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Abstract: We propose a novel array antenna with high aperture efficiency by employing an array
element operating in a high-order mode to improve the transmission efficiency of wireless power
transmission applications. The proposed array element, operating at a frequency of 5.8 GHz, consists of
a square patch with four metallic shorting pins, an extended cavity, and a high dielectric superstrate.
The four metallic shorting pins derive the high-order operation, which can enhance the bore-sight
gain, resulting in the high aperture efficiency of the array. The extended cavity structure can help
further improvement the aperture efficiency and minimize the mutual coupling strength between
adjacent elements. The proposed antenna element is extended to 2 × 2 and 4 × 4 arrays, resulting
in aperture efficiencies of 74.2% and 80.5%, respectively. For the 2 × 2 array, maximum measured
gains of 19.9 dBi in the zx-plane and 18.8 dBi in the zy-plane are observed. For the 4 × 4 array,
the maximum measured gains of 24.3 dBi in the zx-plane and 24.5 dBi in the zy-plane are obtained in
a full-anechoic chamber. Finally, the transmission efficiency of 6% with a distance of 0.8 m between
the transmitter (Tx) and the receiver (Rx) is measured when setting up the wireless power transfer
system, which consists of the Tx with the proposed 4 × 4 array and the Rx with a single element.

Keywords: high order; high gain; gain enhancement; aperture efficiency; wireless power transfer; MPT

1. Introduction

Wireless power transmission techniques have been extensively adopted to supply electric power
for household appliances, smartphones, and other electronic devices [1–7]. They can be classified into
three categories: magnetic induction, magnetic resonance, and electromagnetic radiation methods [8].
In particular, the electromagnetic radiation method has the advantage of transmitting power to multiple
receivers over relatively long distances when the array antenna is used as a transmitter. However,
as the transmission distance increases, the propagation loss in free-space increases drastically, and thus
the overall transmission efficiency is significantly degraded. Extensive previous studies, such as
the focal point adjustment [9–12], optimization of the phase and amplitude for microstrip patches
by network feed control [13–15], and efficient rectenna design by combining patch antennas and
rectifier circuits [16–20], have been carried out to improve the transmission efficiency of wireless power
transmission. However, studies to improve transmission efficiency in consideration of antenna gain
and aperture efficiency from an array antenna perspective have not yet been sufficiently conducted.

In this paper, we propose an array antenna with high aperture efficiency by employing an
array element operating in a high-order mode to improve the transmission efficiency for wireless
power transmission applications. The proposed array element consists of a square patch with four
metallic shorting pins, an extended cavity, and a high dielectric superstrate. As indicated in [21,22],
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the stacked patches are often used to improve the bandwidth characteristic of planar antennas.
Although broadband can be achieved, the stacked patches are not effective in increasing the gain
characteristics. After investigating various antenna design approaches, we found that the cavity
structure along with the patch is significantly effective in improving the bore-sight gain, although
it requires additional manufacturing costs. The four metallic shorting pins derive the high-order
operation by varying the near-field distributions in the radiating patch [23–26]. This high-order
operation can enhance the bore-sight gain of the antenna element without increasing the antenna
aperture size, resulting in the high aperture efficiency of the array. In a previous study, this high-order
mode with a fractal structure was used to increase the bore-sight and reduce the number of array
elements [27]. In this work, on the other hand, the high-order mode is derived by employing the
metallic shorting pins. The dielectric superstrate is placed above the patch, which is derived from the
Fabry–Perot theory, to further enhance the bore-sight gain. The extended cavity structure can increase
the aperture efficiency by decreasing the mutual coupling strength between adjacent elements and
reducing the back radiation. The proposed element is extended to 2× 2 and 4× 4 arrays, and the optimal
distances between elements for high aperture efficiency are examined. To verify the performance
enhancement of the proposed array, aperture efficiency according to the array distance and transmission
efficiency is analyzed. The radiation characteristics of the fabricated array are then measured in a
full-anechoic chamber. The results demonstrate that the proposed array is suitable for achieving high
aperture efficiency with enhanced transmission efficiency for wireless power transfer applications.

2. Individual Antenna Geometry and Operating Principle

2.1. Proposed Antenna Structure and Fabrication

Figure 1 shows the geometry of the proposed antenna element that consists of a square patch with
four metallic shorting pins, an extended cavity, and a high dielectric superstrate (εr = 10, tanδ = 0.004).
The square patch of the side length w1 is printed on the Duroid substrate (εr = 2.2, tanδ = 0.0009),
with side length w2 and thickness ht. The metallic shorting pins are placed on four corners of the
square patch that are connected electrically between the patch and the ground plane. These four
pins enable the high-order operation by changing the pin locations ([px1, py1], [px2, py2], [px3, py3],
[px4, py4]) and diameter d, which can vary near-field distributions on the patch, resulting in an enhanced
bore-sight gain. The high dielectric superstrate is then placed above the patch with a height h, which is
derived from the Fabry–Perot theory, to further enhance the bore-sight gain. The extended cavity
structure with a height hc resides above the ground plane and surrounds the entire lateral surface of
the Duroid substrate. This structure can improve the aperture efficiency and help decrease the mutual
coupling strength between adjacent elements by reducing the leakage field from the antenna substrate.
The antenna is fed directly by the 50 Ω SMA connector from the cavity bottom to the patch, and the
feeding point is denoted as (fx, fy). The proposed antenna is optimized using the FEKO EM simulation
software [28], and the detailed antenna parameters are listed in Table 1. In the simulation, the antenna
structure is modelled using piecewise triangular meshes of 1/25 wavelength, and to speed up the
simulation, the multilevel fast multipole method (MLFMM) is utilized in the software. We used the
computer with an Intel(R) Core (TM) i7-8700 K CPU @ 3.70 GHz and RAM of 32.0 GB. For a single
antenna element, it takes 86 seconds per each frequency point, and for the 2 × 2 array, it takes 8.5 min
per each frequency point.
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Figure 1. Geometry of the proposed antenna: (a) Isometric view, (b) top view, and (c) side view. 
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Figure 2 presents the photographs of the fabricated antenna on the Duroid substrate with the 

extended cavity structure and the high dielectric superstrate. The extended cavity is made by folding 

Figure 1. Geometry of the proposed antenna: (a) Isometric view, (b) top view, and (c) side view.

Table 1. Design parameters of the proposed antenna.

Parameters Optimized Values

w1 33 mm
w2 82.5 mm
h 23 mm
hs 7 mm
ht 1.6 mm
hc 5 mm
fx 0 mm
fy 7 mm
d 4 mm

px1 −9.5 mm
px2 9.5 mm
px3 9.5 mm
px4 −9.5 mm
py1 8.8 mm
py2 8.8 mm
py3 −8.8 mm
py4 −8.8 mm

Figure 2 presents the photographs of the fabricated antenna on the Duroid substrate with the
extended cavity structure and the high dielectric superstrate. The extended cavity is made by folding
copper plates and welding the folded parts, as shown in Figure 2a. The radiating patch is printed on
the Duroid substrate by etching technique, and the four locations for the shorting pins are perforated
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through the substrate. The thick high dielectric superstrate is made by stacking four layers of a high
dielectric board (CER-10, Taconic). The 50 Ω SMA connector is placed at the bottom of the extended
cavity structure to provide direct feeding with the patch. The metallic shorting pins are made by
soldering the perforated holes from the patch to the cavity and filling them completely with lead,
as shown in Figure 2b. A 23-mm-thick Styrofoam is used between the patch and the superstrate to
place the high dielectric superstrate above the patch radiator, and the antenna is installed inside a
covering case to protect it from any external damage as shown in Figure 2c. Figure 2d exhibits the fully
assembled antenna element.
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dBi and 7.9 dBi, respectively. These results show that the patch antenna with metallic shorting pins 

can improve bore-sight gain by about 2.8 dB using the high-order mode operation. 

Figure 2. Photographs of the fabricated antenna: (a) Antenna parts, (b) fabrication of the metallic
shorting pins, (c) assembly process, and (d) top and bottom views of the fully assembled antenna.

2.2. Simulation and Measurement

Figure 3 shows the current distributions on the patch antenna surface with and without shorting
pins, which is simulated using the FEKO EM simulation software [28]. The patch antenna without
shorting pins operates in the TM010 mode, while the patch with shorting pins can change the current
distributions to a high-order mode of TM030. Figure 4 shows the 2-D radiation patterns with and
without the shorting pins. The simulated bore-sight gains with and without shorting pins are 10.7 dBi
and 7.9 dBi, respectively. These results show that the patch antenna with metallic shorting pins can
improve bore-sight gain by about 2.8 dB using the high-order mode operation.
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Figure 3. Current distributions: (a) Patch antenna without shorting pins and (b) patch antenna with
shorting pins.
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Figure 4. Two-dimensional radiation patterns with and without the shorting pins: (a) zx-plane and
(b) zy-plane.

Figure 5 illustrates the Fabry–Perot structure consisting of a perfect electric conductor (PEC)
surface and a superstrate placed at a height h. The complex reflection coefficients of the PEC surface
and the superstrate are ejϕ1 and pejϕ2 , where p is the amplitude, and ϕ1, ϕ2 are the reflection phases.
The superstrate is a partially reflective surface, and we assume there is no transmission loss. The excited
electromagnetic waves by a source are partially reflected by the superstrate and partially transmitted
through the superstrate. The electric field intensities outside the Fabry–Perot structure are then
obtained by the vector sum of multiple rays, as expressed in Equation (1) [29,30]

E =
∞∑

n=0

f (α)E0pn
√

1− p2e jθn (1)

The phase angle θn is calculated by the phase variation from the PEC surface to the superstrate,
and also by the path differences of the multiple reflections, as shown in Equation (2),

θn = nΦ = n
[
−

4π
λ

h cosα−π+ψ
]

(2)
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where λ is the wavelength of the target frequency. The power pattern S can be defined as follows:

S =
1− p2

1 + p2 − 2p cos
(
−π+ψ− ( 4π

λ )h cosα
) f 2(α) (3)

where f (α) is the function of the antenna pattern in the direction α. Therefore, h can be written as

h =
(ϕ1 + ϕ2

π

)
λ
4
+ N

λ
2

, N = 1, 2, 3 . . . , (4)

and we found that h is 23 mm in our geometry at 5.8 GHz.
Figure 6 shows the 2-D radiation patterns with and without the superstrate. The simulated

bore-sight gain with the superstrate is 13.8 dBi, whereas it is 10.7 dBi without the superstrate.
These results show that the superstrate can improve the bore-sight gain by 3.1 dB using
Fabry–Perot theory.
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Figure 6. Two-dimensional radiation patterns with and without the superstrate: (a) zx-plane and
(b) zy-plane.

Figure 7 shows the measured and simulated reflection coefficients of the proposed antenna
element. The solid line and “+” symbol indicate the simulation and the measurement, respectively.
The simulated value of −15.3 dB is in good agreement with the measured value of −23.2 dB at 5.8 GHz.
The measured and simulated bore-sight gains are 15.2 dBi and 14.5 dBi at 5.8 GHz, respectively,
and they are greater than 8 dBi over the entire range of 5.4–6 GHz, as shown in Figure 8. This result
indicates that the gain is improved 6.6 dB over the patch antenna without shorting pins. There is some
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discrepancy between simulation and measurement, which is due to slight variations in the effective
dielectric constant and manufacturing errors of the thick superstrate.

Figure 9 shows the 2-D radiation patterns of the antenna in the zx- and zy-planes. For accurate
measurement, the antenna is mounted on a Styrofoam with a 3-axis positioner in a full anechoic chamber.
The measured half-power beamwidths at 5.8 GHz are 30◦ in the zx-plane and 35◦ in the zy-plane.
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3. Array Extension and Performance Analysis

3.1. 2 × 2 Array Extension

The proposed antenna is then extended to a 2 × 2 array, as shown in Figure 10a. We used the
4-way power dividers as the feeding network, as shown in Figure 10b. These dividers were used for
the feeding network of the 2 × 2 array as well as the 4 × 4 array. To maximize the performance of the
array for wireless power transmission applications, an optimal design of the array is carried out to
maximize the array aperture efficiency. The aperture efficiency η of the array can be written as

η =
Aem

Aphysical
. (5)

where Aem is the effective maximum area of the array, and Aphysical is the physical area (A2
2) of the array

aperture. The effective maximum area Aem can be written as

Aem =
λ2

4π
×G. (6)

where λ and G represent the wavelength and the antenna gain, respectively.
Figure 10c shows the aperture efficiency according to the distance d2 between adjacent elements at

5.8 GHz. The solid line and dashed line indicate the aperture efficiencies with and without the extended
cavity structure, respectively. The maximum aperture efficiencies with and without the cavity structure
are 74.2% (d2 = 7.5 mm) and 61.2% (d2 = 2.5 mm), respectively. Additionally, the maximum aperture
efficiency of the array without shorting pins is 22.05% (d2 = 0 mm). To analyze the effectiveness of
the proposed extended cavity structure, we observe the E-field distributions (Ey) on the 2 × 2 array
surface (−75 mm ≤ x, y ≤ 75 mm) at z = 57.6 mm with and without the cavity, as shown in Figure 11.
The variance value is then calculated from the E-field distributions when an input power of 1 W is
used. The variance of the proposed array is 163.6, which is 334.9 lower than the variance of 498.5
without the extended cavity structure. The results demonstrate that the extended cavity structure can
lead to more uniform E-field distributions, which can improve aperture efficiency.
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Subsequently, we analyze the effect of the extended cavity structure on the beam characteristics
of the array. For this purpose, the bore-sight gains of the active element pattern according to d2 are
examined, as shown in Figure 12a. The maximum bore-sight gain of 14.1 dBi (d2 = 15 mm) is observed
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for the proposed antenna with the cavity structure, whereas the maximum bore-sight gain of 12.7 dBi
(d2 = 2.5 mm) is observed without the cavity structure. Figure 12b shows the error in the bore-sight
beam direction depending on d2, where the ideal beam direction is θ = 0◦ in the active element pattern.
Herein, the proposed antenna has an asymmetric feeding structure, which causes deviations in the
bore-sight beam direction. The proposed array antenna has a lower than 1.2◦ of the average errors
when varying d2 from 0 mm to 20 mm, which is much less than the average error of 9.1◦ without the
cavity structure. To further validate the effect of the extended cavity structure, we examine the average
mutual couplings (|S21|, |S31|, and |S41|) of the 2 × 2 array according to d2, as shown in Figure 12c.
We also measure the coupling using network analyzer (HP3753D). Port 1 of the network analyzer is
connected to the upper left antenna in the array, and Port 2 is connected to the other three antennas
one at a time. Except for the two measuring antennas, the other antennas are terminated by 50 Ω.
The measured average mutual coupling between antennas is −32 dB, and the simulation value is
−34 dB when d2 = 7.5 mm. The proposed array antenna with the cavity structure again shows a
lower mutual coupling than the array without the cavity structure. These results demonstrate that
the extended cavity structure can minimize the mutual coupling strength between adjacent elements,
resulting in an increased bore-sight gain with a low error in the bore-sight beam direction.
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Figure 13 shows the simulated and measured radiation patterns of the proposed 2 × 2 array,
which is fed by a 4-way power divider. The maximum measured gains are 19.9 dBi in the zx-plane
and 18.8 dBi in the zy-plane. The simulated maximum gain is 20.0 dBi in both the zx- and zy-planes.
The measured and simulated half-power beamwidths are 14.4◦ and 14.1◦ in the zx-plane, while 15◦ and
14.5◦ in the zy-plane. In the zy-plane, the simulated radiation pattern is not symmetrical with respect
to 0◦, and this is due to the asymmetric feeding structure of the array antenna.
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3.2. 4 × 4 Array Extension

To achieve higher gain characteristics, we extend the proposed antenna to a 4 × 4 array, as shown
in Figure 14a. Figure 14b shows the aperture efficiency according to the distance d4, and the maximum
aperture efficiency of 80.5% is achieved when d4 is 0 mm. Figure 15a,b show the measured and
simulated array patterns of the 4 × 4 array at 5.8 GHz, and Figure 15c presents the fabricated
4 × 4 array. The measurements are conducted in a full-anechoic chamber, and each antenna is fed by
the 4-way power dividers, as shown in Figure 15c. The measured and simulated maximum gains
are 24.3 dBi and 26.2 dBi in the zx-plane, while 24.5 dBi and 26.2 dBi in the zy-plane, respectively.
The measured and simulated half-power beamwidths are 7◦ and 8◦ in the zx-plane, while 9◦ and 8◦ in
the zy-plane, respectively.
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To investigate the efficiency of wireless power transfer between antennas in free space, we set
up the system consisting of the transmitter (Tx) with the proposed 4 × 4 array and the receiver
(Rx) with a single element. Instead of using a probe, we use the identical single element for the Rx.
Since the power transmission is for indoor environment, the distance in the transmission efficiency
measurement is less than 2 m, that is in the near-radiating zone, as shown in Figure 16a. We calculate
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the transmission efficiency using formula as written (Equation (7)). The measured and simulated
maximum transmission efficiencies are 6% and 7%, respectively, when the distance between Rx to Tx is
0.8 m. We also compare the properties between the proposed antenna and three reference previous
research. In this comparison, we examine the operating frequency, aperture size, and the transmission
efficiency. The detailed explanations are given in Table 2.

E f f iciencytransmission(%) =
Pr

Pt
× 100 (7)
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Table 2. Comparison with previous studies.

Ref. Array Size (cm) Frequency (GHz) Transmission Efficiency (%)

[11] 122 × 127 5.8 25 (at Rx to Tx 1.8 m)
[12] 50 × 50 5.8 16 (at Rx to Tx 0.92 m)
[13] 21.6 × 21.6 5.8 39.4 (at Rx to Tx 0.4 m)

This work 33 × 33 5.8 5 (at Rx to Tx 0.8 m)

4. Conclusions

An array antenna with a high aperture efficiency was proposed by employing an array element
operating in a high-order mode to improve the transmission efficiency for wireless power transmission
applications. The proposed array element consisted of a square patch with four metallic shorting
pins, an extended cavity, and a high dielectric superstrate. The proposed array element characteristics,
such as the reflection coefficient, bore-sight gain, and radiation patterns, of the proposed antenna were
measured, and the average reflection coefficient was −15.0 dB with a bandwidth of 400 MHz (5.6 GHz
to 6 GHz, |Γ| < −10 dB). The bore-sight gains were 15.2 dBi, and the measured half-power beamwidths
were 30◦ in the zx-plane and 35◦ in the zy-plane. The proposed antenna element was extended to 2 × 2
and 4 × 4 arrays, resulting in aperture efficiencies of 74.2% and 80.5%, respectively. The maximum
measured gains of 19.9 dBi in the zx-plane and 18.8 dBi in the zy-plane for the 2 × 2 array and 24.3 dBi
in the zx-plane and 24.5 dBi in the zy-plane for the 4 × 4 array are observed in a full- anechoic chamber.
The transmission efficiency of 6% with a distance of 0.8 m between the Rx and the Tx was measured
when setting up the wireless power transfer system consisting of the Tx with the proposed 4 × 4 array
and the Rx with a single element.
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