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Abstract: Freshwater in off-grid islands is sourced from rain, groundwater, or mainland imports,
which are unreliable, limited, and expensive, respectively. Sustainable freshwater generation
from desalination of abundant seawater is another alternative worth exploring. Model-based
techno-economic simulations have focused on reverse osmosis desalination due to its low energy
consumption and decreasing costs. However, reverse osmosis requires frequent and costly membrane
replacement. Other desalination technologies have advantages such as less stringent feedwater
requirements, but detailed studies are yet to be done. In this work, a techno-economic comparison
of multi-effect distillation, multi-stage flash, mechanical vapor compression, and reverse osmosis
coupled with solar photovoltaic-lithium ion-diesel hybrid system was performed by comparing
power flows to study the interaction between energy and desalination components. Optimization
with projected costs were then performed to investigate future trends. Lastly, we used stochastic
generation and demand profiles to infer uncertainties in energy and desalination unit sizing. Reverse
osmosis is favorable due to low energy and water costs, as well as possible compatibility with
renewable energy systems. Multi-effect distillation and multi-stage flash may also be advantageous
for low-risk applications due to system robustness.

Keywords: desalination; multi-effect distillation; multi-stage flash; mechanical vapor compression;
reverse osmosis; renewable energy

1. Introduction

Small off-grid islands have costly, limited, and intermittent supply of electricity and water due
to dependence on importation. In the case of the Philippines, they are often electrified by diesel
generators that are supplied with diesel imported from the mainland, resulting in high electricity prices
(i.e., six times that of the mainland) because of high transportation costs [1]. In addition, freshwater for
general purposes on these islands is sourced from an unreliable rainwater supply or a limited and
vulnerable groundwater source [2]. Drinking water may be imported from the mainland at a cost
of around 1 USD/L [3]. Economic activity on these islands are adversely affected as a result of the
high costs of electricity and water. In particular, the International Labor Organization identified that
freshwater scarcity hinders economic growth, as businesses would compete with residents for the
resource [4]. The scarcity of clean freshwater can be solved through seawater desalination, but it is
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energy intensive [5]. Putting additional conventional power generation capacity must be considered
alongside desalination capacity, but this may be an unsustainable and more costly option [1]. In contrast,
putting up renewable energy (RE) generation capacity to augment desalination may be more feasible
because of the decreasing costs of solar photovoltaic (PV) [6] and battery energy storage systems
(BESS) [7]. Hybrid energy systems consisting of solar PV, diesel generators, and energy storage were
shown to reduce electricity costs in off-grid areas [8]. In the Philippines, Ocon and Bertheau estimated a
20% energy generation cost reduction for Philippine off-grid islands upon transition from a diesel-only
system to a solar PV-based hybrid system [1], while Bertheau and Blechinger considered a 10-year load
growth in their analysis and found the same trend [9]. Note that the works mentioned were focused
on finding the lowest levelized cost of electricity only.

Table 1 summarizes the literatures that conducted feasibility studies for both energy and
desalination systems. Some works have focus on the optimal combination of components. For example,
Fernández-Gil and Petrakopoulou showed that implementing RE-desalination systems on Skyros Island,
Greece yields freshwater at a cost of 2.75 USD/m3, which is 52% lower than imported freshwater [10].
Tafech et al. show that reverse osmosis (RO) powered by a PV-wind system can yield freshwater
at a cost of 1.87 USD/m3 on King Island, Australia [11]. For comparison, the freshwater cost in
those literatures reviewed are more expensive than that of mainland Philippine water cost which
amounts to 0.70 USD/m3 [12]. Other works focused on dispatch algorithms. For instance, Gökçek
simulated solar PV, wind, and diesel-based energy systems coupled with RO as an additional electrical
load [13]. Corsini and Tortora demonstrated the load leveling capabilities of RO by absorbing excess
RE generation in a PV-diesel hybrid system [14]. Lastly, Bognar et al. compared different RO dispatch
strategies which shows both energy and water generation costs may be minimized by treating RO as a
deferrable load [15]. Note that excessive desalination turndown could arise, which will damage the
desalination plant [16].

Table 1. Summary of energy-desalination feasibility studies. RO: reverse osmosis; PV: photovoltaic.

Ref.
Energy Desalination

Remarks
PV Wind Diesel Batt RO Other

[17] 3 3 3 3

• Case study in off-grid areas in Iraq
• Solar-wind-diesel-RO system has lowest water

generation costs

[11] 3 3 3 3 3

• Case study based on King Island, Australia
• Solar PV-RO has the lowest water generation cost
• Water storage important for dealing with uncertainties

[18] 3 3 3
• Case study in Algarve, Portugal
• Decentralized system yields lowest generation cost

[19] 3 3

• Economic feasibility of supplying water demand of US
coastline via RO

• US electricity consumption will increase by only 0.5%

[10] 3 3

• Case study in Skyros, Greece
• Freshwater generated from desalination is cheaper than

imported freshwater

[20] 3

• Compared different brackish water RO methods
• Batch and closed-circuit desalination designs are

energy efficient

[21] 3 3
• Analyzed the use of desalinated water for agriculture
• Case study in Canary Islands, Spain

Table 2 compares different desalination technologies from different works in the literature, which
generally shows insufficient technical detail. In contrast, research listed in Table 1 involve rigorous
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model-based simulations, but are mostly limited to RO. This is not surprising considering that the
technology has a low energy consumption [19] and decreasing investment costs [22], making it practical
for installation. The technology constitutes the largest share of installed global desalination capacity
with 69% of the global desalinated water production [23].

Table 2. Review of comparative desalination studies. MED: multi-effect distillation; MSF: multi-stage
flash; MVC: mechanical vapor compression.

Ref.
Desalination

Remarks
MED MSF MVC RO

[24] 3 3 3 3

• Discusses merits of other technologies
• MED needs less pretreatment than RO
• MVC has more compact installations

[25] 3 3 3 3

• Review of costing methodologies
• Correlate desalination cost with installed capacity or

growth rate

[26] 3 3 3
• Parameters for logistic growth curves of cumulative

installed capacity

[27]
• Estimated 29% learning rate 1 between desalination cost

and cumulative installed capacity
• Not specific to any desalination method

[22] 3 • Estimated 15% learning rate 1 for RO

[28] 3 3

• Compared MED, RO, and novel capillary-driven
desalination (CDD)

• CDD has good balance between energy consumption
and water production

1 Learning rate in these studies refers to the percentage by which the cost of desalination decreases when the
cumulative installed capacity doubles. Other definitions, such as those based on the doubling of cumulative
generation, also exist [29].

RO is a membrane-based desalination technology in which saltwater passes through a
semipermeable membrane that blocks ions and other contaminants. Freshwater is collected at
the other end of the membrane [5]. In a continuous process, the feedwater channel, membrane, and
freshwater permeate collectors are pressed and wound in a cylindrical package (Figure 1). At the
center of the cylinder is the permeate tube with freshwater [30]. Despite its advantages, the technology
is still hindered by frequent membrane degradation [31]. Many works have tackled the technical
issue by using different membrane types [32] and managing membrane fouling [33]. This has led
some studies to consider other desalination methods. Other membrane-based technologies include
electrodialysis (ED), wherein saltwater is passed between alternating layers of anodic and cathodic
exchange membranes. These membranes allow only anions and cations to pass, respectively. Ions are
separated and trapped between every other layer when an electric field is applied, forming alternating
layers of freshwater and brine [34].
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Figure 1. Reverse Osmosis (RO).

Thermal desalination systems generally produce freshwater from the vapors of heated
saltwater [24]. An example is multi-effect distillation (MED, Figure 2). Saltwater is placed in a
series of heat exchange vessels. The first stage receives external heating and some steam is produced.
This steam serves as the heat source of the next stage and is collected as freshwater upon condensing.
This is repeated across several stages. At the final stage, the steam preheats the feed saltwater
before condensing [35]. Another thermal desalination system is multi-stage flash (MSF, Figure 3) [36].
The saltwater is heated using recovered heat and external heating sources. It is then flashed at the
first stage to produce steam and concentrated saltwater. The steam condenses after heating the feed
saltwater. The condensate is collected as freshwater. The concentrated saltwater is flashed at a lower
pressure in the next stage. In mechanical vapor compression (MVC, Figure 4) [37], saltwater partially
vaporizes in a closed vessel. The vapors are passed into a compressor, which raises the temperature of
the vapor stream. Heat is then exchanged with the saltwater in the feed and the vessel to produce
more vapor. Although this technology is classified as a thermal process, it does not use external
heating sources [38]. MSF and MED constitute 18% and 7% of the global desalinated water generation,
respectively [23].
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Performing techno-economic studies to integrate water desalination to the off-grid energy systems
requires accurate models [39], while different economic dispatch algorithms must be tested as they
generate varying results. In addition, results that use deterministic generation and demand profiles
such as the literatures reviewed may not be accurate due to uncertainties in demand and/or RE
generation [40]. Lastly, results that use constant cost over time may also not be accurate as it is expected
that desalination costs will decrease as the technology matures [26]. For the Philippine context,
Castro et al. have reviewed different RO dispatch algorithms. The results suggest that treating RO as a
sink while demanding additional generation when water storage is low can minimize water generation
costs [41]. However, testing the techno-economic feasibility of different desalination technologies
under different economic dispatch algorithms while accounting stochastic behavior of generation and
demand profiles and projected decreasing technology has not been done yet.

In this work, a techno-economic comparison of MED, MSF, MVC, and RO desalination coupled
to a solar PV-diesel hybrid system with lithium ion (Li-ion) BESS is performed. The desalination
technologies were selected based on their commercial maturity. The analysis of the desalination
technologies was divided into four parts. First, the optimum sizes of energy and desalination
components and their uncertainties were determined using stochastic generation and demand profiles.
Second, power flows were generated to investigate the interaction between energy and desalination
components. Third, energy and water generation costs were calculated at different starting periods to
analyze the risks and tradeoffs of delaying plant construction. Lastly, a sensitivity analysis of optimum
sizes to the overnight diesel and coal cost was conducted to account for uncertainties in diesel prices.

2. Materials and Methods

2.1. System Architecture

The coupling of the energy and water system is shown in Figure 5. The energy system supplies
both the electrical demand of the island and the desalination unit. The electrical demand of the
desalination system depends on the water storage level and is discussed further in Section 2.3. If
excess RE generation is present, it is dispatched to the desalination system to generate more water.
The generated water is sent to the water storage, from where the water demand is drawn. Details on
the operation of the energy system is shown in Appendix A.
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2.2. Modelling Approach

The calculations were performed using Island System LCOEmin Algorithm (ISLA), an in-house
microgrid optimization software written in Python 3. The solar PV, diesel, Li-ion BESS, and desalination
modules in ISLA were used. Microgrid energy system optimizations were validated with HOMER
Pro® (HOMER Energy LLC: Golden, CO, USA). The software simulates the interaction of energy
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and water components for one representative year in hourly resolution and calculates the levelized
cost of electricity (LCOE), levelized cost of water (LCOW), and net present costs (NPC) as shown in
Equations (1)–(3), respectively [42]:

LCOE =
CRF ·

∑
el Ci∑8759

t=0 Pld(t)∆t
, (1)

LCOW =
CRF ·

∑
wt Ci + LCOE ·

∑8759
t=0 Pde(t)∆t∑8759

t=0

.
Vld(t)∆t

, (2)

NPC =
∑

Ci, (3)

In the equations above, Pld(t) is the electrical load,
.

Vld(t) is the water demand, Pde(t) is the power
entering the desalination unit,

∑
el

Ci is the total annualized cost of electrical components,
∑
wt

Ci is the

total annualized cost of water components, and
∑

Ci is the total annualized cost of all components.
The capital recovery factor (CRF) is defined in Equation (4), wherein i is the discount rate and ts is the
project lifetime [y] [42]:

CRF =
i(1 + i)ts

(1 + i)ts
− 1

, (4)

ISLA finds the component sizes Si that minimize the NPC as shown in Equation (5).
The optimization is constrained such that both electricity and water demand are always satisfied
during the representative year. These are formalized in Equations (6) and (7). In these equations,
PPV(t), PLi(t), and Pds(t) are the power outputs of solar PV, Li-ion BESS, and diesel genset, respectively.
Vtank(t) is the volume of water in storage. These variables are subject to additional constraints based
on the component models and sizes Si. The models for energy and water components are discussed in
Appendix A and Section 2.3, respectively.

minNPC(Si), (5)

PPV(t) + PLi(t) + Pds(t) ≥ Pld(t) + Pde(t) ∀t ∈ [0, 8759], t ∈ N , (6)

Vtank(t) ≥
.

Vld(t)∆t ∀t ∈ [0, 8759], t ∈ N , (7)

The optimization process is performed using an iterative search space algorithm as demonstrated
in Figure 6. Sets of component sizes are generated, and the NPC of each combination is calculated.
The combination with the lowest NPC is selected, and a finer search space is generated from this
combination. The generation of the initial search space is crucial to obtain a proper optimum value,
which is discussed further in Appendix B.
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2.3. Desalination Model

The energy required for a desalination plant to generate one volumetric unit of freshwater is
defined as the energy intensity (EI). It is divided into electrical energy intensity (EIel) for mechanical
processes and a thermal energy intensity (EIth) for heating processes [19]. MVC and RO, which do not
have external heating, have zero EIth [19]. Equation (8) relates the EIel to the water generated

.
Vde(t)

and the electrical power entering the desalination plant Pde(t) at time t. For desalination technologies
that require external heating, the mass of coal used

.
mcl(t) [kg/h] is given by Equation (9), wherein ∆H

is the lower heating value of coal (17.89 MJ/kg) [43]:

.
Vde(t) =

Pde(t)
EIel

, (8)

.
mcl(t) =

Pde(t)
∆H

×
EIth
EIel

, (9)

The generated water is then sent to a storage tank, where the water demanded is simultaneously
drawn. This is summarized by Equation (10), wherein V(t) is the volume of water in the tank,

.
Vld(t) is

the water demand, and ∆t is the simulation time step (1 h):

V(t + ∆t) = V(t) +
[ .
Vde(t) −

.
Vld(t)

]
∆t, (10)

The power that enters the desalination plant depends on the water level. If the water level is
above 20%, then the minimum power requirement Pmin

de (t) depends on the turndown ratio (TDR).
The TDR is the ratio between minimum and rated production, and operation below this point will
damage the desalination plant. If the water level is below 20%, the minimum power requirement will
be set to restore the water level to at least 20%. This is summarized by Equation (11), wherein Vtank is
the volume of the storage tank:

Pmin
de (t) =

TDR · Sde V(t) ≥ 0.2Vtank
EIel
∆t

(
0.2− V(t)

Vtank

)
V(t) < 0.2Vtank

, (11)

The EI and TDR of the considered desalination technologies are shown in Table 3.

Table 3. Energy intensity (EI) and turndown ratio (TDR) of desalination technologies.

Desalination EIel [kWh/m3] Ref. EIth [kWh/m3] Ref. TDR Ref.

MED 2.50 [44–46] 53.20 [44,45] 0.50 [47]
MSF 4.17 [44–46] 64.79 [44,45] 0.70 [48]
MVC 12.41 [19,45] - [19,44] 0.50 [49]
RO 4.35 [19,44,45] - [19,44] 0.33 [50]

2.4. Techno-Economic Assumptions

The techno-economic parameters as of 2015 of each desalination technology are shown in Table 4.
The operating costs were adjusted so that electrical and thermal requirements were excluded, as these
were modeled explicitly. The techno-economic parameters of the energy components are shown in
Appendix C.
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Table 4. Techno-economic parameters of desalination technologies.

Component Parameter Unit Value Ref.

MED CapEx USD/(m3/d) 1150 [25,46]
OpEx USD/m3 0.232 [25]

Lifetime y 6 [31]

MSF CapEx USD/(m3/d) 1425 [25,46]
OpEx USD/m3 0.232 [25]

Lifetime y 10 [51]

MVC CapEx USD/(m3/d) 1000 [52]
OpEx USD/m3 0.232 [25]

Lifetime y 10 [51]

RO CapEx USD/(m3/d) 1250 [25,46]
OpEx USD/m3 0.232 [25]

Lifetime y 10 [51]

Water Storage CapEx USD/m3 1000 [13]
OpEx USD/m3/y 10

Lifetime y 20

Coal Unit Cost USD/kg 0.09 [53,54]
Inflation Rate % 3

2.5. Future Costs

The capital cost of a desalination technology Ccap(t) at year t is given by Equation (12). The capital
cost decreases with the cumulative installed capacity X(t) given by Equation (13). In these equations, a
is a normalization constant, b is an empirical parameter based on learning rates, K is the saturation
capacity, r is the growth rate, and tm is the year when half of the saturation capacity is installed [26].
The parameter values for each desalination technology are given in Table 5, while the future cost
parameters for energy components are shown in Appendix D.

Ccap(t)

Ccap(2015)
= a[X(t)]−b, (12)

X(t) =
K

1 + exp[−r(t− tm)]
, (13)

Table 5. Future cost parameters of desalination technologies.

Component K [GW(h)] r [y−1] tm [y] Ref. b Ref.

MED 10.30 0.1126 2011 [26] 0.3771 [55]
MSF 21.10 0.0935 1999 [26] 0.5146 [55]
MVC 0.24 0.1888 1966 [56] 0.4941 [27]
RO 147.20 0.1256 2019 [22] 0.2345 [22]

2.6. Case Study

In this work, Camasusu Island, Masbate (12.2 ◦N; 123.2 ◦E) and Lubang Island, Occidental Mindoro
(13.8 ◦N; 120.1 ◦E) in the Philippines are selected as case studies to represent small and big islands,
respectively. The daily water demand profiles were estimated from the work of the California Public
Utilities Commission [57], with monthly variations based on Griffin and Chang [58]. The resulting
water demand profiles were scaled to meet the 20-L water requirement per day per capita estimate
by the World Health Organization [56]. Camasusu and Lubang Island have a population of 532 and
18,556, respectively, which yields an annual water demand of 3.88 × 103 m3/y and 1.35 × 105 m3/y. This
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estimate includes water for drinking and activities such as bathing and laundry [56]. The normalized
water demand profile is shown in Figure 7. The details regarding demand and generation profiles of
the energy components are given in Appendix E.
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2.7. Stochastic Profile Generation

Stochastic energy and water demand profiles were generated using Equations (14) and (15).
In these equations, Pld(t) and

.
Vld(t) are the deterministic energy and water profiles, δhr(t) is a random

number that varies every hour, and δdy(t) varies every day. Both random numbers are drawn from a
normal distribution centered at 0 with 5% variance. Generation of the stochastic hourly solar insolation
profiles are discussed by Bendt et al. in [59] and Graham et al. in [60,61].

Pstoc
ld (t) = Pld(t)

[
1 + δhr(t) + δdy(t)

]
, (14)

.
V

stoc
ld (t) =

.
Vld(t)

[
1 + δhr(t) + δdy(t)

]
, (15)

After each set of generation and demand profiles are formed, a Monte-Carlo approach calculated
the corresponding optimum sizes and metrics 100 times to determine their distribution. The number
of simulation points were chosen to balance computation time and accuracy.

3. Results

3.1. Optimum Sizes

Figures 8–10 present the results of the Monte-Carlo simulation. Figure 8 shows that diesel-favored
systems need less energy storage capacity, while solar PV-favored systems will need larger Li-ion BESS
capacities. For these hybrid systems, larger Li-ion BESS sizes indicate higher RE shares. Bimodal
distributions indicate the possibility of either RE-favored generation or diesel-favored generation.
Figure 8 also presents that low energy and water demand on an island such as in Camasusu would
result in diesel-favored generation systems, as the installation costs for diesel-favored generations
are lower than that of RE. At low energy demands, the large installation cost required makes RE less
economical than diesel-generation. In contrast, larger islands with more energy and water demands
such as in Lubang prefer RE-favored systems. On these islands, the large installation cost of RE is
offset by the decreased fuel consumption.
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Island (bottom). Systems in Camasusu have small Li-ion BESS installation sizes, except for RO, where
the Li-ion BESS installation is large. Systems in Lubang have large Li-ion BESS installations.
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Figure 9. Distribution of optimum sizes of water storage (left axis) and desalination unit (right axis) on
Camasusu Island (top) and Lubang Island (bottom). There is high uncertainty in the optimum water
storage sizes in Camasusu, except for RO.

Figure 9 shows how diesel-dominated systems compensate for the lack of Li-ion BESS capacity.
As these systems do not have energy storage, they use the desalination plant as an energy sink to
produce and store water that will be utilized daily. The same figure presents that if the desalination
plant is used as an energy sink, the resulting storage sizes for water have large uncertainty or spread.
The RO system in Camasusu is an exception to the trends observed earlier. RO has a high turndown
capability that allows RE intermittence as seen in the spread between solar PV and Li-ion BESS
installation in Figure 8. In cases where RE is heavily preferred over diesel-generators, RO systems are
suggested for small islands.
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Figure 10. Distribution of optimum LCOE (left axis) and levelized cost of water (LCOW) (right axis)
on Camasusu Island (top) and Lubang Island (bottom). The metrics of the MED and MVC systems in
Camasusu exhibit a bimodal distribution.

As for the optimum metrics shown in Figure 10, RO desalination provides the lowest water
generation costs from its low energy intensity and fuel independence. Electricity generation costs are
comparable for MED, MSF, and RO because the corresponding desalination unit has low electricity
consumption, although MED may achieve a lower cost. The larger Lubang Island has lower generation
costs than Camasusu Island, further demonstrating the effectiveness of RE systems on larger islands.
Figure 10 also reflects the importance of desalination turndown on the stability of generation costs.
RO systems have a more distinct generation cost distribution because shortage in generation due to
intermittencies is allowed by larger turndown; thus, additional generation capacity and the associated
costs are unnecessary. In other systems, however, turndown is limited and therefore, intermittency is
met with additional generation capacity. The amount of additional generation is unpredictable, and
this reflects as uncertainties in generation costs.

3.2. Hourly Power and Water Flows

Figure 11 shows the power flows of a representative day associated with each desalination
technology coupled with hybrid energy systems on both islands. The power flows confirm that systems
on Camasusu Island are diesel-favored, while those on Lubang Island are RE-favored. An exception is
the RO system on Camasusu Island, which uses an RE-favored system because of its high turndown
capability. The diesel-favored systems have batteries that drain to 20% outside of sun-hours, which
result in diesel generation to meet the baseload. In contrast, the RE-favored systems only utilize diesel
generation during days with low solar irradiation.

Figure 12 compares the power consumed by the different desalination units and demonstrates
how water is stored. In MED and MSF, water output is continuous because of the low turndown,
increasing water level over time. In RO systems, however, water storage is drained until it reaches
the minimum water level. After this, the RO plant will start producing water to meet the demand,
explaining the uneven energy demand profile. Because of this, the RO system behaves as an additional
load during the day. This is evidenced by the monthly average water level shown in Figure 13 wherein
MED and MSF water storage tanks are full, while RO water storage is minimum.
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3.3. Future LCOE and LCOW

Figure 14 shows the projected LCOE and LCOW of one representative case for both islands from
2015 to 2050. Note that the LCOE and LCOW of a particular year does not account construction time.
The results suggest that RO will provide the lowest water generation costs, followed by MED and MSF.
MED, MSF, and RO have comparable electricity generation costs, which is also suggested by Figure 10.
The systems in Camasusu and the MVC system in Lubang have a small price spike. This suggests a
transition to RE-favored generation in the future.
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3.4. Sensitivity Analysis

3.4.1. −25% Overnight Fuel Cost

At a 25% decrease of the overnight diesel and coal price, the Li-ion BESS installation sizes sharply
decreased, as shown by Figure 15. The bimodal distribution that was once present in MED and MVC
systems in Camasusu have become a tight distribution, suggesting that RE-favored generation is no
longer feasible. Systems on Lubang Island also favored diesel. Figure 16 also shows that all systems
exhibit uncertainty in optimum storage sizes. Generation costs have decreased (Figure 17), especially
for MVC, which consumes large quantities of diesel due to its high electrical energy intensity. Bimodal
spreads of LCOE and LCOW have disappeared due to systems heavily favoring diesel over RE.
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3.4.2. +25% Overnight Fuel Cost

At a 25% increase in overnight diesel and coal cost, all systems have large Li-ion BESS installation
sizes (Figure 18) preferring RE-favored generation due to prohibitive diesel costs. Figure 19 also shows
minimal uncertainty in optimum storage sizes, confirming that RE-favored generation is favored.
Generation costs have increased (Figure 20) especially in MVC systems, wherein diesel is used for
energy generation, which in turn powers the MVC plant. This is less efficient that MED and MSF,
which use the fuel directly.
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4. Discussion

Upon analysis of the optimum size and metric distributions, RO systems have the lowest water
generation cost. The low energy use and high turndown of RO allows for possible coupling with
RE-favored generation. The average LCOW of RO systems is 5.11 USD/m3 and 4.70 USD/m3 for
Camasusu and Lubang, respectively. Compared to the mainland price of 0.70 USD/m3, however,
water generation costs are still higher by 630% and 572% for Camasusu and Lubang, respectively.
As for electricity generation costs, MED systems have the lowest average LCOE of 0.348 USD/kWh in
Camasusu, while RO systems have the lowest average LCOE of 0.296 USD/kWh in Lubang. These are
74% and 47% more expensive for Camasusu and Lubang, respectively, compared to the mainland price
of 0.2 USD/kWh [62]. Overall, RO systems provide cost-effective water and electricity, especially for
larger islands, where RE-favored generation is preferred.
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For project developers, MED and MSF could be more attractive because these systems are less
RE-dependent than RO due to the limited turndown. This allows easier entry into off-grid islands
currently powered by diesel generators. There is also less uncertainty in optimum sizes, especially for
MSF, implying that there is less risk of installing an undersized system. Seasonal weather patterns also
do not strongly affect the stored water level. Lastly, these technologies have smaller water storage
sizes that are more appropriate for off-grid islands. However, due to the large typical sizes of MED
and MSF plants, these technologies are favorable for larger islands only [44].

Energy-desalination systems on small islands prefer diesel-favored generation, while larger islands
prefer RE-favored generation, as shown by the power flows. Cost projection analysis, however, suggests
that RE-favored generation will be more favorable in the future even for small islands. RO desalination
is therefore a favorable investment as its high turndown allows it to accept RE intermittency, in addition
to its low generation costs. Given that most of the off-grid islands are currently powered by diesel
generators [1] and that PV-based installations are gradually being deployed [63], energy-RO systems
for energy and water cogeneration may be feasible in the near future.

The sensitivity analysis shows that energy-desalination system configurations heavily depend on
diesel and coal prices. If fuel prices are low, the fuel share in thermal desalination systems increases
and uncertainty in water storage installation size increases. Energy and water generation costs are
reduced especially for MED, MSF, and MVC, as they rely on fuel. If fuel prices are high, RE-favored
generation becomes favorable. There is less uncertainty in the optimum sizes of both energy and water
components because Li-ion BESS energy storage minimizes intermittencies. However, large Li-ion
BESS installations for RE-dominated generation result in high costs of energy and water.

In addition to the fuel dependence of the optimum configuration, the sensitivity analysis also
has implications on system resiliency on fuel price shocks. If fuel prices were to surge upwards,
the generation costs of RO systems will be affected the least due to its low dependence on fuel. MVC
systems will have the largest increase in generation costs due to its inefficient fuel usage. Small
islands are more susceptible to fuel price surges, as these tend to have diesel-favored energy systems.
In contrast, large islands are more likely to have RE-favored generation, which is optimal at higher fuel
prices. This incentivizes the implementation of RE-RO systems, as they are favorable for small islands
and are resistant to fuel price shocks.

5. Conclusions

The RO desalination systems have favorable properties due to high turndown capabilities and
low energy use. Coupled energy-RO systems provide a low energy generation cost and the lowest
water generation cost due to the efficient energy use of RO. Its high turndown allows for compatibility
with RE-favored generation and makes it a future-proof investment as RE installations increase in the
future. RO-RE systems have greater resistance to fuel price surges, providing resiliency against the
decreasing fuel supply and current political climate.

MED and MSF are easier to implement given the present configuration on off-grid islands in the
Philippines. These desalination technologies are more compatible with diesel-favored generation,
which is the status-quo on Philippine off-grid islands. The MED and MSF systems are robust against
weather patterns, making them a viable investment in the Philippines. These technologies may also
have niche applications where diesel prices are low or if small water storage units are preferable.
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Appendix A

A.1. Energy System Models

A.1.1. Solar PV

The power output of the solar system is given by Equation (A1). It is proportional to the incident
radiation on the tilted surface G(t) and is partly influenced by the cell temperature TC(t). Details
regarding the calculation of these parameters can be found in [64]. In Equation (A1), SPV is the rated
size of the solar PV installation, ηPV is the derating factor (0.8), GSTC is the irradiance at standard test
conditions (STC, 1 kW/m2), αP is the temperature coefficient of power (−0.005 K−1), and TSTC is the
temperature at STC.

PPV(t) = SPVηPV
G(t)
GSTC

[1 + αP(TC(t) − TSTC)], (A1)

A.1.2. Diesel

Diesel generators can output any power below its rated size Sds. A minimum power ratio r (0.1) is
implemented and the minimum power output of a diesel generator is given by Equation (A2):

Pmin
ds (t) = rSds, (A2)

The amount of fuel consumed by the plant is directly proportional to the rated size and the power
output Pds(t) as given by Equation (A3). Both C0 and C1 are arbitrary constants [65].

.
V f l(t) = C0Sds + C1Pds(t), (A3)

The fuel efficiency is given by Equation (A4), wherein ρ is the density of diesel (820 kg/m3) and
∆HLHV is the lower heating value of diesel (43.2 MJ/kg). The efficiency is specified as 0.3 and 0.4 at
the minimum and maximum loading, respectively. This allows the coefficients in Equation (A3) to
be determined.

ηds(t) =
Pds(t)

ρ
.

Vds(t)∆HLHV
, (A4)

A.1.3. Li-Ion BESS

The charging and discharging rate of the Li-ion BESS is limited by either the C-rate or the state
of charge (SOC) as shown by Equations (A5) and (A6). In these equations, SLi is the rated size of the
Li-ion BESS installation, C is the C-rate, and the min

{
x, y

}
function returns whichever is smaller among

x or y. The negative sign indicates charging, as this will be relevant in the later equations. In Equation
(A6), a maximum depth of discharge (DODmax) of 0.8 is implemented as too much discharge that will
damage the BESS:

Pmax
c (t) = −min

{
SLiC, SLi(1− SOC(t))

}
, (A5)

Pmax
dc (t) = min

{
SLiC, SLi(SOC− (1−DODmax))

}
, (A6)

Next, the power entering one battery module P(t) is determined as shown in Equations (A7) and
(A8) for charging and discharging, respectively. A charge εc and discharge εdc efficiency of 0.95 is
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applied, which results in a roundtrip efficiency of 0.90 when combined. Snom is the nominal size of one
battery module (4.8 kWh).

P(t) =
Pc(t)εc

Sst/Snom
, (A7)

P(t) =
Pdc(t)/εdc

Sst/Snom
, (A8)

The Li-ion battery chemistry is modeled using the Thevenin equivalent circuit as shown in
Figure A1. P(t) represents the power at the terminals. R1 (1.4 Ω) is the resistance due to the electrolyte,
while R2 (0.5 Ω) and C (52 F) are resistances at the electrode interface [66].
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Figure A1. Thevenin equivalent circuit for modelling Li-ion battery chemistry.

The current through the EMF element is determined and the SOC for the next timestep is given by
Equation (A9). V0(t) is the open circuit voltage (OCV) of the battery module.

SOC(t + 1) = SOC(t) −
I(t)V0(t)

Snom
, (A9)

The module OCV is given as a function of SOC by Figure A2.Energies 2020, 13, x FOR PEER REVIEW 19 of 25 
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Figure A2. Open circuit voltage (OCV) as a function of SOC for a 48 V Li-ion battery module.

A.2. Dispatch Algorithm

The dispatch algorithm decides how energy is distributed throughout the system. ISLA uses a
load-following dispatch algorithm that has been modified to accommodate desalination as shown in
Figure A3. First, the algorithm checks if solar PV power at that timestep can supply both the electrical
demand and desalination power. If so, the BESS is charged, and any more excess power is absorbed
by the desalination plant. Otherwise, power is drawn from the Li-ion BESS. If the Li-ion BESS does
not suffice, additional diesel generation is called. If this still does not suffice, then a power outage is
declared, and the system is infeasible.
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Figure A3. Load-following dispatch algorithm used by ISLA. To reduce carbon emissions, the system
prioritizes the usage of stored Li-ion BESS energy over diesel power if solar PV power is insufficient.

Appendix B

To ensure that a physically sensible optimum is obtained, the initial search space must be generated
properly. The procedure below shows how ISLA generates the initial search space, but this does not
guarantee a global optimum value as with nonlinear optimization problems. Nonetheless, the results
generated by ISLA for energy-only microgrid systems were consistent with those from HOMER Pro®.

The sizes of solar PV, diesel, and the desalination unit are rated based on their maximum power
[kW] or flowrate [m3/h] generation, thus, the optimum value must be based on the peak demand.
A crude approximation of the peak electrical demand Ppk is calculated as shown in Equation (A10).
The constant 10 kW/(m3/h) was arbitrarily chosen such that it is near the electrical energy intensities
EIel of the desalination units in this study.

Ppk = max
{

Pld(t) +
10 kW
m3/h

.
Vld(t)

}
, (A10)

The initial search spaces of solar PV {SPV}0, diesel {Sds}0, and the desalination unit {Sde}0 are shown
in Equations (A11)–(A13). Constants are multiplied to Ppk due to the possibility of the optimum size
deviating from the crudely approximated peak demand. The diesel generator has a small associated
constant because its optimum size must be near the peak demand. Smaller sizes may be technically
infeasible, while larger sizes will incur high capital cost. Solar PV has a larger associated constant
because it has power peaks during the day that are much larger than the peak demand.

{SPV}0 =
[

0, 5Ppk
]
, (A11)

{Sds}0 =
[

0, 3Ppk
]
, (A12)

{Sde}0 =
[

0,
2Ppk
EIel

]
, (A13)

The Li-ion BESS and water storage undergo daily cycles of influx and efflux; thus, it is unlikely to
have a Li-ion BESS or water storage that drains in less than a day. Their search spaces are therefore
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based on daily consumption. A crude approximation of the daily power consumption Edy is given by
Equation (A14). Compared to Equation (A10), a smaller constant of 5 kW/(m3/h) was chosen because
the average daily power consumption is less sensitive to sharp peaks in the actual demand profile.

Edy =
1

365

8759∑
i=0

Pld(t)∆t +
5 kW
m3/h

·

8759∑
i=0

.
Vld(t)∆t

, (A14)

The initial search spaces of Li-ion BESS {SLi}0 and water storage {Stank}0 are shown in Equations
(A15) and (A16). Constants are multiplied to Edy due to the possibility of the optimum size deviating
from the crudely approximated daily energy consumption. These constants are smaller, however,
because caution against sharp peaks in the actual demand profile is unnecessary.

{SLi}0 =
[

0, 2Edy
]
, (A15)

{Stank}0 =
[

0,
2Edy
EIel

]
, (A16)

Appendix C

The techno-economic parameters of the energy generation components are shown in Table A1.
These parameters are valid for the year 2015.

Table A1. Techno-economic parameters of energy components.

Component Parameter Unit Value Ref.

PV CapEx USD/kW 1200 [67]
OpEx USD/kW/y 25

Lifetime y 20 [68]

Li-ion BESS CapEx USD/kWh 300 [69]
OpEx USD/kWh/y 3

Lifetime y 10
RT Efficiency % 90

Diesel CapEx USD/kW 500
Generator OpEx USD/kWh 0.03

Lifetime h 15,000

Diesel Cost USD/L 0.9
Inflation Rate % 3

Project CapEx USD 0
OpEx USD/y 0

Discount Rate % 10
Lifetime y 20

Appendix D

The future cost parameters of energy components are summarized in Table A2.

Table A2. Future cost parameters of energy components.

Component K [GW(h)] r [y−1] tm [y] Ref. b Ref.

PV 200 1.7362 2004 [6] 0.376 [6]
Li-ion BESS 2600 2.7363 2011 [6] 0.251 [6]
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Appendix E

The global horizontal irradiance (GHI), energy demand, and water demand of Camasusu Island
and Lubang Island are shown in Figures A4 and A5, respectively. The GHI profiles were obtained
from PHIL-LIDAR 2 dataset, while the electrical demand load profiles were obtained from the work of
Navarro [70].
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and Lubang Island are shown in Figures A4 and A5, respectively. The GHI profiles were obtained 

from PHIL-LIDAR 2 dataset, while the electrical demand load profiles were obtained from the work 

of Navarro [70]. 
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Figure A5. Daily and monthly average electric, water, and GHI profiles on Lubang Island. 
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