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Abstract: A novel circuit topology for an on-board battery charger for plugged-in electric vehicles (PEVs)
is presented in this paper. The proposed on-board battery charger is composed of three H-bridges on the
primary side, a high-frequency transformer (HFT), and a current doubler circuit on the secondary side of
the HFT. As part of an electric vehicle (EV) on-board charger, it is required to have a highly compact and
efficient, lightweight, and isolated direct current (DC)–DC converter to enable battery charging through
voltage/current regulation. In this work, performance characteristics of full-bridge phase-shift topology
are analyzed and compared for EV charging applications. The current doubler with synchronous
rectification topology is chosen due to its wider-range soft-switching availability over the full load
range, and potential for a smaller and more compact size. The design employs a phase-shift full-bridge
topology in the primary power stage. The current doubler with synchronous recitation is placed on
the secondary. Over 92% of efficiency is achieved on the isolated charger. Design considerations for
optimized zero-voltage transition are disused.

Keywords: high-frequency link DC–DC converter; secondary phase-shift PWM control; current doubler
rectifier; soft-switching

1. Introduction

Recently, electric vehicles (EVs) and plug-in hybrid EVs (PHEVs) technology have drawn interest
in the EVs market by manufacturers and customers, and are being sustained by several administrations
with programs of development [1,2]. Because the energy required for PHEVs and EVs is partially
or fully delivered by batteries charged from a public charging station, to charge these batteries,
an onboard charger (OBC) should be installed [3]. Off-board chargers supplied by a three-phase source
are widely utilized for fast charging using direct current (DC) of plug-in electric vehicles (PEVs) [4].
Generally, the three-phase high-power off-board chargers are expensive and bigger. Hence, PEVs use
three-phase higher-power propulsion systems with similar power levels and semiconductor devices as
compared with off-board chargers. However, propulsion systems can be incorporated with off-board
EV chargers. The advantage will be that the infrastructure required for three-phase fast charging
could be combined only with a power electronics interface based on three-phase, which is suitable
to be built-up on-board. Many types of integrated chargers have been studied and explored in [5,6].
The majority of the existing integrated charging schemes are developed for single-phase integrated
chargers [7–12]. Generally, the power capacity of single-phase integrated chargers is restricted by the
single-phase outlet power capacity.
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In PEVs and EVs, the battery is utilized as the major energy source so that the battery charger is
considered the principal technology [13]. Two types of different chargers are generally investigated.
The first is a large capacity, fast charger (with a rating of about 50 kW), which can charge a battery
totally within 30 min. The second is the on-board battery charger (OBC), which charges the EV battery
utilizing a residential electricity source (up to 5 kW). Generally, the mentioned vehicles are powered by
two categories of batteries. The first is the high-voltage propulsion battery, which delivers high DC
power to drive the electric vehicle. The second is the low-voltage auxiliary battery, which supplies
low-voltage DC power to electric loads of the PEV. Therefore, the OBC charger plays an important
part in charging the driving force battery from the utility grid. A low-voltage DC–DC converter was
developed in [12] that charges the low-voltage battery using the high-voltage battery. Galvanic isolation
is required for the battery charging system that isolates between the grid and vehicle.

Meanwhile, a longer life cycle and a smaller size and lighter design are essential to operate
on-board [1,2]. In other words, the OBC has to be optimized in order to be implemented in vehicles.
Moreover, the OBCs are required to supply variable voltage that is controlled in a wide-level of
the battery bank voltage, i.e., from approximately 200 to 450 V [13,14]. For achieving this, various
converter circuit topologies and related control schemes for OBC have been presented [3–9]. EV battery
chargers, charging infrastructure, and power levels were reviewed [3]. For the aforementioned reasons,
previous research has been conducted with taking into account the mentioned conditions [15–18].
The high-frequency (HF) switching control is utilized in the OBC chargers for achieving smaller
volume and lighter weight. However, increasing switching frequency at a light load degrades
efficiency [19,20]. To solve this problem, soft-switching techniques and resonant converter topologies
based on parallel or series resonance techniques are utilized. These converters are mainly developed
by the reduction of switching losses. Series resonance converters (SRC) have a similar structure to
inductor–inductor–capacitor (LLC) converters. It has no voltage spikes at the turning-off of power
semiconductor switches and a low circulation current. However, it sustains high switching loss
resulting from the output capacitance of the primary power switches. SRCs have audible noise or
power regulation issues caused by excessive low switching frequency at light-load operation condition,
although it has resonant current waveform [21]. Another issue is the transformer utilization. This is
important in both stepping-down and stepping-up operations. It has to be realized to achieve a wide
output and input voltage range requirements.

Many methodologies have been proposed for treating the issues of the OBC chargers [19,22,23].
However, they suffer from some disadvantages such as complex configurations and/or complex
control schemes, high-cost solutions, narrow load regulation characteristics, and limited efficiency
improvement. The block diagram of the conventional OBC charger systems is shown in Figure 1.
The structure is composed of two stages; the first is the rectifier (AC–DC) or power factor correction (PFC)
circuit, and the second is the high-frequency link DC–DC converter charger, including high-frequency
(HF) transformer isolation. A filter can be an option for DC current smoothing for a high voltage
battery pack. However, utilizing HF transformers for galvanic isolation and a wide range of output
voltage has a negative effect on power density and efficiency characteristics [14–18]. Normally, the total
efficiency is about 94% because of the multi-stage structure configuration. However, it is difficult to
improve the overall efficiency in the multi-stage structure.

Various soft-switching high-frequency-linked DC–DC converters have been introduced for
on-board EV battery chargers [24–26]. Phase-shift modulation (PSM) full-bridge (FB) DC–DC converters
have been widely utilized in several works [24]. Zero-voltage soft-switching (ZVS) of semiconductor
devices is achieved with constant switching frequency operation [25]. However, these full-bridge
phase-shift converters have several drawbacks, such as high circulating current and narrow ZVS range.
Due to the extended range of chargers’ power regulation, the lagging-leg switches cannot realize ZVS
soft-switching at light-load operation conditions [26]. Continuous improvements have been developed
in order to prolong the ZVS soft-switching range [27–30]. One method to extend the soft-switching
range is by using additional passive auxiliary circuits to the conventional phase-shifted power converter.
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However, the primary current continues circulation through the primary circuit during the freewheeling
intervals causing extreme conduction losses. Additional active switch circuits or extra HF transformers
are utilized for the reduction of the circulation current [31,32]. However, these additional components
increase the total cost. Moreover, secondary-side diodes are subjected to high voltage spikes and
oscillations during turning-off. Thus, the reverse recovery of rectifying diodes in secondary-side causes
oscillations and high-voltage overshoots because the EV battery pack voltage is usually high [32–42].Energies 2020, 13, x FOR PEER REVIEW 3 of 19 
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Figure 1. Block diagram of the conventional electric vehicle (EV) on-board charger. 

Various soft-switching high-frequency-linked DC–DC converters have been introduced for on-

board EV battery chargers [24–26]. Phase-shift modulation (PSM) full-bridge (FB) DC–DC converters 

have been widely utilized in several works [24]. Zero-voltage soft-switching (ZVS) of semiconductor 

devices is achieved with constant switching frequency operation [25]. However, these full-bridge 

phase-shift converters have several drawbacks, such as high circulating current and narrow ZVS 

range. Due to the extended range of chargers’ power regulation, the lagging-leg switches cannot 

realize ZVS soft-switching at light-load operation conditions [26]. Continuous improvements have 

been developed in order to prolong the ZVS soft-switching range [27–30]. One method to extend the 

soft-switching range is by using additional passive auxiliary circuits to the conventional phase-

shifted power converter. However, the primary current continues circulation through the primary 

circuit during the freewheeling intervals causing extreme conduction losses. Additional active switch 

circuits or extra HF transformers are utilized for the reduction of the circulation current [31,32]. 

However, these additional components increase the total cost. Moreover, secondary-side diodes are 

subjected to high voltage spikes and oscillations during turning-off. Thus, the reverse recovery of 

rectifying diodes in secondary-side causes oscillations and high-voltage overshoots because the EV 

battery pack voltage is usually high [32–42]. 

This paper introduces the analyses and performance of a phase-shift converter investigated and 

designed to operate at 40 kHz and 3.2 kW for EV on-board chargers. The proposed design enables 

high-frequency switching without sacrificing conversion efficiency. One of the major challenges in 

high-frequency power converter design is to reduce the parasitic components of printed circuit 

boards (PCBs), which can cause a faulty triggering of switches leading to circuit failure [43–45]. 

Another challenge is the efficient design of magnetic components, which requires minimizing the 

impacts of skin and proximity effects on the transformer winding to reduce the conduction loss at 

high frequencies. The leakage inductance of the high-frequency (HF) transformer is modeled and 

designed for the proposed converter. A comprehensive system-level power loss analysis is completed 

and confirmed with the help of experimental results. The prototype circuit can achieve an 

approximate efficiency of 96% with an appropriate design of the driving circuit and control signal. 

2. Proposed Topology 

The proposed circuit consists of a full-bridge phase-shift topology. It is considered the most 

promised topology at high power levels, where the use of four switches is justifiable. The secondary 

circuit of the high-frequency transformer consists of two controlled switches for synchronous 

rectification, as shown in Figure 2. The current doubler works as the same principle as a full-wave 

rectifier. This configuration will reduce the copper loss in the transformer secondary as 50%, as stated 

in [31]. Converters with current doubler rectifiers have a smaller volume of magnetic components. 

The gate pulse signal applied for active switches is shown in Figure 3. The duty factor (or cycle) can 

be defined as the ratio of the on-time of switches S1, S4 overlapped with S6 to the total on-time of S1 

and S4: 

Figure 1. Block diagram of the conventional electric vehicle (EV) on-board charger.

This paper introduces the analyses and performance of a phase-shift converter investigated and
designed to operate at 40 kHz and 3.2 kW for EV on-board chargers. The proposed design enables
high-frequency switching without sacrificing conversion efficiency. One of the major challenges in
high-frequency power converter design is to reduce the parasitic components of printed circuit
boards (PCBs), which can cause a faulty triggering of switches leading to circuit failure [43–45].
Another challenge is the efficient design of magnetic components, which requires minimizing the
impacts of skin and proximity effects on the transformer winding to reduce the conduction loss at
high frequencies. The leakage inductance of the high-frequency (HF) transformer is modeled and
designed for the proposed converter. A comprehensive system-level power loss analysis is completed
and confirmed with the help of experimental results. The prototype circuit can achieve an approximate
efficiency of 96% with an appropriate design of the driving circuit and control signal.

2. Proposed Topology

The proposed circuit consists of a full-bridge phase-shift topology. It is considered the most promised
topology at high power levels, where the use of four switches is justifiable. The secondary circuit of the
high-frequency transformer consists of two controlled switches for synchronous rectification, as shown
in Figure 2. The current doubler works as the same principle as a full-wave rectifier. This configuration
will reduce the copper loss in the transformer secondary as 50%, as stated in [31]. Converters with current
doubler rectifiers have a smaller volume of magnetic components. The gate pulse signal applied for active
switches is shown in Figure 3. The duty factor (or cycle) can be defined as the ratio of the on-time of
switches S1, S4 overlapped with S6 to the total on-time of S1 and S4:

D =
T2

T1 + T2
(1)

where T1 is the ON period of switch S6 that overlaps with the on-time of S1 and S4. The total on-time
of switches S1 and S4 is equal to T1 + T2.
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Figure 3. Pulse timing of the voltage signal of each switch.

3. Operation Principle

The simulation results are shown in Figures 4 and 5. The primary switches voltage and the related
current are shown in Figure 4a. The voltage and current of switches in secondary-side controlled by
phase-shift are shown in Figure 4b. The primary current (ip) can increase or decrease during the dead
time period. This implies that the stored energy in the leakage inductance Llk discharges in order to
achieve ZVS soft-switching. The simulation results of the proposed on-board charger controlled by the
phase-shifting technique are shown in Figure 5a,b. The developed charger circuit is working in normal
operation. In this mode, the circuit is supplying the energy from the grid to the propulsion battery.
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4. Operation Analysis

In order to investigate the operation of the studied converter, one assumption is considered.
The switching devices are assumed to be ideal isolated gate bipolar transistors (IGBTs), excluding the
parasitic capacitors and the reverse conducting diodes. All IGBTs have the same parasitic capacitances.
The rectifying diodes are assumed ideal, and the output filter inductor LO is massive enough to be
treated as a constant current (CC) source during periods of switching. The output voltage is regulated
in the conventional phase-shift manner using the driving signals depicted in Figure 3. As depicted in
Figure 6, there are seven operating intervals in one switching cycle t0–t7 (from Interval 1 to Interval 7.
The operation principle of one cycle is described, and the equivalent circuits of each operating interval
are shown in Figure 6.
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Interval 1 (t0–t1): Interval 1 starts when the primary-side switches S2 and S3 begin conduction
state. The primary current ip(t) in the proposed charger increases linearly and can be expressed as

ip(t) =
VS
Llk

(t− t0) + ip(t0) (2)

ip(t) = niD6(t) = n1(ILo + iD8(t)) (3)

where n = N1/N2 for the turns ratio of the HF transformer.
The power transfers from primary to the secondary circuit through the HF transformer. For this

reason, this interval is called the power supply period. At this interval, the battery charging current is
flowing through switch S5, capacitors Co, output inductors LO1–LO2, and diodes D6 and D8. From this
power flow path, one can realize soft-switching power transfer to the required output side. The rectified
output voltage Vrec(t) equals the sum of the voltage across the current doubler inductor VLO1 and the
output voltage of VO. The secondary voltage is expressed as:

Vrec(t) = VO + VLO1 (4)

Then, the HF transformer primary voltage of a high-frequency transformer (HFT) can be expressed as:

VHFT(t) = (VO + VLO1)/n (5)

This interval finishes when the active switches S2 and S3 are turned OFF with ZVS soft-switching.
Interval 2 (t1–t2): Interval 2 starts when switches S2 and S3 are turned OFF with ZVS commutation

at t1. For this reason, this period is called the ZVS commutation period. Capacitors C1 = C2 = C3 = C4 = C
start charging. Vp(t) decreases linearly and at a fast rate. The duration of this interval is a very short
time interval.

The voltage across switches and capacitors is expressed as:

VS1(t) =
n1(ILo + Ipeak)

2C
(t− t1) (6)

Interval 3 (t2–t3): Interval 3 starts when diode D7 conducts. At the moment t2, the voltage across
S2 is equal zero, and thus, the switch S2 is turned ON succeeding ZVS soft-switching. This period
is called.

ZVS—charge and discharge completed. The primary voltage Vp(t) equals the same magnitude as
in both Intervals 1 or 2, and it is applied to the transformer leakage inductance Llk in the primary-side
of HFT. However, current ip(t) in primary-side starts to decrease with a linear slope calculated by the
following equation:

dip(t)
dt

=
VO −VLo

nLlk
(7)

The currents through diode D6 also decrease with a linear inclination described by:

diD6

dt
=

VO −VLo

n2Llk
(8)

Interval 4 (t3–t4): Diodes D1 and D4 conduct at the beginning of this interval. Current in the secondary
side is decreasing in switch S5 and diode D6. Then, the voltage is applied to Llk, and ip(t) decreases
linearly. At time t4, the switch S5 and diode D6 are turned OFF under zero-current soft-switching (ZCS).
This period is called the power regeneration period.

Interval 5 (t4–t5): In this interval, S5 and D6 commutates. This interval current circulates in the primary
and secondary circuits. No power transfer from the primary to the secondary side. Then, energy stored in
the output inductance and capacitance in the onboard charger still supplies energy for charging the EV
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battery, as shown in Figure 6. The accumulated energy in the leakage inductance is returning back to
the source. However, in the conventional phase-shift full-bridge converter, freewheeling intervals exist
when Vp(t) is zero. Thus, the circulating current circulates during these intervals in the primary circuit
of the HF transformer. The current is considered as a significant disadvantage of the conventional
phase-shift converters used for EV battery charging applications. That is because the current continually
exists for a wider range of charging voltage like battery charger applications. However, the conduction
power losses consumed in the primary circuit of the HF transformer is considerably enlarged due to
the primary current [7]. Particularly, the conduction losses produced by the primary-side current are
maximum when the EV battery voltage is nearby the minimum level. This is due to the long period of
freewheeling phases in this condition. Furthermore, the primary-side current ip(t) in the proposed circuit
is reorganized to zero when primary voltage Vp(t) tends to zero, and no current flows in the primary-side.
In other words, the problem of circulating current is eliminated. Consequently, the conduction power
losses consumed in the primary circuit of HF transformers could be significantly reduced during the
EV battery charging procedure. This period is called the single reflux period.

Interval 6 (t5–t6): Interval 6. Gating signals are applied to switches S1, S4, and S6. These switches
are turning on with ZCS due to HF transformer leakage inductance Llk. For this reason, this period is
called the ZCS commutation period. The current in the primary side ip(t) flows through Q1-HFT-Q4 in
this interval. The current in the primary is increasing linearly and can be calculated as:

ip(t) =
VS
Llk

(t− t5) + ip(t5) (9)

ip(t) = niD5(t) = n1(ILo + iD7(t)) (10)

Moreover, the lower-side switch S6 and upper-side diode D5 in the secondary circuit start
conduction. The charging current flows directly to the battery through only switch S5 and diode D6.
At the end of this interval, the diode D8 is turned OFF.

Interval 7 (t6–t7): Interval 7 begins when lower-side diode D8 is turned OFF. However, the charging
energy is supplied from charger output to the EV battery as ever. This period is called the power supply
period. The charging energy passes through S6 and D5 in the secondary circuit of HFT. However, the current
in the primary circuit can be expressed in this interval as:

ip(t) = i(t6) +
VS
Llk

(t− t6) + nis(t) (11)

where is(t) is the secondary current and n is the turns ratio of HFT.

5. Feedback Control Loop

Arduino Mega2560 is used for controlling the proposed DC–DC converter circuit. As the control
system is based on a microcontroller, all the parameters can be adjusted through changes in the firmware.
The basic control loop uses a simple proportional integral (PI) controller operation. The control board
generates the driving pulses for the switches using an Arduino controller and the closed-loop control
of the output voltage in the DC–DC converter. The output power of the DC–DC converter is regulated
according to the voltage and current given to the load. The current is measured on the high side
by a simple circuit using the INA138-Q1. The INA138-Q1 delivers output current proportional to
the sensed load current. The device common-mode voltage is 40 V, but it can be much higher by
floating the ground pin and buffering its output current with a high Voltage PNP transistor. Voltage is
measured by a voltage divider and buffered using the TLC2272A-Q1 that has low offset voltage and
2.2 MHz of unity-gain bandwidth. Both current and voltage are converted from analog to digital by
using an analog to digital converter. In a charging system, load measurement is key for charging
optimization with high accuracy. Low side measurements can provide accuracy but are not capable of
detecting short to ground. High side measurements can achieve accuracy and can detect short to the
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ground; however, the high common-mode voltage, up to 400 V, puts constraints on the design. With a
few additional components around the current shunt, 400 V common-mode voltage can be achieved
with both accuracy and short to ground features. Measuring the 400 V battery voltage requires a
high impedance resistive voltage divider and a low output impedance buffer for conditioning the
signal. The voltage divider ratio is on the order of 0.01 if the electronics circuit supply voltage is 5 V.
To maintain the desired accuracy, low offset, low input capacitance, and high impedance op-amp
are required. Two op-amps or a two-channel op-amp is needed to satisfy the current and voltage
measurement requirements.

The charging strategy is consisting of two stages; the first is the constant current CC stage; the second
is the constant voltag (CV) stage. As presented in Figure 7, the charging current Ib decay as the voltage Vb
of the battery increases. Firstly, the EV battery is charged at a constant charging current until the EV
battery voltage equals the predetermined upper-limit voltage VH. Then, current decays exponentially
with a constant voltage charging until the current reaches a predefined minimum-limit current.
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By using the CC–CV charging strategy, the battery is charged by a degrading current after changing
from the CC stage to the CV stage, avoiding overcharging the battery. The charging control strategy is
applied in the control of the onboard charger power converter. The selection mode realizes the CC–CV
charging strategy, as illustrated in Figure 7. The charging mode selected signal is determined according
to the existing operating conditions (the measured voltage uf(k), the measured currents if(k), and the
previous charging mode).

6. Experimental Setup

An experimental setup of a 3.2 kW battery charger prototype is implemented. The high-voltage
(HV) nickel–metal hydride (NiMH) battery is substituted as an electronic load prepared in the laboratory.
The AC source is given by an AC power supply in the early stage of the experimental setup. The used
high-frequency transformer with a ferrite core (Ferrite PQ107) installed in the DC–DC converter is
shown in Figure 8. The semiconductor devices in the charger circuit by using IGBTs with 600 V rated
voltage in the charger circuit (SKM150GB128D Vces = 600 V, Ic = 150 A (25 ◦C)). The power losses
are calculated under the condition of the rated output power. Figure 9 shows the appearance of the
implemented phase-shift full-bridge DC–DC converter with current doubler in secondary-side suitable
for OBC charger systems.

To verify the effectiveness of the proposed charger, an experimental setup was carried out using
prototype circuit components. The circuit parameters and system specifications are listed in Table 1.
A prototype circuit has been built for the proposed converter with a rated power of 3.2 kW with the
components in Table 1. The prototype was tested by applying the constant current and constant voltage
(CC–CV) charging control technique. The circuit design has an input voltage range Vs = 280 to 400 V;
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the output voltage VO ranges from 250–420 V. The charging current according to the Constant Current
(CC) mode Ib is about 7.8 A at a switching frequency fs of about 40 kHz.
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Table 1. Circuit parameters and design specifications.

Item Value Unit

DC power supply voltage 280 V

Switching frequency 40 kHz

High-frequency transformer turns ratio 10:8

HFT leakage inductance Ll 14.7 µH

HFT excitation inductance Lm 159.4 µH

Doubler inductance Lo 100 µH

Smoothing filter capacitance Co 1.0 mF

Load resistance (electronic load) Ro 3.0 Ω

Output power Po 2.0 kW
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The proposed charger was designed to achieve soft-switching conditions. These conditions
ensure ZVS turn-on from no-load to full loading and to diminish the circulating current produced
in the primary-side. In this design, the proposed on-board charger is controlled using a pulse
width modulation (PWM) technique with a constant frequency. Two control loops are used for the
implementation of the EV battery charging controller. The first is the current inner control loop,
and the second is the voltage outer control loop. This control scheme is based on the CC–CV charging
algorithm: two PI-type controllers are used to adjust the charging current and EV battery voltage.
Thus, the appropriate duty cycle is produced for charging the EV battery. Figure 10 shows the ZVS
waveforms in the lagging-leg in the case of a 0.9 duty cycle (in secondary switches) during the normal
EV charging process. The waveforms of primary-side switches after changing the duty cycle to 0 in the
secondary side are shown in Figure 11. From these two figures, the lagging-leg switches in the studied
charger circuit are fruitfully turned ON, achieving ZVS in different loading conditions.
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Figure 10. Operation waveform by experiment in the case of Rated output (duty factor = 0.9). (a) Upper:
primary-side switch voltage Vs1: 100 V/div. Bottom: primary-side switch current is1: 20 A/div. (b) Upper:
secondary-side switch voltage Vs5: 250 V/div, time scale: 4 µs/div. Bottom: transformer secondary-side
current i2: 10 A/div.

The primary switch current and voltage measured waveforms are shown in Figure 10. As one can
notice from Figure 11a, all active power switches in both full-bridge-arms can realize soft-switching
operation. In this situation, the inner upper-side and outer lower-side switches S1 and S4 can achieve a
ZVS soft-switching operation. Figure 12 illustrates the output current versus efficiency characteristics
of current doubler secondary with semiconductor devices rated 600 V. Interpolation of experimental
data is used in this figure when a theoretical model is unavailable. We Interpolate between two
measurements and observations to save money and time. The simplest interpolation method is to locate
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the nearest data value, and assign the same value. One of the simplest methods is linear interpolation.
Linear interpolation is quick and easy, but it is not very precise.
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Figure 13 depicts the quantitative power loss analysis for active switches in the proposed charger
circuit by using IGBTs with 600 V rated voltage in the proposed circuit topology. The loss constituents
can be categorized into primary-side power switches, HF transformers, and secondary-side rectifier
switches and an inductor filter as the loss components. The power losses are calculated at the rated
output power condition of 3 kW. One can realize that the overall consumed power losses of the whole
circuit are 49.5 W in the case of 40 kHz switching frequency. Figure 14 describes the evaluation of loss
components under typical operation. The loss constituents can be categorized into conduction losses
and switching losses. The primary-side losses are due to primary-side IGBTs. The secondary-side losses
are due to IGBTs and current doubler diodes. The switching losses are calculated in the case of 40 kHz
switching frequency. The total switching losses are 20 W and the total conduction losses are 23 W.
However, the conduction losses are 15% higher than switching losses due to soft-switching operation.
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Figure 15 illustrates the charger output power characteristics comparing the current doubler (CD)
topology with the center-taped (CT) secondary-side circuit. From this figure, the proposed power converter
circuit can deliver its output current, achieving soft-switching operation. In the case of rated power settings,
the proposed power converter can achieve a measured efficiency of about 92%. Figure 16 depicts the
measured charger efficiency during the EV battery charging period. As appears in Figure 16, the studied
on-board charger achieves a better performance as compared with the conventional hard switching charger.
This is owing to the wider ZVS soft-switching range, reduced circulation current, ZCS operation for all
the active switches, and lower turns ratio. The implemented charger has a maximum efficiency of about
96% at rated-load charging conditions during one cycle of the CC–CV charging scheme. Figure 15 shows
the efficiency characteristics of the converter with a secondary-side current doubler as compared with the
center-tapped DC–DC converter. In this case, the active power switches are rated 600 V. Noticing this
figure, the measured efficiency of the studied charger is higher than that of the previously developed
charger with the center-tapped circuit in the secondary-side [12] and two-level circuit with the current
doubler DC–DC converters in a wide range of charging current ratings.
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The studied soft-switching DC–DC converter circuit has many advantages and can be summarized
in the following:

(1) All the active switches can achieve full-ZVS range without duty cycle loss;
(2) All the rectifying diodes can operate at ZCS turn-off;
(3) Circulating current is minimized;
(4) The output filter inductor is small sized;
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(5) Improved HF transformer utilization is achieved for applications of EV battery onboard charger;
(6) The circuit has lower voltage stress on the secondary-side diodes.

Furthermore, the implemented DC–DC converter can achieve an efficiency of about 94% or more
around the rated power settings. In this case, only one-diode drop exists in the charging current
path. In addition, the transformer secondary winding is rated for one half the loads current, and no
center-tapped connection is required. The two output filter inductors can be coupled or integrated on
a single core.

7. Conclusions

A phase-shift PWM DC–DC converter with a current doubler rectifier was proposed using clarified
circuit operation and features. The converter circuit is verified using the theory of operation, details of
design, and various experimental results. Moreover, the overall circuit performance is discussed.
Soft-switching operation was realized against load fluctuation by constant voltage control. From the
simulation results, it was confirmed that soft-switching operation is possible in the entire output range
during circuit operation. A further improvement in the proposed on-board charger efficiency can be
realized by using the current doubler rectifier. The proposed charger attains superior transformer
utilization and contains fewer circuit components. Moreover, the studied DC–DC converter has lower
voltage stresses in the secondary-side components for EV onboard charging applications. Power loss
analysis was discussed for all components of the studied DC–DC converter. The experimental results
for a 3.2 kW prototype converter emphasize the merits of the suggested circuit for onboard charger
application. The circuit achieves an overall efficiency of 92% during the charging process in the CC–CV
control mode. The efficiency of the current doubler circuit is higher than the center-tapped rectifier
for the same operating conditions. The obtained results verify the suitability and effectiveness of the
proposed circuit topology for the on-board EV battery charger applications.
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draft preparation, K.S.; writing—review and editing, M.A.; visualization, Z.M.A.; supervision, K.S.; project
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the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

AC alternating current
AC–DC alternating current–direct current rectifier
CD current doubler topology
CT center-taped
CC constant current charging
CV constant voltage charging
CC–CV constant current–constant voltage charging
DC direct current
DC–DC direct current–direct current converter
EV electric vehicle
FB full-bridge
HFT high-frequency transformer
HV high voltage
IGBTs isolated gate bipolar transistor
LLC inductor–inductor–capacitor
NiMH nickel–metal hydride battery
OBC on-board battery charger
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PCBs printed circuit boards
PEVs plug-in electric vehicles
PFC power factor correction circuit
PHEVs plug-in hybrid EVs
PI proportional integral controller
PSM phase-shift modulation
PWM pulse width modulation
SRC series resonance converters
ZVS zero-voltage soft-switching
ZCS zero-current soft-switching
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