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Abstract: Electricity markets are nowadays flooded with uncertainties that rise from renewable
energy applications, technological development, and fossil fuel prices fluctuation, among others.
These aspects result in a lumpy electricity prices for consumers, making it necessary to come up with
risk management tools to help them hedge this associated risk. In this work a portfolio optimization
applied to electricity sector, is proposed. A mixed integer programming model is presented to
characterize the electricity portfolio of large consumers. The energy sources available for the portfolio
characterization are the day-ahead spot market, forward contracts, and self-generation. The study
novelty highlights the energy portfolio characterization for players denoted as large consumers,
which has been overlooked by the scientific community and, focuses on the Iberian electricity market
as a real case study. A multi-objective methodology is explored, using a weighted-sum approach.
The expected cost and the conditional value-at-risk (CVaR) minimization are used as objective function.
Three case studies illustrate the model applicability through the characterization of how the portfolio
evolves with different demand profiles and how to take advantage from seasonality characteristic in
the spot market. A scenario analysis is explored to reflect the uncertainty on the price of the spot
market. The expected cost and CVaR are optimized for each case study and the portfolio analysis
for each risk posture is characterized. The results illustrate the advantage to reduce costs and risk if
the prices seasonality is considered, triggering to an adaptive seasonal behavior, which support the
decision-maker decision towards its goals.

Keywords: electricity markets; portfolio optimization; conditional value-at-risk; electricity portfolio;
mixed integer programming

1. Introduction

One of the main issues for any industry is to fulfill its energy needs in the smartest way possible.
However, the management of an energy portfolio should simultaneously: reduce the cost, manage
the risk associated and satisfy the demand, increasing the management complexity. These aspects are
often a concern in the literature given the many opportunities, the different methods and tools that can
be used.

In addition, the energy sector is characterized by many risks, opportunities, given the technology
and renewable energy developments, which allow the energy portfolio manager to take advantage
of. Hence, one of today’s challenge is to use the energy resources available efficiently and towards to
improvement of performance indicators as: cost, risk and renewable energy.
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In the electricity sector we have three key players: the private investors, the managers
commercializing energy and the planners. They all interact in the markets but face different problems
and uncertainties, changing its behavior based on its preferences over tools or mechanisms of the
markets [1]. The investors invest in technology mixes that favor them and maximize their profit,
while planners seek social welfare maximization. The managers commercialize energy and their
biggest concern is to maximize return and minimize risk. The latter includes both the buyers and
sellers of energy [2]. Although the managers’ side is nowadays key in electricity markets, their risk
management problems are less developed than the planners’ [1]. These players resort to electricity
markets to contract their energy needs, with few available tools that can use and take advantage of,
to develop a long-term and short-term plan.

Electricity markets worldwide normally offer two types of market structure to trade energy: spot
(or day-ahead or pool) market and forward market. The spot market is the energy traded in the
real time and day-ahead market and the most popular structure is a centralized pool-base auction
where the buyers and sellers submit bids [3]. The corresponding problem, with a different approach,
was considered for the electricity balance market with the use of a historical data set and the best-known
solutions have been improved [4]. However, drawback spot market is its price volatility, being the
highest when compared to any other commodities’ spot markets [5]. Although, the forward markets
is seen as the way, to overcome the lumpy prices in the spot market, where with forward contracts,
consumers and suppliers commit on the trading of a specific amount of electricity, at a specific future
time against a fixed price [6]. There are several European electricity markets where the players can
interact. As example, there is the Iberian electricity market, which is operated by OMIE, which is the
nominated electricity market operator, responsible for managing the Iberian Peninsula’s day-ahead
and intraday electricity markets [7].

These electricity markets are nowadays flooded by numerous sources of uncertainty that arise
since the sector itself and historically, are particularly unpredictable. Hence, to plan over it, is necessary
to predict which future conditions the market may face, such as: how will the fossil fuel prices evolve,
what will be the demand profile, will the electricity generation still so hardly depend on fossil fuels.
The literature over the last two decades has primarily focused on the uncertainties that come from
such factors as fuel prices, demand growth and CO2 prices. However, other factors, such as renewable
resources availability, technology development, social opposition and emissions limits, also play an
important role [2].

In some cases, a linear programming formulation can be proposed to characterize, not only,
the distribution network characteristics, but also, consider the market compensation processes
for flexible charging and distributed energy resources, leading to reserve and reactive power
compensation [8].

Given all the opportunities and threads present in the energy sector, it is important for any
consumer to best take advantage in the procurement of its energy needs. To do so, a proper portfolio
optimization would be essential. However, regarding electricity markets, literature has paid little
attention to the buyer’s perspective and so, the goal of this article is to make a contribution in this
direction. To do so, a portfolio optimization for a large consumer is conducted, with the aim of
simultaneously reducing the expected cost and minimizing the risk associated. A mixed integer linear
formulation is proposed to support the decision-maker, while the trade-off between several optimal
alternatives are provided, leading to energy portfolio characterization. The problem addressed is an
energy portfolio optimization for a large consumer, using a multi-objective approach to minimize the
total expected cost and risk associated.

The study has the following structure: in Section 1, an introduction is made, where the background
and general motivation are set, the characterization of the electricity markets is provided, as well as the
objectives and article structure. In Section 2 explores the literature review focus in methods and trend
of energy transition from a circular economy perspective. In Section 3 is defined the methodology to be
used: steps of the analysis and problem characterization. The mathematical formulation is presented
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in Section 4, followed by the explanation of how the data were collected and how was it was fitted,
in Section 5. In Section 6 is shown the results and its analysis from three case studies. Finally, general
conclusions and further work are considered on Section 7.

2. Literature Review

2.1. Energy Transitions from a Circular Economy Perspective

At this moment, the trend is the energy transition to renewable energy sources, with the aim of,
not only, reducing consumption of fossil fuel, but also, to switch parts in the electricity systems, within
a circular economy perspective. Therefore, some research was done by several authors exploring these
subjects, mainly:

The paper [9] discussed the potential energy future perspectives and proposed a topology. As a
result, the authors conclude, that potential energy futures, not only are a simple function of the
technologies employed and their scale, but also, they will be shaped by the social relations that
configure societies in general.

Authors in [10] examined the impacts of biowaste-based energy transition, through a
semi-quantitative evaluation by engaging the relevant social stakeholders’ evaluation in the strategic
plan. The proposed decision-making tool uses analytics and optimization algorithms to guide competent
authorities and decision-makers to sustainable energy transitioning towards decarbonization.

Work [11] provided the most effective instrument mix for energy transition in biofuel industry
based on the case of the Italian liquid biofuel sector. The simulations results showed the persistence of
negative context conditions would be detrimental for the convergence of expectations, providing clear
priorities in setting the energy policy agenda.

Research [12] introduced the green finance gap for the transition to a low carbon economy.
Considering the government policy to finance early stage green innovations.

Finally, paper [13] discussed energy and bio-products production based on resource circularity in
the tourism industry. Research has shed light on external pressures and internal dynamics to provide a
clear direction for policy strategies to support the transition towards a tourism-based circular economy.
An integrated SWOT-MLP framework has been built to provide crucial theoretical perceptions for the
transition under investigation.

2.2. Multi-Objective Optimization

Multi-objective optimization (MOO) is a growing subject in the engineering world today given the
conflicting nature of the multiple objectives of today’s real-world problems. Although the ideal would
be to optimize all the objectives simultaneously, that is very complex due to their high number and the
competition between them. Based on this, the optimization approaches have to make compromise and
deliver several solutions [14,15].

The usual process in multi-criteria optimization is to find all non-dominated or Pareto optimal
solutions of the problem, for instance, every solution, which we cannot improve with one objective
function without deteriorating another [16,17].

There are multiple techniques to solve MOO problems, such as: weighted sum method, ε-constraint,
lexicographic approach, reference points or sets methods, goal programming, etc. The weighted
sum approach gives weights to each objective function and transforms it into a single objective.
The ε-constraint method, proposed by [18], selects one objective to be minimized/maximized and
constrains the remaining objectives functions to be less or equal to a target value. Goal programming
does not pose the question of maximizing multiple objectives, but it rather sets specific goals for each
objective and attempts to find them [19]. Most of the traditional algorithms tackle the MOO problem
by transforming it into a single-objective function with the weighted-sum method [20]. Examples of
this application are found in [21,22].
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2.3. Portfolio Optimization with Downside Risk: Conditional Value-at-Risk

The modern portfolio theory era was first started by [23] and, since then become the most common
way for investors to deal with expected returns, costs and uncertainty for a large number of problems.
The portfolio optimization problem was first formulated looking at the expected return and risk,
with focus in the expected return variability, which found a high popularity in finance sector. The nature
of the multi-objective portfolio problems was presented in [16], with mixed integer linear programming
multi-objective portfolio optimization approaches were discussed. Portfolio optimization has found
popularity in the energy sector since it exploits the diversification idea through the “cancellation
effect” [1].

Among the several techniques proposed to tackle the problem of portfolio selection, the risk
measures became relevant and the downside risk is one of them [24]. As shown in works of [24,25],
the portfolio formulation has enabled the two most popular financial engineering percentile risk
measures, value-at-risk (VaR) and conditional value-at-risk (CVaR) to be used. Downside risk reflects
the negative deviations from the expected return, focusing on the side that takes loss, opposite to the
mean variance [23], that assesses in the same way upside and downside risks [26]. Initially introduced
by [27], the CVaR deals with the “conditional expectation of losses in the top 100 × (1-α)%” assuming
a specific level of α. The CVaR denotes the average of worst-cases loss scenarios for a specific level.
While the VaR defines the “threshold level for losses in the top 100 × (1-α)%” [28] for a specific level of α.
Common values considered for α are 0.90, 0.95 and 0.99 [29]. CVaR’s popularity has grown significantly
in the literature [30–33] mostly due to VaR’s undesirable properties [34]. The author of [30] solved the
portfolio optimization problem using a multi-objective approach and the VaR measure. The work [31]
considers three different bi-objective formulations to explore the portfolio problem. First formulation
considers the use of percentile risk measure, VaR, through a mixed integer linear programming. The
second formulation considers the measure, CVaR using linear programming. The last one explores
symmetric measure of risk, like in Markowitz [23] portfolio.

2.4. Energy and Electricity Portfolios

As previously stated, modern portfolio theory has seen its popularity growing in the energy sector
in the last years, mostly on the planner’s side, standing as a widely accepted methodology to solve the
long-term investment decisions in energy planning.

The planners´ considered in the literature review can be buyers or sellers in a liberalized market,
as defined by [1,2]. These stakeholders need to allocate their electricity among different instruments,
such as the day-ahead, real time markets and bilateral forward contracts. Hence, these agents can
take advantage of portfolio optimization by diversifying throughout these instruments, as well as by
choosing among generation technologies [34].

As examples of portfolio theory applications to the buyer’s perspective, there is the works of [6]
and of [35]. Recently [36] examines a fuzzy multi-objective decision making structure established
for optimization of renewable energy project portfolios. The energy portfolios were constructed [37]
and three problems were analyzed. The first problem minimizes the worst cases volatility, with a
certain fixed maximum expected energy costs [37]. The second minimize the worst cases expected
costs, with certain fixed maximum of volatility for the energy costs [37]. While the third problem
combine the expected and volatility of the costs and is weighted by a risk aversion parameter [37].
These portfolio models are formulated as quadratic, second order cone programming and semi definite
programming, so that robust optimization tools have be implemented.

In work [38] the portfolio optimization is developed for an optimal scheduling strategy in a
microgrid take part in an unstable electricity market. The modern portfolio theory [39] is enabled
to define the efficient frontier of optimal variable renewable energy portfolios that summarize the
geographical smoothing effect for future power system. Article [40] considers power portfolio
optimization in a medium term, for a power producer in a competitive electricity market, considering
electricity prices and risk management. The methodology developed considers the multivariate
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stochastic evolution of electricity prices and, the construction of a scenario tree to represent its
evolution. Work [41] presents a portfolio optimization composed by end-use consumers, through the
Markowitz Theory. An overview of a multi-agent system for electricity markets is also presented.
Authors [42] propose two modern portfolio theory models. The first considers the Mean Variance
Criterion and the second explores the CVaR. The electricity portfolio models are combined with a
generalized autoregressive conditional heteroskedastic prediction technique to optimally diversify
their energy portfolio.

In work [43] authors present a comprehensive study of mean-variance, downside and semi-variance
methods for portfolio optimization in electricity markets and the corresponding approaches for
maximization of the return, while risk is minimized. Optimization of the electricity markets under
modern portfolio theory has a crucial role for financial decision-makers [43]. Power suppliers in
deregulated electricity markets need to optimize their generation capacities and bidding strategies to
effectively play a part in bilateral contract and spot markets. Market players must deal with continuously
changes of electricity prices, in the competitive electricity market environment during their daily
routine [43]. Despite electricity cannot be stored it can be generated and consumed simultaneously.

Authors [44] are focuses on more sustainable aspects, like the impact of renewable portfolio
standards and emissions trading on the electricity market.

Work [45] presents a review and extend the stochastic Levelized Cost of Electricity (LCOE)
portfolio theory and, the mean-risk analysis of electricity generation investment portfolios, taking
into account the relation between risk and deviation risk measures in the purpose of shaping the
risk distribution.

2.5. Scenario Analysis

Scenarios have become a fundamental part of foresight science and scenario planning is recognized
as the most widely used method in the futures field.

Again, since the planner’s side is generally more developed, most of scenario analysis application
are done on the planner’s perspective, which [46,47] are examples of.

From the buyer’s perspective we have the works of [48], that built a scenario tree as a tool to
reflect the uncertainty shown in the price of the spot market.

2.6. Literature Review Summary

Overall conclusions are taken from the literature review:

• Bi-objective optimization is popular among the portfolio analysis given its easiness to present and
conduct to the results; as a MOO method weighted sum is the most popular and consensual.

• As a risk measure for energy portfolio, mean-variance was preferred through time, however the
more recent literature starts applying conditional value-at-risk and value-at-risk.

• The literature in electricity portfolios focuses mainly of the planner’s problems and challenges
and there is a lack of work from the buyer perspective.

3. Methodology and Problem Statement

3.1. Methodology

The methodology undertaken in this work follows several steps and explores several
methodologies. The first step identifies, in the literature review, the gap that remains to be fulfilled,
considering the energy portfolio optimization of large consumer, from buyers’ perspective. Followed by
the stakeholder’s identification and its roll characterization, mainly electricity suppliers’ options and
large consumer needs. The Iberian Market is explored, as large consumer stakeholder. Three electricity
suppliers’ options are considered: day-ahead market, forward contract and self-generation.

The forward contract will be set in a specific time and its output will be divided in 4 blocks
of energy, each with a specific price. The self-generation energy implies a long-term investment,
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providing a constant energy throughout every hour of the planning horizon. A long-term investment
aversion from the decision-maker must be considered. Its energy is divided in 4 blocks, each with a
different price as well. The day-ahead market trading stands as the factor that brings uncertainty into
the decision-making.

Data collecting and screening for further analysis and data characterization is performed. 48 weeks
is considered as a final sample. However, this step is of high importance to grab the sector characteristics
and feed the model with accurate information. Based on that, a deeper analysis over seasonality
patterns identification is undertaken, such as: yearly, weekly and daily. Data categorization is
undertaken according to their average spot price, in three categories: valley, shoulder and peak hours.
Some parameters are estimated, and some information is omitted due confidentiality reasons.

The aim of this work is to explore the energy portfolio optimization considering simultaneously
the cost and the risk, which trigger to a multi-objective approach. The trade-off between the two
objectives is explored through the weighed-sum approach and its results characterized using the Pareto
Font representation. An economic indicator, as costs is used as one of the objective functions, while a
risk measure, as CVaR is explored to mitigate the risk.

Another relevant aspect is the electricity market variability/uncertainty. Its behavior is
characterized through a Scenario Tree approach [49], as defined in Figure 1. The scenario tree
has 3 branches leaving each node and 3 nodes, resulting in 33 = 27 scenarios. Each branch denotes one
week, with a total planning horizon of 3 weeks. On each node decisions regarding weekly forward
contracts and spot market trading are done and exclusively on the first node, the decisions regarding
3-week Contract and self-generation production are taken.
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3.2. Problem Statement

A portfolio optimization for a large consumer is conducted, from a buyer´s perspective, mitigating
expected cost and risk. The mixed integer linear programming formulation is extended from [40,48]
and Iberian electricity market is used as large consumer.

Three different electricity supply options are considered: forward contracts, self-generation
facilities and pool market trading. In the forward contracts a specific quantity of energy is purchase
in advance, for a specific price, to be delivered in a specific time. The pool market trades in the
day-ahead market. While the self-generation the decision-maker must embrace an investment to
pursue this option.
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Hence, given sources price, scenarios and its probability, demand to be satisfied, the aversion to
long term investment from the decision-maker and the confidence level for the CVaR calculation.

The model determines: procurement of electricity on each of the electricity options, the optimized
scheduled and the non-dominate solution, allowing the trade-off between the expected cost and the
CVaR, for several risk postures.

It is subject to: expected cost and CVaR minimization.

4. Mathematical Formulation

This work is extended from [48], with the aim of support the large consumer, from a buyer
perspective, in the electricity portfolio optimization. A mixed integer linear program (MILP) based
on [48] is proposed to simultaneously minimize the cost and risk.

4.1. Forward Contract

Notation:
Index
s = Week
d = Day
t = Hour
w = Scenario
c = Contract
b = Block
g = Self-generation facility
k = Stage
Sets:
Ns = {s: set of weeks in the planning horizon}
Nd = {d: set of days in the planning horizon}
Nt = {t: set of hours in a day}
Nw = {w: set of scenarios}
Nc = {c: set of contracts available}
Nb = {b: set of blocks available in each forward contract}
Ng = {g: set of generation facilities}
Nk = {k: set of stages}
CDs = {c: set of forward contracts available in week s}
CTt = {c: set of forward contracts available at hour t}
Data Parameters:
H = Number of hours in the planning horizon
ECmax

c,b = Maximum amount of energy available for contract c in block b (MWh)

ECmin
c,b = Minimum amount of energy to be consumed from contract c in block b (MWh)

PC
c,b = Price of energy unit of contract c for block b (€/MWh)

EGmin
g,b = Minimum energy to be generated from self-generation facility g in block b (MWh)

EGmax
g,b = Maximum energy to be generated from self-generation facility g in block b (MWh)

PG
g,b = Levelized cost of energy unit from self-generation facility g (€/MWh)

Dt
d = Demand of energy for day d at t (MWh)

πw = Probability of scenario w
A = Non-anticipativity matrix.
Kc = Stage at which a decision for forward contract c is made
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Parameters defined by the Decision-maker:
β = Risk aversion factor
λ = Aversion factor to long-term generation investment
α = Confidence level
Binary Variables:
SC

c,w = 1 if forward contract c is selected in scenario w, 0 otherwise
SG

g = 1 if self-generation investment g is selected, 0 otherwise
Variables:
EC

c,b,w = Amount of energy contracted from contract c and block b for scenario w (MWh)
EG

g,b = Amount of energy self-generated from g in block b (MWh)

EP
s,d,t,w

= Amount of energy purchased from the pool for week s, day d and hour t in scenario w
(MWh)

CC
w = Forward costs contracting (€)

Cg = Total levelized cost of self-generation for the whole planning horizon (€)
CP

w = Purchases cost for the pool (€)
CVaR = Conditional value-at-risk
ξ = Value at risk
ηw = Auxiliary variable for CVaR
OF = Objective function

The forward contracts use weekly intervals and deliver the same quantity of energy each hour
over the contract horizon and can be set on single or multiple week’s bases. The energy available in
each contract, c, for a block, b, must verify its capacity, Equation (1).

ECmin
c,b × sC

c,w ≤ EC
c,b,w ≤ ECmax

c,b × sC
c,w ∀ c ∈ Nc, ∀ b ∈ Nb,∀ w ∈ Nw (1)

The EC
c,b,w quantify the amount of energy contracted in contract c, for block b, in scenario w.

The binary variable sC
c,w is equal to 1, if contract c is assigned in scenario w, 0 otherwise. The parameters

ECmax
c,b and ECmin

c,b define the maximum and minimum amounts of electricity, respectively.

Its cost is quantified in variable CC
w in Equation (2). The parameter PC

c,b defines the price for the
block b, in contract c, which is available in week s, CDs and, at hour t CTt.

CC
w = 7×

Ns∑
s

Nt∑
t

(
∑

c∈(CDs∩CTt)

Nb∑
b

EC
c,b,w × PC

c,b) ∀w ∈ Nw (2)

In forward contracts, the dependency between different scenarios regarding contract decisions is
guaranteed through non-anticipativity constraints. Scenarios that are equal until a certain decision
stage, should have the same decisions made until that stage, which is guaranteed by Equation (3).
As done in [34], using a matrix of 0 s and 1 s where A(w, k) is equal to 1 scenario w and w+1 are equal
up to stage k, 0 otherwise. Hence, the matrix’s size is (Nw − 1) × (Nk − 1), which in our case is a 26 × 3
matrix. Using A we can formulate the constraint as done in (3). The Kc defines the stage at which a
decision on contract, c is undertaken.

EC
c,b,w = EC

c,b,w+1 ∀ c ∈ Nc, ∀ b ∈ Nb,∀ w ∈ Nw − 1 (3)

4.2. Self-Generation Facilities

Self-generation facilities are a source of electricity, which must satisfy the minimum and maximum
self-generation capacities, as in Equation (4).

EGmin
g,b × sG

g ≤ EG
g,b ≤ EGmax

g,b × sG
g ∀g ∈ Ng,∀ b ∈ Nb (4)
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The EG
g,b quantifies the amount of energy self-generated in the facility g. The binary variable sG

g

takes the value 1, if the self-generated facility g is installed, 0 otherwise. The EGmax
g,b , EGmin

g,b defines,
respectively, the maximum and the minimum energy self-generated,

The cost of the self-generation facilities is given by Equation (5), with the H as the planning
horizon and, PG

g,b the price per energy unit.

Cg =

Ng∑
g

H ×
Nb∑
b

PG
g,b × EG

g,b (5)

4.3. Day-Ahead Spot Market and Energy Balance

In the day-ahead spot market is assumed that the costumer is a price-taker and, by that, its trades
don´t impact in the market-clearing price. There is no real need to constrain the trade in the spot
market. However, is necessary to guarantee the consumer only interacts as a buyer and guarantee that
the self-generated electricity is not sold (partial self-generation are not allowed). Must be guranted
that the energy procured from the day-ahead market, EP

s,d,t,w, must be positive by Equation (6).

0 ≤ EP
s,d,t,w ∀ d ∈ Nd, ∀ t ∈ Nt,∀ w ∈ Nw,∀ s ∈ Ns (6)

The cost is defined by Equation (7), the parameter, PP
s,d,t,w, quantify the price, per energy unit.

CP
w =

Ns∑
s

Nt∑
t

Nd∑
d

EP
s,d,t,w × PP

s,d,t,w ∀w ∈ Nw (7)

The energy balance constraint, Equation (8), ensures the energy available per hour, from the three
different sources: self-generated, forward contracted and the spot market, must satisfy the demand Dd,t.

Ng∑
g

Nb∑
b

EG
g,b +

∑
c∈(CDs∩CTt)

Nb∑
b

EC
c,b,w + EP

s,d,t,w ≥ Dd,t (8)

4.4. Conditional Value-at-Risk Definition

The mitigation of risk cost variability is performed using the conditional value-at-risk as in
Equation (9). The Equation (9) denotes the expected cost of the (1-α) × 100% scenarios with greatest
cost. The variables ζ and ηw characterize the Value-at-Risk and conditional value-at-risk, respectively,
used in Equations (10) and (11). The variable πw, defines the scenarios probability. The formulation
followed is based on [48].

CVaR = ς+
1

1− α
×

Nw∑
w
πwηw (9)

(CP
w + CG + CC

w) − ς ≤ ηw (10)

ηw ≥ 0 (11)

4.5. Objective Function

The objective function (OF) is defined though the weighted sum approach. The aim is to minimize
the cost and risk of the portfolio, as in Equation (12). The weights used in the trade-off are defined
through the value of the risk aversion factor β. This factor defines the decision-maker’s propensity
towards risk. If β became equal to 0, the OF only considers the cost, representing 100% of OF, but if β
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takes the value 5, the weight associated to the cost term of the OF is 1/6 and the remaining related to
the CVaR term, as 5/6.

The decision-maker aversion to long-term investment is characterized by the parameter, λ.
This parameter aims to countering or favoring the production of self-generated energy based on the
willingness to contract technology with high fixed costs and long-life span.

The objective function is defined in Equation (12), which minimizes the costs and risk, based on
β values.

minOF =
∑

w

[
πw × (CP

w + λ×CG + CC
w) + β×CVaR

]
(12)

5. Data Collection and Parameter Estimation

The electricity data explored in the work is from Iberian Operator database [7], over one year
(September 2018 to August 2019). The year considered is representative of the Iberian electricity market.
However, data screening was performed and 48 weeks is considered as a final sample. The seasonality
and daily market variability are shown in Figures 2 and 3.
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Along the day, the spot market prices follow a high variability, triggering a very high data volume.
To overcome this drawback, the hourly price values for the planning horizon over the 24 h in the
48 weeks, are averaged, as shown in Figure 2. The variability pattern in 24 h, denotes amplitude of
12.97 €, with its maximum of 61.02 € at 10 p.m. and a minimum of 48.23 € at 5 a.m. Considering
this pattern, the data are categorized according to their average spot price, in three categories: valley,
shoulder and peak hours. Those categories are associated to low, medium and high price, respectively.
The valley hours define the hours with an average market value lower than 54 €, the peak define the
hours with an average market value higher than 58 € and the shoulder define the hours with values in
between. For 24 h, the following sets are defined:

Valley = {1, 2, 3, 4, 5, 6, 16}
Shoulder = {0, 7, 14, 15, 17, 18, 23}
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Peak == {8, 9, 10, 11, 12, 13, 19, 20, 21, 22}
Other relevant data are to define the price for each day of the week, denoted from now on as,

weekly day price. The weekly day price pattern results from the difference between the average price
of each day of the week over the 48 weeks and the year average, shown in Figure 3. The weekly day
pattern has its highest value on Tuesday and the lowest on Saturday and Sunday. This pattern is
directly related with the electricity spot market prices variability.

5.1. Scenario Generation

In the scenario generation, a representative period of three weeks data are used to characterize
the scenario: optimistic, pessimistic and expected week, as shown in Table 1.

Table 1. Details of the weeks chosen to help in the scenario generation.

Pessimistic Week Expected Week Optimistic Week

Maximum (€/MWh) 81.82 62.25 48.37
Minimum (€/MWh) 59.31 45.00 32.00
Average (€/MWh) 73.20 55.58 40.92

Standard Deviation 2.91 4.02 4.27

The weeks with the highest and lowest average price are chosen as pessimistic and optimistic
scenario, respectively. The expected week takes the median of the average value.

In scenario tree, Figure 1, three branches leave each node, optimistic, expected and pessimistic,
leading to 27 scenarios, for the three weeks. The probabilities for each scenario are based on the
probability assigned to each branch over the 3 weeks. The scenarios’ probability characterization
used the 48 weeks data, to consider yearly seasonality. Using the three weeks average values as a
benchmark, the remaining weeks of the data set were divided in 3 sets, based on their average value.
Each week is assigned to the set (characterized pessimist, average optimist), which as the closest value
to the benchmark. The probabilities of each week shown in Table 2, is the ration between the numbers
of weeks in each set by the total set of 48 weeks. Finally, each scenario probability is obtained using the
conditional probability and assuming independence between the events (multiplying the probabilities
associated to the three branches leading to that scenario).

Table 2. Benchmark Probabilities characterization: pessimist, expected and optimist.

Pessimistic Week Expected Week Optimistic Week

Probability 0.15 0.58 0.27

5.2. Forward Contract Data

The forward contract explores two different contracts: weekly and 3-week. Beyond that, a map
of contract is also considered, Table 3. The contracts will either set on the 24 h of the weeks they
are settled on, denoted as base contracts or on one of the 3 sets of hours of the day, defined above:
valley, shoulder and peak, denoted from now one as time-of-day contracts. Therefore 16 contracts are
considered, as shown in Table 3.

Table 3. Map of contracts.

Valley Shoulder Peak Base

Week 1 Contract 1 Contract 2 Contract 3 Contract 4
Week 2 Contract 5 Contract 6 Contract 7 Contract 8
Week 3 Contract 9 Contract 10 Contract 11 Contract 12
3-week Contract 13 Contract 14 Contract 15 Contract 16
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Each contract is characterized in 4 blocks based on electricity prices and its electricity availability
(maximum and minimum). Each block has 20 MWh available, which adds up to 80 MWh of electricity
available per hour in each contract. If a contract is signed, it must have a minimum output of 20 MWh
per hour.

The prices of the blocks are assigned to represent the behavior of a price-maker, similar methodology
was followed by [50].

The prices assigned to the block 2 contract, is used as a baseline. Its values were defined considering
the average price of each of these times in the spot market (e.g., the valley contracts have the lowest
price per energy unit and peak contracts the highest). The prices in blocks 3 and 4 are increased by 5%
and 10%, respectively, using the baseline. The baseline price was decreased by 2% to characterize the
block 1. The price of the base contracts set is obtained through the prices of the valley, shoulder and
peak contracts and the fraction of the day they represent. The resulting prices are shown in Table 4.

Table 4. Weekly forward contract unit price (€/MWh).

Block 1 Block 2 Block 3 Block 4

Valley 56.84 58 60.90 63.80
Shoulder 58.80 60 63 66

Peak 60.76 62 65.10 68.20
Base 59.05 60.25 63.26 66.28

The price of the second block for the 3-week contracts is determined by decreasing the values of
the corresponding weekly contract in 2%. The price for the other blocks is calculated following the
same methodology as the one used in the weekly contracts.

5.3. Self-Generation Facility

The self-generation case explores the implementation of a single renewable electricity source,
with a levelized electricity price to characterize the fixed and variable costs. The levelized electricity
price assumes the price per energy unit produced throughout the entire expected lifetime of the
equipment. This way, it is possible to put the long-term investment into perspective, enabling a
comparison with the electricity spot market prices, which allows an analysis of trade-off of the two.

Data were taken from study conducted by Fraunhofer Institute for Solar Energy Systems [51].
The installation of a PV technology is assumed. The levelized price is 35.5 €/MWh. This will be the
price for the first block of energy. The following blocks’ prices are obtained by subsequently increasing
in 10% the value of the original block, shown in Table 5. This method represents other costs that arise as
the investment grows, e.g., cost of space for the PV panels. Each block has 15 MWh of energy available
and there is a minimum of 15 MWh, if this source is chosen.

Table 5. Price of each block of the self-generation unit (€/MWh).

Block 1 Block 2 Block 3 Block 4

Price Unit 35.5 39.5 42.6 63.8

6. Case Studies

To illustrate and explore the model’s applicability of portfolio optimization three case studies
are considered: case a) explores constant demand profile; case b) a cyclic daily demand comparison
between nominal operating starting time and its optimization; case c) explores the weekly day price
pattern over the two situations: with and without daily order optimization. To highlight each
portfolio characteristics, different electricity demand profile is used. The confidence level used is 0.95.
The general algebraic modeling system (GAMS) is used and the problems solved with an Intel Core i7
processor, until optimality is reached.
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6.1. Case a): Constand Demand Profile

The portfolio characterization requires the aversion factor to long-term investment characterization.
A constant hourly demand of 200 MWh, throughout the planning horizon is used.

6.1.1. Aversion Factor to Long-Term Generation Investment Value Characterization

The long-term generation investment is capital intensive and by nature has risk associated,
requiring a deeper analysis for its characterization. The aversion factor value for long-term generation
investment (λ) penalize or favor the use of self-generation facility. To diminish the impact this
investment could have, considering a short-term decision-making model, this factor is multiplied by
the cost obtained from the levelized electricity price, to become competitive between other options.
Furthermore, a deeper analysis is undertake to define the λ value considering different risk postures,
as shown in Table 6, for different values of β and λ.

Table 6. Weekly forward contract unit price (€/MWh).

β

λ 0 1 1.5 2 5

1 60 60 60 60 60
1.3 30 45 52.65 60 60
1.6 0 0 0 15 15
2 0 0 0 0 0

Table 6 illustrates how sensitive is the value of λ facing different risk postures. The cases where λ
takes the extreme values (1 and 2) illustrate: on the former the electricity contracted from this source
is at the maximum available value for all the values of risk aversion (60 €/MWh), which became
very attractive compared to the other options; on the latter, however no self-generation investment is
suggested for any risk posture, reflecting that the price is not competitive at all (0 €/MWh). For the
cases where the factor is 1.3 and 1.6, the electricity generation are sensitive to different values of risk
aversion. However, the model has higher sensitivity with λ =1.3, showing higher variability (from 30
to 60), which enables the self-generation facility more attractive to different risk postures. Therefore,
the value of λ = 1.3 is selected to characterize the long-term generation investment.

6.1.2. Expected Cost vs. Conditional Value-at-Risk

To define the non-dominated solution and its Pareto front characterization, a trade-off between
the conditional value-at-risk (CVaR) and the expected cost is explored, as shown in Table 7.

Table 7. Expect cost and conditional value-at-risk (CVaR) trade-off for different risk postures (million €).

β Expected Cost CVaR

0 5.386 7.009
1 5.649 5.874

1.5 5.702 5.831
2 5.732 5.812
5 5.787 5.788

The solution for β = 0 reached the lowest expected cost and highest CVaR, while β = 5 reached
lowest CVaR and highest expected cost. For β = 0 the OF term regarding risk is not taken into account,
considering only expect cost minimization, while β = 5 the OF prioritizes the risk reduction. Hence,
a reduction of the CVaR comes with an increase of the expected cost. It is relevant to notice β = 1,
decrease 16.2% in the CVaR with a minor increase of the expected cost (4.88%).
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6.1.3. Portfolio Evolution

The portfolio characterization makes use of different electricity supply options, with different
prices and, different risk levels. The portfolio evolution for the 3 weeks contract over several levels of
β is characterized in Figure 4 (figures are made by resorting the expected value of procurement over
all scenarios). As Figure 4 illustrates the use of four types of electricity supply options: day-ahead
market, self-production, weekly contracts and 3-week contracts in the portfolio characterization.
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One of the most noticeable result is how the weekly and 3-week contracts increases as the value of
β increases, reflecting conservative behavior (risk aversion) of the maker-decision, handling risk-free
decision, triggering the increase of expected cost. Simultaneously, the self-generated electricity portfolio
also increases, based on the same behavior of the decision-maker. The 3-week contracts are always
higher than the weekly contracts. However, the electricity procured from the day-ahead market drops
massively as the risk aversion increases, going from an 85% share, to 0% when β = 5.

6.1.4. Forward Contracts

Forward contracts and self-generation facility are able to hedge risk from the spot market.
However, the risk behavior has impact in the selection of which and type of contacts for the portfolio.
Specifically, for the forward contracts is necessary to analyze, how the contracting is developed from
time-of-day contracts base, to weekly contracts, as the risk aversion increases.

The characterization of the several scenarios of forward contract over the sets, valley, shoulder
and peak is shown in Table 8. The results show as risk aversion increases, higher energy contracted for
peak and shoulder hours increase compared with valley. Since this latter have higher spot market
price, so contracts are done to hedge this risk.
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Table 8. Forward contract: valley, shoulder and peak hour statistics (MWh).

β Hours Average forward Contracted
Energy per Week

Energy from
Time-of-Day

Energy
from Base

0
Valley

Shoulder 0 0 0
Peak

1
Valley 78.9 25.6

Shoulder 121.4 68.1 53.3
Peak 118.5 65.1

1.5
Valley 86.8 25.7

Shoulder 135.4 74.2 61.2
Peak 132.3 71.1

5
Valley

Shoulder 140 70.3 69.7
Peak

Although, the behavior over the three sets are the similar for β = 0 and β = 5, none and the
maximum forward contract, respectively. However, the forward contract increases as the risk aversion
increases (β = 5). For the same values of β, the contact over shoulder and peak hours decrease, with its
minimum in the base contact, while the valley denotes higher variability.

The electricity from forward contracts during the valley hours comes mainly from base contracts,
while for shoulder and peak hours comes mainly from average forward energy/week and time-of-day
contracts rather than from base. This behavior is justified due the price of the base contract is defined
based on the prices of the 3 times of day. Although, it may be advantageous, since it can represent a
lower price option in peak and shoulder hours, triggering an overpay in valley hours.

6.2. Case b): Cyclic Daily Demand over Optimized and Non-Optimized Starting Time

This case study follows a cyclic daily demand (24-h cycle) of a multipurpose batch plant [52]
campaign production, which repeats itself continuously for the campaign duration. As previously
identified and characterized the spot market prices seasonality over the hour of the day (Valley,
shoulder and peak hours) is explored in this context.

The aim is to analyze how the facility can take advantage from daily seasonality. Case b) is split
into two smaller situations: the starting time of the cycle is optimized vs. non optimize (the starting
time is defined at hour 0 of the series). The comparison and results illustrate the impact on the trade-off

between expect cost vs. risk. A mixed demand pattern is used for the cycle, with minimum, maximum
and average consumption of 170 MWh, of 250 MWh and of 200 MWh, respectively.

6.2.1. Starting Time Formulation

To formulate this behavior the aforementioned formulation is extended, with equations
Equations (13) and (14). Equation (13) guarantees that only one starting time is chosen, while
Equation (14) selects the right schedule to be used considering the energy balance Equation (8).

An extended formulation considers a starting times index, θ and parameter for the demand,
where the demand profiles along the hours, t, is shifted for all the possible starting times θ, NDt, θ.
The binary variable became sθ=1, if θ is the starting time chosen, 0 otherwise. The parameter Dd,t of
Equation (8) became Dt.

Nθ∑
θ

ss
θ = 1. (13)

Nθ∑
θ

(ss
θ ×NDt,θ) = Dt ∀t ∈ Nt (14)
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6.2.2. Expect Cost vs. CVaR Comparison

The Pareto front characterization and its results for with and without starting time optimization
are shows in Figure 5 and Table 9, respectively.
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Table 9. Stating time optimization vs. non-optimization.

Starting-Time Optimization Non Optimization

β
Expected Cost

(Million €)
CVaR

(Million €)
Starting

Time
Expected Cost

(Million €)
CVaR

(Million €)

0 5.364 6.994 7 h 5.414 7.025
1 5.576 5.925 6 h 5.644 5.940

1.5 5.643 5.878 8 h 5.703 5.893
2 5.689 5.851 8 h 5.720 5.884
5 5.705 5.846 8 h 5.746 5.873

The starting time optimization has a lower expected cost than the non-optimized, for the same
values of β, as shown in Figure 5. However, the trade-off between the expected cost and the risk shows
the starting time varies depending on the risk behavior. If the decision-maker takes β = 0, the starting
time is 7 h. However, for β = 1, the optimized starting time is 6 h and, for the remains values of β = 1.5,
2, 5 is 8 h. As in previous analyzes, the expected cost increases in both scenarios with the increment of
the risk aversion factor and the CVaR decreases.

6.2.3. Procurement Analyses: Valley, Shoulder and Peak Hours

The portfolio characterization over the three sets (valley, shoulder and peak) and its comparison
between with or without start time optimization is shown in Table 10. Analyzing the pattern from the
sets in non-optimized versus optimized shows: an increase of energy procurement in the valley set in
the optimized rather and non-optimized and, an opposite behavior decreases in the shoulder and peak
sets. This behavior is justified by the starting time optimization avoids matching the hours with higher
demand (peak hours) and rather takes advantage from the valley hours. This resulted on a drop of
12.24% in the electricity procurement in peak hours, on average from every value of β and an increase
of 26.5% in the valley hours.
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Table 10. Total procurement on valley, shoulder and peak hours for different risk aversion factors with
and without starting-time optimization.

Non-Optimization (MWh) Optimization (MWh)

β Valley Shoulder Peak Valley Shoulder Peak

0 26,040 30,240 44,520 33,180 28,560 39,060
1 26,040 30,240 44,532 33,180 28,140 39,480

1.5 26,040 30,240 44,532 32,340 29,820 38,640
2 26,040 30,240 44,535 32,340 29,832 38,640
5 25,373 29,573 43,583 33,007 30,505 39,593

6.3. Case c): Weekly Optimization

The third case explores the price pattern of each day of the week, week seasonality (Figure 3).
The scheduling of activities is optimized according the trade-off between minimization of expected
cost and risk. However, this case uses a representative sample of seven days of energy demand, denote
further on, as series, which are allocated to an optimal day of the week.

Seven representative days of demand are randomly selected to be scheduled within the week,
defined in Table 11. Based on the 24 h information of these days the demand profiles are characterized.
Its statistics are shown in Table 11. The 6th series has the highest variability (CV=18.2%), while the 1th
the lowest. Being the 7th and the 4th series with the highest maximum values. The schedule defined is
repeated for the 3 weeks under study.

Table 11. Statistics on 7-day demand profiles (MWh).

1st 2nd 3rd 4th 5th 6th 7th

Mean 180 220 250 270 250 220 250
Std. Dev. 10 20 20 20 30 40 40

Max 193 256 296 318 324 305 334
Min 263 181 211 228 130 136 185

CV (%) 5.55 9.09 8.00 7.40 12 18.2 16.0

6.3.1. Weekly Optimization

For the weekly optimization and based on aforementioned formulation, the formulation is
extended with constraints Equations (15)–(17). Equation (15) guarantees that only one-day demand
profile (from Table 11) is assigned to each day of the week, through the binary ss

d,λ. Equation (16)
guarantees that all day demand profiles are assigned to a day of the week. Equation (17) defines the
final demand profile.

A new index, γ, is used as an alias of d; the parameter, EEDt,γ, characterize the 7-day profiles.
The demand profile, Dd,t, is obtained in Equation (17) to be used in Equation (8).∑

γ

ss
d,λ = 1 ∀d ∈ Nd (15)

∑
d

ss
d,λ = 1 ∀γ ∈ Nγ (16)

Dd,t =
∑
γ

ss
d,γ × EEDt,γ ∀d ∈ Nd, ∀ t ∈ Nt (17)

6.3.2. Pareto Front Characterization

The Pareto front is defined for with and without order optimization, followed by the day order
scheduling analysis, in Figure 6 and Table 12, respectively.
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Table 12. Day order scheduling results.

β Mon Tue Wed Thu Fri Sat Sun

0 2nd 1st 6th 5th 3rd 7th 4th
1 3rd 6th 1st 2nd 5th 7th 4th

1.5 2nd 6th 1st 3rd 5th 7th 4th
2 6th 5th 1st 3rd 2nd 7th 4th
5 4th 5th 1st 7th 2nd 6th 3rd

Both situations have a similar behavior. The expected cost increases and the CVaR decreases
with the increase aversion towards risk (β). However, the order optimization allows more favorable
trade-offs between the two objective functions, for every β.

6.3.3. Day Order Scheduling Analysis

The day order optimization considers how the price seasonality of the day of the week (Figure 3),
impact in the energy purchase, based on data from Table 11. The analysis is performed for several
aversion to risk patterns and the results are shown in Table 2.

Figure 3 identifies the days with lower electricity prices are: Sunday, Wednesday and Saturday,
respectively. The result of the weekly day optimization in Table 12, shows the impact the daily price
seasonality has. All risk aversion values, except β = 5, the day-series for Saturday and Sunday are
the 7th and 4th, respectively. These results from the 4th and 7th series have the highest and second
higher mean value, being assigned to the days with the lowers electricity price, Sunday and Saturday,
respectively. The remaining days of the week, from Monday to Friday, shows a difference price pattern,
although less relevant (Figure 3), where the days’ difference to average was very similar.

7. Conclusions

This work proposes a mixed integer linear formulation for the energy portfolio optimization
problem for large consumer in a buyer perspective. A multi-objective approach is explored to deploy
several options to the decision-maker based on its risk pattern. A weighted sum formulation is
presented for the expected cost and risk minimization. The binary variables define the procurement
decisions and the continuous variables define the electricity procured, cost of each electricity supplier
options, as well as the value of the CVaR.

The Iberian electricity market is considered as a case study. The data analysis and screening
are developed and are highlighted and used in the cases studies for price seasonality, weekly and
daily bases. The electricity supply options explored for the portfolio characterization are pool market,
forward contract and self-generation.

The portfolio characterization and the decision-maker behavior towards to risk is developed
exploring three cases. Case a) uses constant demand profile; case b) explores manufacturing aspect,
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considering a cyclic daily demand and a comparison between nominal operating starting time and its
optimization is developed, while case c) explores the weekly day price seasonality. In all cases different
values of the risk aversion factor are explored.

Some practical guidelines may be drawn from the results. From case a) the pool market
procurement reveals more suitable for decision-maker with pattern taker to risk, while risk averted
decision-maker prefer forward contracts and self-generated energy. These different postures lead to a
higher CVaR and lower expected cost for the risk taker decision-maker and lower CVaR and higher
expected cost for the risk averted decision-maker.

The seasonality effect is explored in cases b) and c). The results from case b), which consider
the hour seasonality, avoid the high price hours and favor the low-price hours. In case c) the
week seasonality is considered and the tendency is favoring low price days rather than high price.
The advantage from using the hour price seasonality (case b) shows better results in terms of objective
than case c). As a guideline for the decision-maker, the demand allocation considering the hours of the
day, reveled more effective in price reduction than solely paying attention to the day of the week.

Three aspects should be considered as further work. The self-generated energy should be explored
not only from the buyers, but also the seller perspective. The use of converting temporarily the electricity
in some other form, taking advantage from the low price, so as to be used in the short term. In addition,
data analytics approaches, to deal with more detailed information and real-time optimization.
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