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Abstract: Energy consumption forecasting is of prime importance for the restructured environment
of energy management in the electricity market. Accurate energy consumption forecasting is essential
for efficient energy management in the smart grid (SG); however, the energy consumption pattern is
non-linear with a high level of uncertainty and volatility. Forecasting such complex patterns requires
accurate and fast forecasting models. In this paper, a novel hybrid electrical energy consumption
forecasting model is proposed based on a deep learning model known as factored conditional
restricted Boltzmann machine (FCRBM). The deep learning-based FCRBM model uses a rectified
linear unit (ReLU) activation function and a multivariate autoregressive technique for the network
training. The proposed model predicts future electrical energy consumption for efficient energy
management in the SG. The proposed model is a novel hybrid model comprising four modules:
(i) data processing and features selection module, (ii) deep learning-based FCRBM forecasting
module, (iii) genetic wind driven optimization (GWDO) algorithm-based optimization module,
and (iv) utilization module. The proposed hybrid model, called FS-FCRBM-GWDO, is tested and
evaluated on real power grid data of USA in terms of four performance metrics: mean absolute
percentage deviation (MAPD), variance, correlation coefficient, and convergence rate. Simulation
results validate that the proposed hybrid FS-FCRBM-GWDO model has superior performance than
existing models such as accurate fast converging short-term load forecasting (AFC-STLF) model,
mutual information-modified enhanced differential evolution algorithm-artificial neural network
(MI-mEDE-ANN)-based model, features selection-ANN (FS-ANN)-based model, and Bi-level model,
in terms of forecast accuracy and convergence rate.
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1. Introduction

Electrical energy consumption forecasting is imperative for efficient energy management in
the supply and demand sector of the smart grid (SG) [1]. It is significant in the supply side due to
two reasons: (i) lack of viable planning of resources to efficiently cope with the consumers’ demand,
and (ii) energy is an irreversible process and cannot be stored. Precise and accurate electric load forecast
facilitates efficient load dispatch in power utilities and transaction markets. On the other hand, it is
indefensible in the demand side, because electric load forecasting optimizes the energy management
system and equipment use. Moreover, it also plays an imperative role in ensuring secure operations of
the SG [2]. Energy theft is one of the major threats faced by the SG. It takes place when an adversary
compromises the smart meters to send tampered consumption readings, which could lead to economic
losses. Electrical energy consumption forecasting can be used in identifying possibly compromised
smart meters whose behaviors significantly deviate from the forecasted ones. However, the accuracy
of electrical energy consumption forecasting cannot often cope with the societal requirements. It is
influenced by stochastic and uncertain influencing factors, such as human social activities, temperature,
irradiance weather parameters, environmental parameters, economic development, climate change,
and state policies. Consequently, it is challenging to improve the accuracy of forecasting networks.
It is unrealistic or cumbersome to consider all the influencing factors [3]. Thus, it is feasible to improve
the forecast accuracy by developing a model that takes into account the key parameters.

Over the past few decades, numerous methods have been developed and employed for accurate
electrical energy consumption forecasting, such as obsolete time series models including Kalman
filters [4], exponential smoothing [5], grey forecasting model (GM) [6], regression models [7,8], and
autoregressive integrated moving average (ARIMA) models [9]. The existing forecasting models are
capable of forecasting electrical energy consumption patterns. However, the accuracy is not good enough
due to the networks’ inherent limitations. The linear regressors are knowledge-based and are suitable
for linear problems, while their performance would compromise when solving non-linear problems.
The ARIMA models consider current and historical data points to forecast and ignore other influencing
factors. The GM model is suitable to handle only exponential growth trend problems. To overcome the
limitations accompanied by the discussed models, in recent years, intelligent models have been proposed
for forecasting such as artificial neural network (ANN) [10,11], machine learning [12], radial basis fuzzy
logic [13], and expert systems [14]. Though intelligent methods outperform classical statistical methods,
ANN based models stuck in local minima, radial basis logic methods are radially invertible, and expert
systems need knowledge databases. Thus, hybrid forecasting models are developed, where individual
modules are integrated. For instance, in [15], authors proposed an integrated framework of support
vector machine (SVM) and modified enhanced differential evaluation (mEDE) algorithm. The authors
in [16] developed a hybrid model using support vector regression (SVR) and chaotic particle swarm
optimization (CPSO) algorithm. In [17], the authors designed a hybrid model of SVM and artificial
intelligence (AI) for load forecasting. The hybrid and integrated models are superior than single and
individual module-based models in terms of forecast accuracy.

As discussed, ANN-based models are widely used for forecasting; however, these models are
trapped into local minima due to the restriction on their generalization ability and therefore, cannot
select abstracted features from the given sample set. A deep learning model, known as factored
conditional restricted Boltzmann machine (FCRBM), overcomes these drawbacks and reduces the error
metric to improve the forecast accuracy. FCRBM employs learning principles with ReLU to increase
generalization in the training process and generate accurate forecasts. Because of the deeper layer
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layout, attractive features, and empirical performance, FCRBM has become one of the most popular
and promising forecasting models [18]. Therefore, in this paper, a deep learning FCRBM is used in the
forecaster module for forecasting. The irrelevant and redundant information directly affects accuracy
and convergence rate. Therefore, a novel concept of the candidates’ interaction is introduced in addition
to the redundancy and relevancy filters. The proposed genetic wind driven optimization (GWDO)
algorithm [19,20] is chosen, among other algorithms, due to its fast convergence and powerful ability to
search an optimal solution [21]. GWDO optimizes the thresholds of these filters and feeds the optimized
thresholds to the feature selection module for feature selection. This, in turn, improves the accuracy.

In this article, a novel hybrid model is proposed, which is an integrated framework of data
processing and feature selection technique, a deep learning FCRBM model, and our proposed GWDO
algorithm (FS-FCRBM-GWDO). The performance of the proposed FS-FCRBM-GWDO model is validated
by comparing it with existing models in terms of three performance metrics: mean absolute percentage
deviation (MAPD), variance, and correlation. The major contributions are described as follows:

• A novel hybrid FS-FCRBM-GWDO forecast model is proposed that integrates the merits of
individual techniques to enhance both metrics: (i) accuracy (MAPD, variance, and correlation),
and (ii) convergence rate. The proposed model is capable of mapping the input space to the
feature space to learn the stochastic and complex patterns of electrical energy consumption.

• The proposed FS-FCRBM-GWDO model considers both the exogenous influencing parameters
and the historical electrical energy consumption pattern.

• A novel concept of feature interaction is developed in addition to relevancy and redundancy
filters of feature selection techniques to make the feature selection process more effective.

• The ReLU and multivariate autoregressive algorithms are integrated with FCRBM to improve
both accuracy and convergence rate, which are not present in the existing models.

• The GWDO algorithm is proposed for the optimization module to further reduce error in the
forecasting results returned from the FCRBM based forecaster by fine-tuning the control parameters.

The remainder of the manuscript is organized as follows: The recent and relevant work is
demonstrated in Section 2. In Section 3, the proposed hybrid FS-FCRBM-GWDO model is described.
The results of our simulations are presented and discussed in Section 4. Finally, in Section 5, the
manuscript is concluded with potential future directions. Abbreviations and notations used in this
work are listed at the end of the paper.

2. Related Work

Electrical energy consumption forecasting strategies have been proposed for the past many years
and employed in the SG for efficient energy management. These strategies are categorized into four
classes according to time resolution [22]. The first class is about very short-term energy consumption
forecasting [23], which corresponds to the energy consumption forecasting of time resolution from
minutes to hours. The second class is about short-term electrical energy consumption forecasting
of time resolution from days to a week [24]. The third class is the medium-term electrical energy
consumption forecasting of time resolution from one week to a year [25]. The fourth class is about the
long-term electrical energy consumption forecasting of time resolution for more than a year [26].

Classical statistical methods and intelligent methods are commonly used for electrical energy
consumption forecasting. ANN is widely used as an intrinsic system and as a part of the hybrid system
for electric load forecasting. In [27], Kohonen’s self-organizing map is used for the day ahead electric
load forecasting in Spain. The described strategy comprises three stages. The daily load profile is treated
as a time series and is stored in the neurons; After the training phase, the arrangement of neurons
is such that the load profile given to the neuron is similar to the neighboring neurons. During the
second phase, the data samples are presented to the network and wining neurons are extracted. Then,
the data samples of the winning neurons are divided into two parts. The first one corresponds to
the input profile and the second one corresponds to the forecasted profile. The effect of exogenous
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parameters on accuracy is also considered. It is also reported that the percentage error varied from
1.84% to 2.33%. A differential polynomial neural network for short-term load forecasting is described
in [28]. The network is a multi-layer network and by its decomposition, partial differential equations are
solved. The twenty-four hours ahead load is forecasted using the historical electric load data of Canada.
The forecasted energy consumption pattern deviates from the target pattern by an error of 1.56%.
A short-term load forecasting method based on weather information is proposed in [29]. The power
system is divided into subnetworks based on weather information. Separate models are developed for
each subnetwork. The abstracted features are selected form large data sets using cosine distance method.
The models are based on ANN, ARIMA, and GM to forecast the future load. A hybrid forecast strategy
is proposed in [30] based on an intelligent algorithm. The strategy includes a novel feature selection
technique and a complex forecast engine. A novel features selection technique selects appropriate
features that are fed into the forecast engine. The forecast engine is two-staged and is implemented
on Reglet and Elman neural network. The intelligent algorithm tunes the adjustable parameters of the
forecast engine for improving accuracy along with a reasonable convergence rate. The performance of
the described model is evaluated by comparing it with the benchmark models. A deep learning-based
forecasting framework with appliances energy consumption sequence is proposed in [31]. The accuracy
is notably improved by incorporating appliances consumption sequences in addition to the deep neural
network. An integrated framework of the forecaster module based on deep learning and optimization
module based on the heuristic algorithm is proposed for electric load forecasting [32].

The authors in [33], proposed an Elman neural network-based forecast engine to predict the
future load in the SG. The weights and biases for this network are optimally adjusted by an intelligent
algorithm to obtain accurate forecasting results. The authors proposed a novel forecasting model
that could generalize the standard ARMAX model to Hilbert space [34]. The proposed model has a
linear regression structure and uses functional variables for operation. The considered variables are
autoregressive terms, moving average terms, and exogenous parameters. The functional variables are
integral operators whose kernels are modeled as sigmoidal function. The parameters of the sigmoidal
function are optimized using the quasi-newton algorithm. The model is validated on the daily price
profile of the Spanish and German electricity market. However, accuracy is enhanced due to the
optimization module integration, which increases the execution time. In [35], authors reveal the effect
of data integrity attacks on the accuracy of four forecasting models: SVR, multiple linear regression,
ANN, and fuzzy interaction regression. The data integrity attacks attempt to damage the performance
of various forecasting models and have a significant impact on the resilience of the power system.

In the aforementioned recent and relevant work, authors mostly focused on ANN-based models
for electrical energy consumption prediction due to its capability for handling the nonlinear electrical
energy consumption pattern. However, the ANN-based forecasters perform well for small data but
do not behave well for large data in terms of accuracy. In this regard, in the literature, either the
optimization module is integrated with ANN-based forecaster or deep learning models are adopted to
improve the forecast accuracy. However, the optimization module and deep learning models cause
high execution time overhead while improving the accuracy. The recent and relevant research in terms
of techniques, objectives, datasets, limitations, and critical remarks is summarized in Table 1.
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Table 1. Brief review of recent and relevant work in terms of techniques, objectives, datasets, limitations,
and critical remarks.

Techniques Objectives Datasets Limitations Critical Remarks

ARIMA and exponential
smoothing [23]

Forecast accuracy
improvement for power
generation scheduling in
real-time.

National grid and
Great Britain

This model is useful for only
very short term load
forecasting.

The prime focus of authors is
on accuracy improvements
for univariate methods while
the accuracy improvement of
univariate is not sufficient.

ANN and self-organizing
map [27]

To build a decision
support system for
commercializing
company bidding.

Spain power grid

This model achieves
moderate accuracy at the
cost of slow convergence
rate (high execution time).

Meteorological and load data
is used in this model and
other exogenous parameters
are ignored that significantly
affect the forecast accuracy.

Differential polynomial
neural network [28]

Reduction of generation
cost and spinning reserve
capacity.

Canada power
grid

Unnecessary and overload
prediction leads to large
reserves and high cost.

Slow convergence and less
accuracy is observed in this
model, which have a direct
impact on cost and spinning
reserve.

ANN, ARIMA,
and GM [29]

To improve the accuracy
of bulk power system.

China Fujian
Province power
grid

The system becomes more
complex by dividing the
system into subnetworks.

Improvement in accuracy by
using large exogenous
parameters at the cost of
high complexity and slow
convergence rate.

Reglet and Elman neural
network [30]

Accuracy and capability
improvement for
efficient operation of the
power system.

Australian energy
market
commission

The model has large
complexity.

This model has a large
complexity that directly
impacts the convergence
rate.

Long term short term
memory [31]

Forecast accuracy
improvement for
household scheduling.

Canadian
household

The system model has slow
convergence due to the
incorporation of household
appliances sequence.

The accuracy is notably
improved using appliances
consumption sequence,
however, the convergence
rate is compromised.

SVR [33]

Improvement of load
forecasting accuracy for
minimizing cost and
energy imbalance.

Irish commission
for energy
regulation (ICER)

The model has a slow
convergence speed.

The hyperparameters are
tuned by the intelligent
techniques which improved
accuracy at the expense of
increased execution time.

ARIMAX and
quasi-newton
algorithm [34]

Improvement of forecast
accuracy for system
operators and the market
agent.

Spanish and
German energy
market

The convergence speed is
compromised.

They improved accuracy is
improved due to
incorporating of sigmoid
function. However, the
computational time is
increased.

ANN, SVR, and fuzzy
interaction
regression [35]

Improvement of
resilience against attacks
on data integrity.

Global energy
forecasting
competition
(GEFC) 2012

The resilience is improved at
increased time complexity.

The power system resiliency
is enhanced at the expense of
higher complexity of
modeling.

MI, ANN,
and mEDE [36,37]

Improvement of
convergence rate and
accuracy for US EKPC
and Dayton grid.

PJM market The complexity of the model
is increased.

The developed model
outperforms for small
datasize and worst perform
for large datasize.

ANN-based hybrid
models [38,39]

Microgrid accuracy
improvement. PJM market

The convergence rate is
compromised while
improving forecast accuracy.

The ANN forecaster
improved the accuracy,
which degrade the execution
time.

3. The Proposed Deep Learning-Based Hybrid Model

A novel hybrid FS-FCRBM-GWDO model for electrical energy consumption forecasting is
proposed, as illustrated in Figure 1, which is an extension of our earlier conference paper [40].
The proposed hybrid model aims to improve forecast accuracy, convergence speed, and scalability.
FS-FCRBM-GWDO is composed of four modules: (i) data processing and feature selection module,
(ii) FCRBM-based forecasting module, (iii) GWDO-based optimization module, and (iv) utilization
module. Both historical energy consumption pattern data and exogenous parameters (wind speed,
dew point, temperature, and humidity) are given as input to the data processing and features selection
module. At first, the received input data is normalized and passed through the relevancy, redundancy,
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and interaction phases. This module aims to clean the data and select abstractive features for the
forecast process by maximizing relevancy, minimizing redundancy, and maximizing features interaction.
The selected features are fed into the FCRBM-based forecasting module. The purpose is to predict the
future electrical energy consumption pattern of the FE power grid. The forecasted energy consumption
is fed into the optimization module based on the GWDO algorithm. The objective is to enhance forecast
accuracy, which is very important for efficient energy management. Finally, the forecasted energy
consumption pattern is fed into the utilization module to use the predicted energy consumption pattern
for efficient energy management in the SG. The detailed demonstration is as follows:
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Figure 1. Schematic diagram of the proposed hybrid FS-FCRBM-GWDO framework for electrical
energy consumption forecasting.

3.1. Data Pre-Processing and Feature Processing Module

The input dataset has both historical energy consumption pattern and exogenous parameters
(wind speed, dew point, temperature, and humidity) is feed into the pre-processing and feature
processing phase. First, the dataset is passed through the cleansing phase to recover missing and not a
number (NAN) values with average or median values of the previous day. Now, cleansed data is feed

Figure 1. Schematic diagram of the proposed hybrid FS-FCRBM-GWDO framework for electrical
energy consumption forecasting.

3.1. Data Processing and Features Selection Module

The input dataset that has both historical energy consumption pattern and exogenous parameters
(wind speed, dew point, temperature, and humidity) is fed for pre-processing and feature selection. First,
the dataset is passed through the cleansing phase to recover missing and not a number (NAN) values
with average or median values of the previous day. Then, the cleansed data is fed to the normalization
operation using Equation (1) to make data entries within the limit of the activation function:

Norm =
X− µ(X)

std(X),
(1)

where Norm is the normalized data, X is the input data, and std is the standard deviation. The input data
(X) includes electrical energy consumption data pattern (P(h, d)), dew point (D(h, d)), temperature
(T(h, d)), and humidity (H(h, d)) parameters. The hour h and day d represents particular hour and
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day, respectively, in historical data. The wind speed, dew point, temperature, and humidity are called
exogenous parameters. Energy demand shows the correlation with variation in exogenous parameters.
For example, increase or decrease in the external temperature induces changes in energy demand. Same
applies to the other parameters. The FS technique has irrelevancy, redundancy filters, and features
interaction phase in order to remove irrelevant, redundant, and nonconstructive information due
to three reasons: (i) redundant information is not useful and causes execution overhead during the
training phase, (ii) irrelevant features do not provide useful information and act as an outlier, and (iii)
interacting features provide useful information to enhance electrical energy consumption forecast
accuracy. The relevancy, redundancy filters, and feature interaction phases are discussed as follows:

3.1.1. Relevancy Filter Operation

For feature selection relevancy operation is of great importance because input features and target
variables are correlated in order to select key features. Many techniques for relevancy measurement are
used [41] among feature selection techniques. The chosen FS technique measures mutual information
to ensure how closely the two variables x and y are correlated. The FS technique observes y by studying
x and vice versa. For variables x and y, the FS is represented by I(x; y) and is defined for individual
(p(x), p(y)) probability distribution as well as for joint probability distribution (p(x, y)). Suppose that

S = {x1, x2, x3, . . . , xM}, (2)

where x1, x2, x3, . . . , xM are input variables, S is input variables set and the target variable is y.
The mutual information between input xi and target y variables are checked; when the mutual
information between two variables is large enough, they are closely related. In addition, the relevance
of input xi variable with target y variable is computed as follows:

D(xi) = I(xi; y), (3)

where D(xi) denotes the relevance of the input variable with the target variable.

3.1.2. Redundancy Filter Operation

Several authors in [42–44] developed redundancy filter operation to check the redundancy among
input variables because redundant information complicates the process and increases the convergence
speed. The redundancy evaluation is performed among the input candidates based on mutual
information. The purpose is to discard redundant features. The authors in [41] stated that closely related
input variables degrade the feature selection process. This is because two input variables have more
common information and very little redundant information about the target variable. Thus, a variable
with little redundant information regarding the target variable may be counted incorrectly as highly
redundant and is filtered out, while it may be the abstractive feature for the proposed mode. In order to
solve such problems, an interaction gain based redundancy measure (Ig) is introduced in [39] as:

RM(xi, xs) = Ig(xi; xs; y)
= I[(xi, xs); y]− I(xi; xs)− I(xs; y),

(4)

where RM(xi, xs) is the redundancy measure, xi, xs are candidate inputs, and y is the target variable.
Ig can be mathematically modeled in terms of joint and individual entropy as:

Ig(xi; xs; y) = H(xi, xs) + H(xi, y) + H(xs, y)
−H(xi)− H(xs)− H(y)− H(xi, xs, y),

(5)

where H(xi), H(xs), and H(y) denote individual entropy while H(xi, xs), H(xi, y), H(xs, y), and
H(xi, xs, y) denote joint entropy.
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3.1.3. Features Interaction Operation Session

In [39], the authors proposed irrelevancy and redundancy filters to discard irrelevant and
redundant features and keep the desired features for further processing. However, the limitation
filter-based method is that it discards individual features that are irrelevant; though these irrelevant
features become relevant when used together with other input features. In this regard, in this work,
a FS strategy is introduced, which takes the concept interaction in addition to the redundancy and
irrelevancy filters. When two input variables xi and xs have redundant features around target y,
then the joint mutual information measure of input variable with y will be less than the sum of
individual mutual information measures. Hence, it results in negative value according to Equation (4),
which denotes redundant features xi and xs for the model. If the value of Equation (4) is absolute,
it shows the amount of redundancy. On the other side, if xi and xs input variables interact with the
target variable y, their interaction causes joint (xi and xs) mutual information with target y greater than
the sum of individual mutual information. Thus, the positive value of Equation (4) shows interacting
features and its positive and absolute value depicts the amount of interaction. Consequently, for
interaction and redundancy, Equation (4) can be defined in terms of interaction gain (Ig) as follows:

RM(xi, xs) =

{
{Ig(xi; xs; y), if Ig(xi; xs; y) < 0,
0 otherwise

(6)

In(xi, xs) =

{
Ig(xi; xs; y), if Ig(xi; xs; y) > 0,
0 otherwise

(7)

where Equation (6) is a modified version of Equation (4) for redundancy measure, and Equation (7) is
for interaction measure. The computation of interaction measure IM(xi) for each candidate feature is
as follows:

IM(xi) = Maximize
xj∈S−{xi}

{
In(xi, xj)

}
(8)

3.1.4. The Modified Feature Selection Technique

The purpose of this modified feature selection technique is to maximize both relevancy and
interaction, and minimize redundancy based on the filters introduced in the preceding Section 3.1.
Our modified feature selection technique also considers candidates interaction, while the existing
techniques [39,41–44] only consider relevancy and the redundancy filters. Figure 2 shows the flow
chart of our modified feature selection technique. The detailed description and step-by-step procedure
is as follows:

Step 1: Input data including the candidate set of inputs and target value y are given as input to
the technique.

Step 2: Pre-filtering phase is demonstrated as follows:

• The blocks enclosed in the dotted box in Figure 2 belong to the pre-filtering phase. In this phase,
the relevancy and interaction measures are calculated, and candidate inputs are ranked based on
the calculated measure.

• The information content can be measured from its individual information and the gained
information using a modified version of Equation (4) mentioned in the flow chart in Figure 2.
The function f (, ) is a monotonically increasing function, and α is a weight factor that weights
the relevancy versus interaction measure. It can be adjusted and fine-tuned subject to the
forecasting problem.

• The selected candidate inputs of the pre-filtering phase (Sp) are sorted in descending order based
on the information content.

Step 3: Filtering phase individually depicted in Figure 3 and is described as follows:
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Step 1: Input data including candidate set of inputs and target value y are given as input to the
technique.
Step 2: Pre-filtering phase is demonstrated as:

• The blocks enclosed in the dotted box are pre-filtering phase. In this phase, the relevancy and
interaction measures are calculated, and candidate inputs are ranked based on the calculated
measure.

• The information content can be measured from its individual information and the gained
information using a modified version of Equation 4 mentioned in the flow chart 2. The function
f (, ) is a monotonically increasing function, and α is a weight factor that weights the relevancy
versus interaction measure. It can be adjusted and fine-tuned subjected to the forecasting problem.

• The selected candidate inputs of the pre-filtering phase (Sp) are sorted in descending order based
on the information content.

Figure 2. Flow chart of the modified feature selection technique.

• The output of the pre-filtering phase is fed as an input to the filtering phase. In this step,
the pre-selected features are partitioned into selected (Ss) and non-selected (Sn) features as shown
in Figure 2. The redundancy measure is calculated by Equation (9) as:

R(
p
xi) = Minimize

p
xi∈

p
S

{
RM(

p
xi,

p
xj)

}
, (9)

where R(
p
xi) indicates the redundancy measure for each candidate input

p
xi ∈

p
S.
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• The information value of candidate features is evaluated based on three measures: redundancy,
relevancy, and interaction, which is mathematically described as:

V(
p
xi) = g

{
D(

p
xi), IM(

p
xi), R(

p
xi)

}

= D(
p
xi) + α.IM(

p
xi) + β.R(

p
xi), α, β > 0,

(10)

where V(
p
xi) denotes information value, g (, ) indicates a monotonically increasing linear function,

and β denotes adjustable parameter, respectively.
• Decision about the information value is taken as follows:

If V(
p
xi) ≥ Rth →

S
S =

S
S+{ p

xi}

If V(
p
xi) ≤ Rth →

n
S =

n
S+{ p

xi},
(11)

where Rth is the redundancy threshold. The information value is compared with the redundancy
threshold; if it is greater than or equal to the redundancy threshold, then it will be put in the set of

selected features list (
s
S), otherwise it will be added in the set of non-selected features (

n
S).

• The set of selected and non-selected features are sorted in descending order according to their
information value and their union is also taken. The selected and non-selected feature sets and
their union are given as input to the post-filtering stage, which is individually depicted in Figure 4.
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• The output of the pre-filtering phase is fed as an input to the filtering phase. In this step, the
pre-selected features are partitioned into selected (Ss) and non-selected (Sn) features as shown in
Figure 2. The redundancy measure is calculated by Equation 9 as:

R(
p
xi) = Minimize

p
xi∈

p
S

{
RM(

p
xi,

p
xj)

}
, (9)

where R(
p
xi) indicates the redundancy measure for each candidate input

p
xi ∈

p
S.

• The information value of candidate features is evaluated based on three measures: redundancy,
relevancy, and interaction, which is mathematically described as:

V(
p
xi) = g

{
D(

p
xi), IM(

p
xi), R(

p
xi)

}

= D(
p
xi) + α.IM(

p
xi) + β.R(

p
xi), α, β > 0,

(10)

where V(
p
xi) denotes information value, g (, ) indicates a monotonically increasing linear function,

and β denotes adjustable parameter, respectively.
• Decision about the information value is taken as follows: where Rth is the redundancy threshold.

The information value is compared with the redundancy threshold, if the information value is

Figure 3. Flow chart of the filtering phase.
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Step 4: In the post-filtering phase, the selected (
s
S) and non-selected inputs are modified and

the information value V(.) is updated. The updated information values are evaluated again using
Equation (11) to transfer candidate inputs either to selected or non-selected features.

Step 5: The algorithm is terminated if the non-selected features set
n
S becomes null. The

pre-filtering, filtering, and post-filtering phases are executed in each iteration and the execution
never traps into an infinite loop. Finally, the selected features are fed into the forecaster module.
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Figure 4. Flow chart of the post-filtering stage.

3.2. A Deep Learning FCRBM Model Based Forecasting Module

This module aims to devise a deep learning FCRBM-based forecaster, which is enabled through
training to forecast future electrical energy consumption patterns. The discussion in Section 2 is
ended with the conclusion that all forecasters in the literature can forecast non-linear electrical energy
consumption patterns. Thus, a deep learning based FCRBM model among the intelligent forecasters
is chosen because: (i) it forecasts non-linear electrical energy consumption pattern with reasonable
accuracy and convergence speed, and (ii) it has scalable nature and has improved performance with
scalability. The deep neural network FCRBM has a four layer structure with a particular number
of neurons: (i) visible layer, (ii) hidden layer, (iii) style layer, and (iv) history layer. The FCRBM
model is activated with the ReLU activation function and multivariate autoregressive algorithm to
forecast the electrical energy consumption pattern. Both the ReLU activation function and multivariate
autoregressive algorithm are chosen due to their fast convergence speed and they can overcome network
issues such as vanishing gradient and overfitting. The ReLU is defined by Equation (12) as follows:

f (x) = max(0, x)

f (x)

{
1 if x ≥ 0
0 otherwise.

(12)

ReLU enables the FCRBM model to account for non-linearities and interactions. During the training
process, to update weight and bias vectors, several algorithms are available in the literature, such as



Energies 2020, 13, 2244 12 of 25

multivariate autoregressive algorithm [37], Levenberg-Marquardt algorithm [45], gradient descent and
back-propagation [46]. Thus, among the training algorithms, a multivariate autoregressive algorithm
is chosen because of its fast convergence speed and improved performance. The features selected in
the data processing phase {S1, S2, S3, . . . Sn} are fed into the FCRBM-based forecaster module, where
the first three-year data samples are used for the network training and the last one-year data samples
are used for testing. The aim is to enable the deep learning based FCRBM model through a training
process to forecast future electrical energy consumption patterns. The pictorial view of the training and
learning process of the FCRBM model is illustrated in Figure 5. The FCRBM-based forecaster returns
error signal, weights and biases, which are tuned by multivariate autoregressive algorithm [47]. This
error signal returned from the forecaster module becomes the objective function of the optimization
module for further improving the accuracy by optimizing the error signal.

FCRBM 

Training process

Real load

Initial forecast

Error signal 

Input 

Final forecast 

FCRBM 

Training process

Real load

Initial forecast

Error signal 

Input 

Final forecast 

FCRBM 

Training process

Real load

Initial forecast

Error signal 

Input 

Final forecast 

Figure 5. Training and learning process of the deep learning based FCRBM model with ReLU and
multivariate autoregressive algorithm.

3.3. The Proposed GWDO Algorithm-Based Optimization Module

The preceding deep learning FCRBM-based module returns the future forecasted electrical energy
consumption pattern with some error, which is minimum according to the capability of the FCRBM
model with ReLU and multivariate autoregressive algorithm. In order to further minimize error in
the forecasted energy consumption pattern, the output of the FCRBM-based forecaster module is fed
into our proposed GWDO-based optimization module. The aim of our proposed algorithm-based
optimization module is to further minimize error in the forecasted energy consumption pattern. Thus,
the optimization module takes error minimization as an objective function, which is modeled as follows:

Minimize
Rth , Ith , Ci

Error (x) ∀ x ∈ {h, d}, (13)

where Rth , Ith, and Ci are redundancy, irrelevancy thresholds, and candidates interaction, respectively.
The proposed GWDO-based module optimizes Rth , Ith, and Ci and these parameters are fed to the
data processing module. The feature selection technique in the data processing module uses optimized
values of Rth , Ith thresholds, and Ci for optimal features selection. Joining the optimization module
with the forecaster module increases the forecasting accuracy, while the convergence rate is degraded.
The integration of optimization module with the forecaster module is usually done for such applications
where the focus of the authors is on accuracy rather than convergence speed. To tune hyperparameters
of forecaster, various parameter tuning techniques in the literature are proposed by authors such as
heuristic techniques, convex programming, quadratic programming, linear and non-linear programming.
Linear programming is not adopted in this study because the problem under consideration is non-linear.
The non-linear programming are ignored due their increased execution time. The heuristic and
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convex optimization algorithms are rejected due to slow and premature convergence, respectively.
The mEDE [37], enhanced differential evaluation (EDE) [48], and differential evaluation (DE) [45]
among the evolutionary algorithms are refused due to the problems such as low precision, slow
convergence, and getting stuck in local optimum [49], respectively. To remedy the problems of existing
tuning algorithms, the GWDO algorithm is proposed to perform tuning of hyperparameters with fast
converging speed. The proposed algorithm is a hybrid of WDO [21] and GA [50]. This hybrid algorithm
is beneficial because it uses the key characteristics of both the algorithms. The WDO has fast convergence
speed and GA enables a diversity of population. The forecasted electrical energy consumption pattern is
fed into the utilization module to perform efficient energy management, planning, operation, and unit
commitment in the SG.

3.4. Utilization Module for Forecasting Results

The forecasted electrical energy consumption pattern is used for efficient energy management,
long term planning and development of SG that need transmission and generation equipment,
right of ways, state permits financing, substation construction, and power lines (distribution and
transmission lines). Similarly, in [51], the authors used the potential of solar and wind energy mix for
joint optimization of investment and operation of the microgrid. Moreover, the forecasting results
based on the predicted period are classified into four categories: (i) very short-term, (ii) short-term, (iii)
medium-term, and (iv) long-term. The very short-term forecasting results have prediction horizon
from seconds/minutes to hours and are used for flow control and day-to-day operations in the SG.
The short-term electrical energy consumption forecasting results have forecasting horizon from hours
to weeks and are used for evaluation of net interchange, scheduling functions, unit commitment,
and system security analysis. Moreover, forecasting results are vital for managing generation and
demand and energy management in the electricity market of the SG. The medium forecasting
results cover weeks to months’ prediction horizon and are used by the electrical power company for
maintenance planning, fuel scheduling, and hydro reservoir management. These forecasting results
are also used for power grid capacity planning, maintenance scheduling, and power grid ongoing
operations to facilitate efficient management of energy resources. The long-term forecasting results
horizon is typically more than one year and is vital for major strategic decisions, such as market
environmental factors, opportunities, development, infrastructure planning, and internal resources to
be taken within the electricity market. Thus, electric power companies need to develop the forecasting
model that can identify forecasting problems and based on this, predict for one of the four forecasting
time horizons. These forecasting models provide strong support to the electric power companies to
use forecasting results to achieve the said objectives.

4. Simulations Results, Performance Evaluation, and Discussion

To test and evaluate the efficacy of the proposed FS-FCRBM-GWDO framework, simulations are
conducted in MATLAB 2018, which is installed on a laptop having specifications of Intel(R) Corei3-CPU
@2.4GHz, and 6GB RAM with Microsoft Windows 10. FS-FCRBM-GWDO is evaluated in comparison
with existing frameworks: MI-mEDE-ANN [36], AFC-STLF [37], Bi-level [45], and FS-ANN [52]. These
existing hybrid frameworks are chosen as benchmark frameworks due to the architectural resemblance
with the proposed FS-FCRBM-GWDO framework. However, the FS-FCRBM-GWDO framework and
the selected benchmark frameworks have different complexities because the focus of the authors is on
different objectives such as accuracy, convergence rate, and stability. FS-FCRBM-GWDO is tested on
real-time FE power grid hourly energy consumption data of USA. The dataset is taken from publicly
available PJM electricity market [53]. The same dataset is also considered in [37]. The monthly electrical
energy consumption data of the FE power grid of USA for the years 2014–2017 is depicted in Figure 6.
The data is for four years. The 80% data is used to train the FCRBM deep learning model and 20%
data is used for testing the FCRBM model. The control parameters used in simulations are listed in
Table 2 and can be justified from [37]. The control parameters listed in Table 2 are kept the same for



Energies 2020, 13, 2244 14 of 25

both the proposed and benchmark models subjected to a fair comparative analysis. The proposed
FS-FCRBM-GWDO framework is evaluated in terms of two performance metrics: (i) accuracy (MAPD,
variance (σ2), correlation coefficient (R)), and (ii) convergence speed (execution time, convergence
rate). The mathematical modeling of the performance metrics is as follows:

MAPD =

(
1
τ

τ

∑
t=1

|Rt − Ft|
|Rt|

)
× 100, (14)

σ2 =
1
τ

τ

∑
t=1

(Rt − Ft), (15)

R =
E{(Rt − µR)(Ft − µF)}√

∑ (Rt − µR)
2 ×∑ (Ft − µF)

2
, (16)

where Rt and Ft represent the real and forecasted load at time t, and µR and µF represent the mean of
real and forecasted electrical energy consumption, respectively. Equation (14) represents the MAPD
performance metric, Equation (15) represents the variance σ2 metric, and Equation (16) represents the
correlation coefficient metric, respectively.

The first three performance metrics (Equations (14)–(16)) are for accuracy analysis, which is
calculated as:

• Accuracy = 100-MAPD(x).

The convergence speed is defined in terms of execution time and convergence rate as:

• Convergence speed corresponds to the execution time and the convergence rate: (i) execution time
is the time taken by the forecasting model to return future electrical energy consumption pattern;
and (ii) convergence rate is the rate at which the model converges to a particular epoch where its
performance saturates and the error does not reduce any further with increase in the number of
epochs. The forecasting models that have low execution time and converge at earlier epochs are
considered fast. In this research, the execution time is measured in seconds, and the convergence
rate is measured in terms of number of epochs.

A detailed discussion on the proposed hybrid FS-FCRBM-GWDO framework and benchmark
frameworks in terms of performance metrics is as follows:

Table 2. Simulation parameters.

Control Parameters Value

Hidden layer 1
Neurons in hidden 10
Output layer 1
Number of output neurons 1
Number of epochs 100
Number of iterations 100
Learning rate 0.0019
Momentum 0.6
Initial weight 0.1
Initial bias 0
Max 0.9
Min 0.1
Decision variables 2
Population size 24
Delay of weight 0.0002
Historical load data 4 years
Exogenous parameters 4 years
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Figure 6. FE power grid electrical energy consumption on monthly basis for years 2014–2017.

4.1. Proposed Model Learning Evaluation

A learning evaluation compares model performance testing and training data samples across
some epochs to ensure whether the model is memorizing data or learning from data. The learning
curve is bad when the model has high variance and bias, which indicates that the model is memorizing
data rather than learning. The model with high variance and bias leads to reduce accuracy and poor
generalization. The learning curve for a deep learning model FCRBM is good due to two reasons: (i)
there is no variance and bias because the difference between training and testing errors is minimum,
and (ii) both testing and training error decreases with increase in the number of epochs. The learning
curve of deep learning model FCRBM is depicted in Figure 7. At the start the MAPD is high when
the number of epochs is zero, it indicates the model is not well trained. When the number of epochs
increases the MAPD decreases and converged to a minimum acceptable value, that point is called
saturation point, and it indicates the model is well trained.

Figure 6. FE power grid electrical energy consumption on monthly basis for the years 2014–2017.

4.1. Proposed Model’s Learning Evaluation

A learning evaluation compares a model’s performance for testing and training data samples
across some epochs to ensure whether the model is memorizing data or learning from data.
The learning curve is bad when the model has high variance and bias, which indicates that the
model is memorizing data rather than learning. The model with high variance and bias leads to
reduced accuracy and poor generalization. The learning curve for the deep learning FCRBM model
is good due to two reasons: (i) there is no variance and bias because the difference between training
and testing errors is minimum, and (ii) both testing and training errors decrease with increase in the
number of epochs. The learning curve of FCRBM model is depicted in Figure 7. At the start, the MAPD
is high when the number of epochs is zero, which indicates that the model is not well-trained. When
the number of epochs increases, the MAPD decreases and converges to a minimum acceptable value.
This point is called the saturation point and it indicates that the model is well-trained.
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Figure 7. Learning evaluation of deep learning FCRBM model on testing and training datasets in terms
of MAPD for 100 epochs.
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4.2. Day Ahead Electrical Energy Consumption Forecasting With Hour Resolution

The evaluation of day ahead forecasted electrical energy consumption in the FE power grid of
the proposed FS-FCRBM-GWDO framework in comparison to the benchmark frameworks such as
FS-ANN, AFC-STLF, Bi-level, and MI-mEDE-ANN is depicted in Figure 8. Moreover, the accuracy
analysis in terms of MAPD, variance, and correlation coefficient for the proposed and existing models
are listed in Table 3. The results clearly indicate that the proposed FS-FCRBM-GWDO framework
forecasts the day-ahead electrical energy consumption of the FE power grid. All the forecasters
(proposed and benchmark) are capable of learning the non-linearities of historical energy consumption
time series data. The non-linear forecasting ability is due to the use of non-linear activation functions
such as tangent hyperbolic (Tanh), sigmoidal, and ReLU. The benchmark frameworks (FS-ANN,
AFC-STLF, Bi-level, and MI-mEDE-ANN) use the sigmoid activation function, whereas the proposed
hybrid FS-FCRBM-GWDO model uses ReLU and multivariate autoregressive algorithm because they
have fast converging speed and solve the problems of vanishing gradient and overfitting. Figure 8
illustrates that the energy consumption pattern forecasted by the proposed framework closely follows
the actual energy consumption pattern as compared to the benchmark models (FS-ANN, AFC-STLF,
Bi-level, and MI-mEDE-ANN). It is listed in Table 3 that the MAPD of the proposed FS-FCRBM-GWDO
framework is 1.10%, whereas the MAPD of AFC-STLF, MI-mEDE-ANN, FS-ANN, and Bi-level is 2.1%,
2.2%, 3.6%, 2.6% respectively. Thus, it is obvious from Figure 8 and Table 3 that the proposed hybrid
FS-FCRBM-GWDO model performs better than the benchmark frameworks in terms of accuracy.

Table 3. FE power grid February results of leap year 2016: comparative performance evaluation of the
proposed and existing models in terms of MAPD, variance, and correlation coefficient.

Electrical Energy Consumption Forecasting Models

Day FS-FCRBM-GWDO MI-mEDE-ANN AFC-STLF Bi-Level FS-ANN

MAPD σ2 R MAPD σ2 R MAPD σ2 R MAPD σ2 R MAPD σ2 R

1 1.12 1.13 0.70 2.20 1.55 0.50 2.30 1.60 0.52 2.60 1.75 0.44 3.30 1.90 0.44
2 1.10 0.98 0.68 2.10 1.45 0.58 2.15 1.55 0.56 2.80 1.73 0.46 3.35 1.80 0.36
3 1.09 1.10 0.71 2.50 1.30 0.51 2.10 1.48 0.53 2.75 1.65 0.43 3.20 1.83 0.33
4 1.03 0.97 0.80 2.02 1.20 0.50 2.40 1.49 0.54 2.85 1.75 0.44 3.40 1.85 0.34
5 1.50 1.09 0.65 2.10 1.15 0.55 2.25 1.37 0.55 2.87 1.65 0.45 3.15 1.78 0.35
6 1.30 1.07 0.75 2.30 1.34 0.65 2.15 1.35 0.69 2.89 1.69 0.59 3.25 1.95 0.49
7 1.24 1.04 0.69 2.11 1.55 0.60 2.10 1.60 0.65 2.75 1.68 0.44 3.67 1.80 0.34
8 1.23 1.02 0.70 2.15 1.45 0.50 2.09 1.65 0.55 2.70 1.77 0.55 3.55 1.83 0.45
9 1.08 1.05 0.80 2.35 1.36 0.55 2.50 1.66 0.56 2.65 1.71 0.56 3.45 1.79 0.46

10 1.05 0.99 0.79 2.40 1.39 0.69 2.44 1.67 0.60 2.63 1.78 0.65 3.10 1.87 0.55
11 1.15 1.10 0.87 2.01 1.45 0.77 2.35 1.55 0.75 2.70 1.65 0.35 3.15 1.85 0.45
12 1.25 1.11 0.65 2.06 1.50 0.55 2.12 1.58 0.55 2.60 1.66 0.45 3.59 1.77 0.35
13 1.10 0.96 0.81 2.10 1.55 0.71 2.20 1.43 0.75 2.63 1.69 0.25 3.33 1.69 0.35
14 1.12 0.99 0.79 2.12 1.37 0.75 2.23 1.47 0.70 2.36 1.75 0.40 3.39 1.59 0.30
15 1.10 1.03 0.78 2.13 1.46 0.78 2.27 1.30 0.73 2.50 1.59 0.43 3.54 1.89 0.53
16 1.18 1.05 0.79 2.00 1.39 0.70 2.13 1.35 0.78 2.58 1.67 0.58 3.23 1.88 0.48
17 1.19 1.08 0.80 2.13 1.48 0.60 2.35 1.55 0.65 2.56 1.70 0.55 3.28 1.79 0.50
18 1.21 1.09 0.85 2.19 1.29 0.85 2.10 1.36 0.64 2.65 1.72 0.54 3.92 1.85 0.44
19 1.25 1.12 0.90 2.16 1.36 0.50 2.14 1.55 0.59 2.54 1.58 0.59 3.53 1.75 0.44
20 1.44 0.95 0.67 2.17 1.47 0.60 2.15 1.45 0.48 2.50 1.65 0.58 3.22 1.69 0.48
21 1.39 0.90 0.71 2.34 1.51 0.58 2.19 1.54 0.58 2.59 1.72 0.48 3.27 1.88 0.38
22 1.17 0.99 0.75 2.10 1.50 0.75 2.10 1.40 0.59 2.80 1.63 0.49 3.60 1.80 0.39
23 1.15 1.01 0.86 2.30 1.45 0.64 2.13 1.34 0.39 2.75 1.65 0.59 3.23 1.71 0.49
24 1.08 1.07 0.87 2.01 1.34 0.73 2.24 1.60 0.58 2.65 1.53 0.48 3.89 1.74 0.38
26 1.05 1.05 0.90 2.00 1.56 0.09 2.26 1.61 0.49 2.85 1.59 0.59 3.65 1.63 0.49
27 1.03 1.10 0.88 2.10 1.40 0.58 2.10 1.48 0.77 2.55 1.68 0.57 3.83 1.80 0.47
28 1.25 1.11 0.76 2.09 1.35 0.56 2.15 1.50 0.58 2.60 1.75 0.48 3.35 1.79 0.38
29 1.27 1.13 0.77 2.08 1.32 0.55 2.13 1.53 0.59 2.62 1.76 0.49 3.36 1.78 0.39

Avg. 1.10 1.03 0.79 2.20 1.25 0.65 2.10 1.35 0.60 2.60 1.72 0.55 3.60 1.80 0.45
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Figure 8. Day ahead electrical energy consumption forecasting on FE power grid data with hour resolution.

4.3. Electrical Energy Consumption Forecasting for Week and Month Ahead of Time Horizon with
Hour Resolution

The week ahead electrical energy consumption forecasting with hour resolution for the proposed
and existing models of the FE power grid is depicted in Figure 9. It is important to note that the proposed
hybrid FS-FCRBM-GWDO model has fast, stable, and accurate electrical energy consumption forecasting
as compared to the benchmark frameworks (FS-ANN, AFC-STLF, Bi-level, and MI-mEDE-ANN).
FS-FCRBM-GWDO-based forecasted energy consumption curve closely follows the actual energy
consumption, which is illustrated in the zoomed box of Figure 9. The statistical results of accuracy in
terms of MAPD for the proposed hybrid FS-FCRBM-GWDO model is 1.12%, whereas the MAPD of
FS-ANN is 3.4%, MI-mEDE-ANN is 2.23%, Bi-level is 2.5%, and AFC-STLF is 2.0%. The reason for
this superior performance of our proposed model is due to the use of deep learning based FCRBM
model with ReLU, multivariate autoregressive algorithm, and GWDO algorithm-based optimization
module. Similarly, the month ahead of electrical energy consumption forecasting with hour resolution
is illustrated in Figure 10 and Table 3. The proposed FS-FCRBM-GWDO model-based month ahead
forecasting curve closely follows the target curve, which ensures the superior performance of the
proposed model as compared to the benchmark models. The performance evaluation of the proposed
FS-FCRBM-GWDO model and the benchmark models for the leap year 2016 with the month resolution
in terms of MAPD, variance, and correlation coefficient is presented in Table 4.

Table 4. FE power grid results of the leap year 2016: comparative performance analysis of the
FS-FCRBM-GWDO and existing models in terms of MAPD, correlation coefficient and variance.

Electrical Energy Consumption Forecasting Models

Month FS-FCRBM-GWDO MI-mEDE-ANN AFC-STLF Bi-Level FS-ANN

MAPD σ2 R MAPD σ2 R MAPD σ2 R MAPD σ2 R MAPD σ2 R

1 1.10 1.03 0.78 2.13 1.46 0.78 2.27 1.30 0.73 2.50 1.59 0.43 3.54 1.89 0.53
2 1.44 0.95 0.67 2.17 1.47 0.60 2.15 1.45 0.48 2.50 1.65 0.58 3.22 1.69 0.48
3 1.25 1.11 0.65 2.06 1.50 0.55 2.12 1.58 0.55 2.60 1.66 0.45 3.59 1.77 0.35
4 1.03 0.97 0.80 2.02 1.20 0.50 2.40 1.49 0.54 2.85 1.75 0.44 3.40 1.85 0.34
5 1.19 1.08 0.80 2.13 1.48 0.60 2.35 1.55 0.65 2.56 1.70 0.55 3.28 1.79 0.50
6 1.15 1.01 0.86 2.30 1.45 0.64 2.13 1.34 0.39 2.75 1.65 0.59 3.23 1.71 0.49
7 1.24 1.04 0.69 2.11 1.55 0.60 2.10 1.60 0.65 2.75 1.68 0.44 3.67 1.80 0.34
8 1.23 1.02 0.70 2.15 1.45 0.50 2.09 1.65 0.55 2.70 1.77 0.55 3.55 1.83 0.45
9 1.25 1.11 0.65 2.06 1.50 0.55 2.12 1.58 0.55 2.60 1.66 0.45 3.59 1.77 0.35

10 1.18 1.05 0.79 2.00 1.39 0.70 2.13 1.35 0.78 2.58 1.67 0.58 3.23 1.88 0.48
11 1.15 1.10 0.87 2.01 1.45 0.77 2.35 1.55 0.75 2.70 1.65 0.35 3.15 1.85 0.45
12 1.21 1.09 0.85 2.19 1.29 0.85 2.10 1.36 0.64 2.65 1.72 0.54 3.92 1.85 0.44

Avg. 1.10 1.03 0.79 2.20 1.25 0.65 2.10 1.35 0.60 2.60 1.72 0.55 3.60 1.80 0.45
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Figure 9. Week ahead electrical energy consumption forecasting of FE power grid with hour resolution.
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Figure 10. Month ahead electrical energy consumption forecasting of FE power grid with hour resolution.

4.4. Performance Analysis of Proposed FS-FCRBM-GWDO Model in Terms of Convergence Speed and MAPD

The statistical evaluation of the accuracy, execution time, and convergence speed of the proposed
and benchmark models is depicted in Figures 11–13, respectively. The MAPD is a measure of
deviation of the predicted value from the actual value. The smaller MAPD indicates high accuracy
while the larger MAPD value represents the worst accuracy. The accuracy analysis in terms of
MAPD for the day ahead and week ahead time horizon is depicted in Figure 11a,b, respectively.
The MAPD of the proposed FS-FCRBM-GWDO model is 1.10%, whereas the MAPD values of FS-ANN,
AFC-STLF, MI-mEDE-ANN, and Bi-level are 3.6%, 2.23%, 2.2%, and 2.6%, respectively. From the above
performance evaluations and discussion, we come to the conclusion that a Bi-level model is better
than the FS-ANN model in terms of MAPD metrics. The reason for this accurate performance is the
integration of DE based optimization module with the forecaster module. However, the MAPD is
reduced by integrating the optimization module while the execution time is increased, as depicted in
Figure 13. The figure illustrates that the execution time increases from 20s to 95s with the integration
of the optimization module. Thus, we conclude that a tradeoff exists between the accuracy and the
convergence rate. Hence, the proposed hybrid FS-FCRBM-GWDO model comparatively reduces
the execution time because of the following reasons: (i) fast converging GWDO [20] is used for
optimization instead of EDE and mEDE [37,48], (ii) ReLU and multivariate autoregressive algorithm
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are used instead of sigmoidal activation function, (iii) the deep learning FCRBM model is used, which
is more effective than the simple ANN, (iv) the data pre-processing, i.e., cleansing and normalization
operation (see Equation (1)) is used, and (v) for feature selection, a novel concept of feature interaction
is introduced to redundancy and irrelevancy filters (see Section 3.1), while the benchmark models
only use mutual information-based redundancy and irrelevancy filters. These modifications are
devised in the benchmark models (MI-mEDE-ANN, AFC-STLF, and Bi-level), which lead to a reduced
execution time of 38s. Moreover, the accuracy of the proposed hybrid FS-FCRBM-GWDO model is also
improved compared to the benchmark models (FS-ANN, AFC-STLF, Bi-level, and MI-mEDE-ANN)
(See Figure 11). However, the proposed FS-FCRBM-GWDO framework takes more time to execute
as compared to FS-ANN due to the absence of the optimization module with the FS-ANN model
(See Figure 13).
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(b)
Figure 11. Accuracy analysis of the proposed hybrid FS-FCRBM-GWDO model and benchmark models
in terms of MPAD on FE power grid hourly load data. (a) Day ahead; (b) Week ahead.
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Figure 12. Execution time analysis of the proposed hybrid FS-FCRBM-GWDO model and benchmark
models on FE power grid hourly load data. (a) Day ahead; (b) Week ahead.

To show the fast convergence and effective searchability of the proposed hybrid
FS-FCRBM-GWDO model, the performance analysis in terms of convergence speed for 100 iterations
in comparison with benchmark models such as FS-ANN, Bi-level, AFC-STLF, and MI-mEDE-ANN, is
depicted in Figure 13. For all models (proposed and existing), the MAPD decreases as the number
of iterations increases. However, the proposed model converges around the 10th iteration, which
shows its fast convergence and effective searchability, while the benchmark models, FS-ANN, Bi-level,
AFC-STLF, and MI-mEDE-ANN, converge around 33th, 29th, 25th, and 21th, iterations, respectively.
Accordingly, the proposed GWDO algorithm can be a more appropriate approach when used for
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optimization in integrated frameworks. For the convergence analysis, just the MAPD performance
metric is depicted here for the proposed and existing models.
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Figure 13. Convergence speed analysis of the proposed hybrid FS-FCRBM-GWDO model and
benchmark models for 100 iterations on FE power grid hourly load data.

Analysis of the proposed hybrid FS-FCRBM-GWDO model and benchmark models such as
FS-ANN, Bi-level, AFC-STLF, and MI-mEDE-ANN in terms of cumulative distribution function
(CDF) of error is illustrated in Figure 14. FS-FCRBM-GWDO model is superior in terms of CDF as
compared to the existing models. The deep learning FCRBM model provides reliable forecasting
even in the highly uncertain situation because the layout of the deep layers can capture the key
features. Thus, our proposed FS-FCRBM-GWDO framework would be a better choice for the
distribution system operators for efficient and effective energy management of the SG. The overall
evaluation of the FS-FCRBM-GWDO framework and the existing frameworks such as FS-ANN, Bi-level,
AFC-ANN, and MI-mEDE-ANN in terms of computational complexity, execution time, convergence
rate, and accuracy is listed in Table 5. Thus, from the above simulation results, performance analysis,
and discussions, we come to the conclusion that the proposed hybrid FS-FCRBM-GWDO model
outperforms the benchmark models such as MI-mEDE-ANN [36], AFC-STLF [37], Bi-level [45],
and FS-ANN [52] in terms of convergence rate, accuracy, computational complexity, and execution time.

Table 5. Evaluation of the proposed FS-FCRBM-GWDO framework and the benchmark frameworks
such as FS-ANN, Bi-level, AFC-ANN, and MI-mEDE-ANN in terms of computational complexity,
execution time, convergence rate, and accuracy.

Performance Parameters Electrical Energy Consumption Forecasting Models

FS-ANN Bi-Level AFC-STLF MI-mEDE-ANN FS-FCRBM-GWDO

Computational complexity (level) Low High Moderate High Moderate
Convergence rate (epochs) 33th 29th 25th 21th 10th

Execution time (sec) 20 95 56 48 38
Accuracy (%) 96.4 97.4 97.9 97.8 98.9
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Figure 14. Evaluation of CDF in terms of MAPD for the proposed FS-FCRBM-GWDO model and
benchmark models on FE power grid hourly load data.

5. Conclusions

Electrical energy consumption forecasting is imperative for the decision-making activities of
the SG such as efficient use of available energy, operation planning, load scheduling, and contract
evaluation. In this regard, a novel hybrid electrical energy consumption forecasting model is proposed
to provide accurate and efficient forecasting with an affordable convergence rate. The proposed
model is an integrated framework of FS, FCRBM-based forecaster, and GWDO-based optimizer,
known as FS-FCRBM-GWDO. In the proposed model, a novel concept of features interaction is
developed in addition to relevancy and redundancy filters of the MI technique to select key features
for FCRBM-based forecaster. Keeping in view the non-linearity and complexity of the investigated
problem, a GWDO algorithm is proposed for the optimization module of the proposed model to
further improve accuracy with reasonable convergence of the forecasting results returned from the
FCRBM-based forecaster. The proposed FS-FCRBM-GWDO model is examined on FE power grid
data of USA in terms of MAPD, variance, correlation coefficient, and convergence rate. Simulation
results validated that the proposed FS-FCRBM-GWDO model achieved 98.9% accuracy, which is better
than the benchmark models, such as MI-mEDE-ANN (97.8%), AFC-STLF (97.9%), Bi-level (97.4%),
and FS-ANN (96.4%), respectively. The proposed model reduced the average execution time by
20.8%, 32.1%, and 60% when compared to MI-mEDE-ANN, AFC-STLF, and Bi-level, respectively. It is
concluded that our proposed FS-FCRBM-GWDO model outperformed benchmark electrical energy
consumption forecasting models in terms of both accuracy and convergence rate.

In the future, this work can be extended for energy management applications of smart cities by
integrating Internet of things (IoT) with data analytic models. Another future direction is the addition
of sensors with deep learning models to promote data analytic applications in the field of SG.
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Abbreviations

ARIMA Autoregressive integrated moving average
AFC-STLF Accurate fast converging short-term load forecasting
ANN Artificial neural network
AI Artificial intelligence
CPSO Chaotic particle swarm optimization
CDF Cumulative distribution function
DSM Demand side management
DE Differential evaluation
EDE Enhanced differential evaluation
FCRBM Factored conditional restricted Boltzmann machine
FFO Fruit fly optimization
FS Features selection
GWDO Genetic wind driven optimization algorithm
GA Genetic algorithm
GM Grey forecasting model
GEFC Global energy forecasting competition
ICER Irish commission for energy regulation
mEDE Modified enhanced differential evolution algorithm
MAPD Mean absolute percentage deviation
MI Mutual information
ReLU Rectified linear unit
RGNN Regression neural network
SVR Support vector regression
SVM Support vector machine
SG Smart grid
Tanh Tangent hyperbolic
WDO Wind driven optimization

Notations

β Adjustable parameter
R Correlation
Norm Normalized data
σ2 Variance
Ci Candidates interaction
D(h, d) Dew point
d Day
P(h, d) Electrical energy consumption data pattern
H() Entropy
(H(h, d)) Humidity
h Hour
X Input data
p(x), p(y) Individual probability destribution
Ig Interaction gain based redundancy measure
IM(xi) Interaction measure

V(
p
xi) Information value

Ith Irrelevancy threshold
p(x, y) Joint probability distribution
f (, ) Monotonically increasing function
I(x; y) Mutual information
g (, ) Monotonically increasing linear function
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Sn Non-selected features
D(xi) Relevance of input variable with the target variable
RM(xi, xs) Redundancy measure

R(
p
xi) Redundancy measure

Rth Redundancy threshold
f (x) Rectified linear unit
Sp Selected candidates in pre-filtering phase
Ss Selected features
S Set of input variables
T(h, d) Temperature
y Target variable
α Weight factor

References

1. Hafeez, G.; Alimgeer, K.S.; Wadud, Z.; Khan, I.; Usman, M.; Qazi, A.B.; Khan, F.A. An Innovative
Optimization Strategy for Efficient Energy Management with Day-ahead Demand Response Signal and
Energy Consumption Forecasting in Smart Grid using Artificial Neural Network. IEEE Access 2020.
[CrossRef]

2. Zhang, X.; Wang, J.; Zhang, K. Short-term electric load forecasting based on singular spectrum analysis and
support vector machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270–285.
[CrossRef]

3. Lin, C.; Chou, Li. A novel economy reflecting short-term load forecasting approach. Energy Convers. Manag.
2013, 65, 331–342. [CrossRef]

4. Al-Hamadi, H.M.; Soliman, S.A. Short-term electric load forecasting based on Kalman filtering algorithm
with moving window weather and load model. Electr. Power Syst. Res. 2004, 68, 47–59. [CrossRef]

5. Sudheer, G.; Suseelatha, A. Short term load forecasting using wavelet transform combined with Holt–Winters
and weighted nearest neighbor models. Int. J. Electr. Power Energy Syst. 2015, 64, 340–346. [CrossRef]

6. Akay, D.; Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey.
Energy 2007, 32, 1670–1675. [CrossRef]

7. Song, K.; Baek, Y.; Hong, D.H.; Jang, G. Short-term load forecasting for the holidays using fuzzy linear
regression method. IEEE Trans. Power Syst. 2005, 20, 96–101. [CrossRef]

8. Guo, Y.; Nazarian, E.; Ko, J.; Rajurkar, K. Hourly cooling load forecasting using time-indexed ARX models
with two-stage weighted least squares regression. Energy Convers. Manag. 2014, 80, 46–53. [CrossRef]

9. Felice, M.D.; Alessandri, A.; Catalano, F. Seasonal climate forecasts for medium-term electricity demand
forecasting. Appl. Energy 2015, 137, 435–444. [CrossRef]

10. Sousa, J.C.; Neves, L.P.; Jorge, H.M. Assessing the relevance of load profiling information in electrical load
forecasting based on neural network models. Int. J. Electr. Power Energy Syst. 2012, 40, 85–93. [CrossRef]

11. Mori, H.; Yuihara, A. Deterministic annealing clustering for ANN-based short-term load forecasting.
IEEE Trans. Power Syst. 2001, 16, 545–551. [CrossRef]

12. Zeng, N.; Zhang, H.; Liu, W.; Liang, J.; Alsaadi, F.E. A switching delayed PSO optimized extreme learning
machine for short-term load forecasting. Neurocomputing 2017, 240, 175–182. [CrossRef]

13. Xia, C.; Wang, J.; McMenemy, K. Short, medium and long term load forecasting model and virtual load
forecaster based on radial basis function neural networks. Int. J. Electr. Power Energy Syst. 2010, 32, 743–750.
[CrossRef]

14. Li, H.; Guo, S.; Li, C.; Sun, J. A hybrid annual power load forecasting model based on generalized regression
neural network with fruit fly optimization algorithm. Knowl.-Based Syst. 2013, 37, 378–387. [CrossRef]

15. Hafeez, G.; Alimgeer, K.S.; Qazi, A.B.; Khan, I.; Usman, M.; Khan, F.A.; Wadud, Z. A Hybrid Approach for
Energy Consumption Forecasting with a New Feature Engineering and Optimization Framework in Smart
Grid. IEEE Access 2020. [CrossRef]

16. Liu, N.; Tang, Q.; Zhang, J.; Fan, W.; Liu, J. A hybrid forecasting model with parameter optimization for
short-term load forecasting of micro-grids. Appl. Energy 2014, 129, 336–345. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2989316
http://dx.doi.org/10.1016/j.epsr.2017.01.035
http://dx.doi.org/10.1016/j.enconman.2012.08.001
http://dx.doi.org/10.1016/S0378-7796(03)00150-0
http://dx.doi.org/10.1016/j.ijepes.2014.07.043
http://dx.doi.org/10.1016/j.energy.2006.11.014
http://dx.doi.org/10.1109/TPWRS.2004.835632
http://dx.doi.org/10.1016/j.enconman.2013.12.060
http://dx.doi.org/10.1016/j.apenergy.2014.10.030
http://dx.doi.org/10.1016/j.ijepes.2012.02.008
http://dx.doi.org/10.1109/59.932293
http://dx.doi.org/10.1016/j.neucom.2017.01.090
http://dx.doi.org/10.1016/j.ijepes.2010.01.009
http://dx.doi.org/10.1016/j.knosys.2012.08.015
http://dx.doi.org/10.1109/ACCESS.2020.2985732
http://dx.doi.org/10.1016/j.apenergy.2014.05.023


Energies 2020, 13, 2244 24 of 25

17. Chen, Y.; Yang, Y.; Liu, C.; Li, C.; Li, L. A hybrid application algorithm based on the support vector machine
and artificial intelligence: An example of electric load forecasting. Appl. Math. Model. 2015, 39, 2617–2632.
[CrossRef]

18. Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy
consumption. Sustain. Energy Grids Networks 2016, 6, 91–99. [CrossRef]

19. Javaid, N.; Hafeez, G.; Iqbal, S.; Alrajeh, N.; Alabed, M.S.; Guizani, M. Energy efficient integration of
renewable energy sources in the smart grid for demand side management. IEEE Access 2018, 6, 77077–77096.
[CrossRef]

20. Hafeez, G.; Javaid, N.; Iqbal, S.; Khan, F. Optimal residential load scheduling under utility and rooftop
photovoltaic units. Energies 2018, 11, 611. [CrossRef]

21. Bayraktar, Z.; Komurcu, M.; Werner, D.H. Wind Driven Optimization (WDO): A novel nature-inspired
optimization algorithm and its application to electromagnetics. In Proceedings of the 2010 IEEE Antennas
and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4.

22. Hahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J.
Oper. Res. 2009, 199, 902–907. [CrossRef]

23. Taylor, J.W. An evaluation of methods for very short-term load forecasting using minute-by-minute British
data. Int. J. Forecast. 2008, 24, 645–658. [CrossRef]

24. De Felice, M.; Yao, X. Short-term load forecasting with neural network ensembles: A comparative study
[application notes]. IEEE Comput. Intell. Mag. 2011, 6, 47–56. [CrossRef]

25. Pedregal, D.J.; Trapero, J.R. Mid-term hourly electricity forecasting based on a multi-rate approach.
Energy Convers. Manag. 2010, 51, 105–111. [CrossRef]

26. Filik, Ü.B.; Gerek, Ö.N.; Kurban, M. A novel modeling approach for hourly forecasting of long-term electric
energy demand. Energy Convers. Manag. 2011, 52, 199–211. [CrossRef]

27. López, M.; Valero, S.; Senabre, C.; Aparicio, J.; Gabaldon, A. Application of SOM neural networks to
short-term load forecasting: The Spanish electricity market case study. Electr. Power Syst. Res. 2012, 91, 18–27.
[CrossRef]

28. Zjavka, L.; Snášel, V. Short-term power load forecasting with ordinary differential equation substitutions of
polynomial networks. Electr. Power Syst. Res. 2016, 137, 113–123. [CrossRef]

29. Liu, D.; Zeng, L.; Li, C.; Ma, K.; Chen, Y.; Cao, Y. A distributed short-term load forecasting method based on
local weather information. IEEE Syst. J. 2018, 12, 208–215. [CrossRef]

30. Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection
technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130–142.
[CrossRef]

31. Kong, W.; Dong, Z.Y.; Hill, D.J.; Luo, F.; Xu, Y. Short-term residential load forecasting based on resident
behaviour learning. IEEE Trans. Power Syst. 2018, 33, 1087–1088. [CrossRef]

32. Hafeez, G.; Alimgeer, K.S.; Khan, I. Electric Load Forecasting based on Deep Learning and Optimized by
Heuristic Algorithm in Smart Grid. Appl. Energy 2020, 306, 114915. [CrossRef]

33. Vrablecova, P.; Ezzeddine, A.B.; Rozinajová, V.; Šárik, S.; Sangaiah, A.K. Smart grid load forecasting using
online support vector regression. Comput. Electr. Eng. 2018, 65, 102–117. [CrossRef]

34. González, J.P.; Roque, A.M.S.; Perez, E.A. Forecasting functional time series with a new Hilbertian ARMAX
model: Application to electricity price forecasting. IEEE Trans. Power Syst. 2018, 33, 545–556. [CrossRef]

35. Luo, J.; Hong, T.; Fang, S. Benchmarking robustness of load forecasting models under data integrity attacks.
Int. J. Forecast. 2018, 34, 89–104. [CrossRef]

36. Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z. Short-Term Load Forecasting in Smart Grids:
An Intelligent Modular Approach. Energies 2019, 12, 164. [CrossRef]

37. Ahmad, A.; Javaid, N.; Guizani, M.; Alrajeh, N.; Khan, Z.A. An accurate and fast converging short-term load
forecasting model for industrial applications in a smart grid. IEEE Trans. Ind. Informatics 2017, 13, 2587–2596.
[CrossRef]

38. Abedinia, O.; Amjady, N.; Zareipour, H. A new feature selection technique for load and price forecast of
electrical power systems. IEEE Trans. Power Syst. 2017, 32, 62–74. [CrossRef]

39. Amjady, N.; Keynia, F. A new prediction strategy for price spike forecasting of day-ahead electricity markets.
Appl. Soft Comput. 2011, 11, 4246–4256. [CrossRef]

http://dx.doi.org/10.1016/j.apm.2014.10.065
http://dx.doi.org/10.1016/j.segan.2016.02.005
http://dx.doi.org/10.1109/ACCESS.2018.2866461
http://dx.doi.org/10.3390/en11030611
http://dx.doi.org/10.1016/j.ejor.2009.01.062
http://dx.doi.org/10.1016/j.ijforecast.2008.07.007
http://dx.doi.org/10.1109/MCI.2011.941590
http://dx.doi.org/10.1016/j.enconman.2009.08.028
http://dx.doi.org/10.1016/j.enconman.2010.06.059
http://dx.doi.org/10.1016/j.epsr.2012.04.009
http://dx.doi.org/10.1016/j.epsr.2016.04.003
http://dx.doi.org/10.1109/JSYST.2016.2594208
http://dx.doi.org/10.1016/j.energy.2018.07.088
http://dx.doi.org/10.1109/TPWRS.2017.2688178
http://dx.doi.org/10.1016/j.apenergy.2020.114915
http://dx.doi.org/10.1016/j.compeleceng.2017.07.006
http://dx.doi.org/10.1109/TPWRS.2017.2700287
http://dx.doi.org/10.1016/j.ijforecast.2017.08.004
http://dx.doi.org/10.3390/en12010164
http://dx.doi.org/10.1109/TII.2016.2638322
http://dx.doi.org/10.1109/TPWRS.2016.2556620
http://dx.doi.org/10.1016/j.asoc.2011.03.024


Energies 2020, 13, 2244 25 of 25

40. Hafeez, G.; Javaid, N.; Riaz, M.; Umar, K.; Iqbal, Z.; Ali, A. An Innovative Model Based on FCRBM for
Load Forecasting in the Smart Grid. In Proceedings of the International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing, Sydney, NSW, Australia, 3–5 July 2019; Springer: Cham,
Switzerland, 2019; pp. 49–62.

41. Kwak, N.; Choi, C. Input feature selection for classification problems. IEEE Trans. Neural Netw. 2002, 13,
143–159. [CrossRef]

42. Latham, P.E.; Nirenberg, S. Synergy, redundancy, and independence in population codes, revisited.
J. Neurosci. 2005, 25, 5195–5206. [CrossRef]

43. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]
[PubMed]

44. Estévez, P.A.; Tesmer, M.; Perez, C.A.; Zurada, J.M. Normalized mutual information feature selection.
IEEE Trans. Neural Netw. 2009, 20, 189–201. [CrossRef] [PubMed]

45. Amjady, N.; Keynia, F.; Zareipour, H. Short-term load forecast of microgrids by a new bilevel prediction
strategy. IEEE Trans. Smart Grid 2010, 1, 286–294. [CrossRef]

46. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons: New York, NY,
USA, 2007.

47. Anderson, C.W.; Stolz, E.A.; Shamsunder, S. Multivariate autoregressive models for classification of
spontaneous electroencephalographic signals during mental tasks. IEEE Trans. Biomed. Eng. 1998, 45, 277–286.
[CrossRef] [PubMed]

48. Hafeez, G.; Islam, N.; Ali, A.; Ahmad, S.; Alimgeer, M.U.; Saleem, K. A Modular Framework for Optimal
Load Scheduling under Price-Based Demand Response Scheme in Smart Grid. Processes 2019, 7, 499.
[CrossRef]

49. Bao, Z.; Zhou, Y.; Li, L.; Ma, M. A hybrid global optimization algorithm based on wind driven optimization
and differential evolution. Math. Probl. Eng. 2015, 2015, 620–635. [CrossRef]

50. Man, K.; Tang, K.; Kwong, S. Genetic algorithms: Concepts and applications [in engineering design].
IEEE Trans. Ind. Electron. 1996, 43, 519–534. [CrossRef]

51. Wang, H.; Huang, J. Joint Investment and Operation of Microgrid. IEEE Trans. Smart Grid 2017, 8, 833–845.
[CrossRef]

52. Amjady, N., and Keynia, F. Day-ahead price forecasting of electricity markets by a new feature selection
algorithm and cascaded neural network technique. Energy Convers. Manag. 2009, 50, 2976–2982. [CrossRef]

53. PJM Energy Market. Available online: https://www.pjm.com/ (accessed on 8 March 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/72.977291
http://dx.doi.org/10.1523/JNEUROSCI.5319-04.2005
http://dx.doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
http://dx.doi.org/10.1109/TNN.2008.2005601
http://www.ncbi.nlm.nih.gov/pubmed/19150792
http://dx.doi.org/10.1109/TSG.2010.2078842
http://dx.doi.org/10.1109/10.661153
http://www.ncbi.nlm.nih.gov/pubmed/9509744
http://dx.doi.org/10.3390/pr7080499
http://dx.doi.org/10.1155/2015/389630
http://dx.doi.org/10.1109/41.538609
http://dx.doi.org/10.1109/TSG.2015.2501818
http://dx.doi.org/10.1016/j.enconman.2009.07.016
https://www.pjm.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Proposed Deep Learning-Based Hybrid Model
	Data Processing and Features Selection Module
	Relevancy Filter Operation
	Redundancy Filter Operation
	Features Interaction Operation Session
	The Modified Feature Selection Technique

	A Deep Learning FCRBM Model Based Forecasting Module
	The Proposed GWDO Algorithm-Based Optimization Module
	Utilization Module for Forecasting Results

	Simulations Results, Performance Evaluation, and Discussion
	Proposed Model's Learning Evaluation
	Day Ahead Electrical Energy Consumption Forecasting With Hour Resolution
	Electrical Energy Consumption Forecasting for Week and Month Ahead of Time Horizon with Hour Resolution
	Performance Analysis of Proposed FS-FCRBM-GWDO Model in Terms of Convergence Speed and MAPD

	Conclusions
	References

