked, the stochastic economic parameters are generated, according to statistical distributions and
the computed investment cost uniform distribution is generated considering a variation of C0 ± 10% of
the computed value. Using the generated input statistical distributions, the NPV output distribution is
computed using Equation (6), obtaining the required percentile that is transferred to the outer project.
Primary energy, the number of exceeding hours N28 and NPV 10th percentile are used as optimization
objectives by modeFRONTIER external project in order to define new designs. The computation
workflow is represented in Figure 3, where a little Gaussian shape identifies the input and output
of parameters with stochastic distribution, while the part enclosed by the dotted line identifies
the stochastic simulation. The computation of NPV percentiles has been carried using the polynomial
chaos implemented in modeFRONTIER. However, it is worth mentioning that as an alternative solution,
a Monte Carlo approach could have been implemented, but with a far slower convergence.
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4.5. Optimization Settings

The optimization considers ten input parameters related to building fabric, two deterministic
and one stochastic objectives. Primary energy and the number of exceeding hours are not affected by
the stochastic inputs, and therefore can be computed using a deterministic approach. The conversion
factors to primary energy were set to 3.167 and 1.084 for electricity and natural gas, respectively,
the stochastic output is represented by the 10th percentile of the NPV distributions, or in others
words, 90 % of the solution are expected to have a value greater than the objective value. As already
pointed out, the choice has been made in order to replicate the decision making of an investor with
a low-risk attitude.

The optimization process was performed using the NSGA II optimization algorithm, starting
with an initial design of experiments of 24 individuals. The genetic optimization was performed for 50
generations and the optimization lasted 12h 30 min on a 12-core workstation. Since the numerical
computation with EnergyPlus and the stochastic optimization were decoupled, the genetic algorithm
was the straightforward choice. However, if the stochastic approach was extended to parameters
directly affecting the simulation with EnergyPlus, other algorithms, such as response factors or
the modeFRONTIER FAST algorithm, would be more appropriate in order to obtain solutions in
reasonable time [34].

5. Discussion and Results Analysis

Optimizations results are reported using bubble-plots to present up to four variables. The bubble
diameters are proportional to the external walls’ thermal conductance, south and north oriented, that
covers most of the heat losses. Bubble colors represent window types; that is, blue is Type 0, green is
Type 1 and red is Type 2. The 10th percentile of NPV and primary energy are the axes of the plot. Since
the abscissa of plots is the 10th percentile of NPV, it is worth noting that the reported value means that
the 90% of possible solution shows a higher value of NPV, depending on the real values attained by
the stochastic parameters.

Figures 4 and 5 refer to optimizations performed using two objectives only, to make the plots
clearer they represent the results of only 20 NSGA iterations, it is worth noting as the solutions
evolve towards the Pareto front. The inspection of Figure 4 shows that with low energy footprint
the solutions are characterized by high insulation levels, as can be inferred by low circles diameter.
When the solutions move towards the right of the abscissa axes, the insulation decreases, as can be
inferred by the larger diameter of the bubbles. The analysis of window selection is very interesting.
In this case, the most performant window is selected only with low energy solutions with low NPV.
However, when the solutions evolve towards high NPV values, the optimization selects the less
performant one; in this case, the lower investments drive the solutions towards lower insulation levels.
Figure 6 presents the comparison between the Pareto frontier of the solutions related to the north and
south façades, the figure shows how the optimization selects opaque walls transmittance and drives
window selection. Window Type 1 is seldom selected and never for solutions pertaining to the Pareto
frontier. For the south wall façade, the solution for windows is always the Type 0, with the highest
value of transmittance. On the other hand, on the north wall windows, Type 2 are selected for the low
energy case, while Type 0 is the one selected for the high NPV case.
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Finally, two designs from the Pareto frontier are compared for each case, they represent the solutions
that grant the minimum NPV greater than zero (A2obj) and the maximum NPV (B2obj). The chosen
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designs are highlighted by squares in Figure 6. It can be noted that design B2obj grants the maximum
NPV but with a greater energy consumption than A2obj. This is due to the fact that B2obj uses low
levels of insulation for the south wall and less performant windows for the north one, leading to an
increased energy consumption but less expensive refurbishment solutions. The shape of the Pareto
frontiers shows as a conflict emerges between the minimization of primary energy consumption and
NPV maximization. However, Figure 5 shows that a significant increase in NPV with small increases in
primary energy consumption is achievable. Only when the NPV increases above k€ 30 does the primary
energy consumption increase significantly. In other words, it is possible to identify technological
solutions which at the same time have low energy consumption and good economic performances.

Figure 7 presents the designs for the three objective optimization: the additional objective is
represented by the minimization of the maximum number of hours over 28 ◦C, namely N28, for
each apartment of the building. In order to highlight the correlation between the parameters and
the number of exceeding hours, the designs are categorized as the ones with N28 below 380 h, between
380 and 480, and over 480 h. Figure 7a presents the whole set of designs, while Figure 7b presents
the solutions on the Pareto Frontier. Figure 8 presents the solutions of the Pareto frontier for the south
and north wall using bubble plot representation: as before, the circle diameter is proportional to wall
conductance, while the color identifies the window type. However, Figure 8 is difficult to analyze,
since no information is given about the N28 objective, therefore the designs are separated in Figures 9
and 10 using the aforementioned categories depending on the value attained by the N28 objective.Energies 2020, 13, x FOR PEER REVIEW 13 of 18 

 

  
Figure 7. Optimization with three objectives: a) all computed designs; b) Pareto designs. The designs 
are highlighted with different colors for different hours with temperature over 28 °C. 

 

Figure 8. Solutions pertaining to the Pareto frontier: a) south wall; b) north wall. 

Figure 7. Optimization with three objectives: (a) all computed designs; (b) Pareto designs. The designs
are highlighted with different colors for different hours with temperature over 28 ◦C.



Energies 2020, 13, 2310 14 of 18

Energies 2020, 13, x FOR PEER REVIEW 13 of 18 

 

  
Figure 7. Optimization with three objectives: a) all computed designs; b) Pareto designs. The designs 
are highlighted with different colors for different hours with temperature over 28 °C. 

 

Figure 8. Solutions pertaining to the Pareto frontier: a) south wall; b) north wall. 
Figure 8. Solutions pertaining to the Pareto frontier: (a) south wall; (b) north wall.

Energies 2020, 13, x FOR PEER REVIEW 14 of 18 

 

 

Figure 9. Solutions on the Pareto Frontier for South oriented wall with different number of N28: a) 
greater than 480; b) between 380 and 480; c) less than 380. 

 

Figure 10. Solutions on the Pareto Frontier for north-oriented wall with different number of N28: a) 
greater than 480; b) between 380 and 480; c) less than 380. 

Figures 9 and 10 present the Pareto frontier of the south and north wall, respectively. It is worth 
comparing the results with the ones obtained with two objective optimization and reported in Figure 
6. For instance, the Pareto frontier of Figures 9a and 10a are quite similar to the results presented in 
Figure 6a,b, respectively, while on the contrary the results of Figures 9c and 10c show completely 
different patterns. In order to obtain results with low values of N28 the optimization selects solutions 
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Figures 9 and 10 present the Pareto frontier of the south and north wall, respectively. It is worth
comparing the results with the ones obtained with two objective optimization and reported in Figure 6.
For instance, the Pareto frontier of Figures 9a and 10a are quite similar to the results presented in
Figure 6a,b, respectively, while on the contrary the results of Figures 9c and 10c show completely
different patterns. In order to obtain results with low values of N28 the optimization selects solutions
with low conductance value for both north and south walls and, above all, windows Type 1 and Type 2
for the south-oriented windows. As a side effect, the energy consumption during the winter heating
period increases due to the lower solar heat gain from the windows on the south wall with low SHGC.
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It appears clearly that, if it is deemed important to improve the summer internal conditions,
reducing the N28 objective during summer season, the preferred solutions are the ones less performant
regarding the NPV and the PE objectives. These results demonstrate that the multi-objective
optimization of energy saving investment on buildings in continental climates, characterized by
large seasonal climatic variations, often provides counterintuitive compromise solutions. Therefore, it
is very important to correctly weight the importance of each objective of the optimization in order to
obtain reliable and efficient performances in the aspects to whom is given more importance.

For a clearer explanation of the different behavior of the designs and how they are influenced by
the possible application of the summer performance objective, Table 6 reports six different designs,
their performances in terms of PE and NPV and the features of the refurbishment parameters applied.
The corresponding solutions are graphically reported in Figures 6, 9 and 10. Two designs, A2obj and
B2obj, have been selected for the two objective optimization and four designs have been selected for
the three objective optimization: two for low PE and with high (A3obj) and low (C3obj) N28 value, other
two with the highest NPV, again with high (B3obj) and low (D3obj) N28 value.

By analyzing Table 6, it can be noted that the solutions of the two objective analysis, A2obj and B2obj,
are similar to those of the three objective with high values of N28 A3obj and B3obj. Instead the selected
designs with low N28 values, namely C3obj and D3obj, are characterized by higher levels of insulation
on opaque walls and, for instance Type 0 window are never selected in this case, and also for the high
NPV case Type 1 and Type 2 windows are selected when, for the B2obj and B3obj only Type 0 windows
is the chosen one.
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Table 6. Selected designs.

Parameter\Id A2obj B2obj A3obj B3obj C3obj D3obj

Uwall,S [W/(m2
·K)] 0.230 0.470 0.230 0.470 0.230 0.310

Uwall,N [W/(m2
·K)] 0.210 0.280 0.210 0.420 0.210 0.420

Uwall,E [W/(m2
·K)] 0.240 0.280 0.280 0.280 0.240 0.280

Uwall,W [W/(m2
·K)] 0.210 0.420 0.210 0.420 0.230 0.370

Uceiling [W/(m2
·K)] 0.150 0.200 0.140 0.390 0.140 0.390

Uroof [W/(m2
·K)] 0.410 1.350 0.330 1.350 0.760 1.350

Ufloor [W/(m2
·K)] 0.190 0.490 0.150 0.490 0.230 0.490

Window1,N Type2 Type0 Type2 Type0 Type2 Type1
Window1,S Type0 Type0 Type0 Type0 Type2 Type1
Window2,S Type0 Type0 Type0 Type0 Type2 Type1
PE [MWh] 25.80 32.98 25.80 37.45 28.60 39.64
NPV [k€] 10.69 41.83 3.29 44.54 11.38 36.11
N28 [hours] 466 528 481 519 353 377

The results highlight three different approaches a decision maker can have regarding the problem
of building refurbishment. The energy-aware approach implies that the solution with the higher
insulation and higher cost are chosen; for instance, this means the triple glazing windows and the higher
insulation thickness. However, in this case, the return of the investment can be poor and, in some cases,
depending on the economic stochastic parameters, there is a risk to obtain negative NPV, so the energy
savings are not sufficient to compensate the initial costs—the solutions identified as A2ibj and A3obj

follow this pattern. Another approach aims at having the highest NPV possible, so the reduction
in energy consumption is less important; this approach means that the less expensive solutions are
the preferred, so solutions such as B2obj and B3obj are selected. However, the results may be excluded
due to the regulation requirements which fix minimum threshold values for energy performance—in
this case, the limits can be incorporated into the optimization process by introducing suitable constraints.
A different approach can also take into account the effect of insulation on summer conditions, which
leads to a change in preferred solutions, since a lower value of overheating hours drives the solutions
towards higher energy consumption, such as C3obj or a lower NPV as D3obj. However, irrespective of
the preferred solution, a decision maker using the presented approach has the feeling of the economic
risk involved in carrying out the refurbishment. For each solution, there is an high probability to have
an economic return of the invested money, for instance the optimization could have used higher values
of NPV percentiles (less risk averse decision maker) resulting in higher expected returns but with
a lower chance. In fact, the convenience of an energy saving investment depends on climate, economic
and technological uncertainties. It follows that the choice of an investment affects both the expected
NPV and the probability of reaching it. In our case study, a high risk-adverse decision-maker has been
hypothesized and therefore the proposed efficient solutions are very prudent in economic terms.

6. Conclusions

Building energy reliability-based design optimization for a social building energy refurbishment
has been carried out. Uncertainties on economic parameters have been taken into account by
assuming a stochastic distribution of the increase in energy prices during building’s lifetime and
the investment cost. The objectives of the optimization reflect the stochastic nature of the problem
by maximizing the NPV with a probability of being exceeded by 90% in order to reflect the choice
of a prudential decision-maker. Two optimizations have been considered, the former using two
objectives related to primary energy consumption PE and net present value NPV, the latter adding
a third objective in order to search solutions able to minimize overheating problems during summer
season. The optimizations led toward solutions with different choices between north and south
facades, and furthermore the introduction of an additional objective gave rise to a set of solutions quite
different from the ones obtained with only energy and economical objectives, leading to the use of
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more performant windows, irrespective of the wall orientation. This represents an important outcome,
since economic or energy-related objectives are not sufficient parameters to be taken into account when
dealing with building refurbishment. The results also show that the solutions can be variegated and
depend on the level of acceptable risk. In this paper, a 10% risk has been selected, meaning 90% of
the solutions may give NPV values greater than the ones computed. However, other values can be
chosen depending on the amount of risk a possible investor can accept. The use of polynomial chaos
expansion in evaluating the stochastic functions allows us, with few computations for each design,
to determine the percentiles to be used in the optimization, allowing an easy extension to problems
which are more demanding in terms of computational resources.
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