
Citation: Abdullah, F.M.; Al-Ahmari,

A.M.; Anwar, S. An Integrated Fuzzy

DEMATEL and Fuzzy TOPSIS

Method for Analyzing Smart

Manufacturing Technologies.

Processes 2023, 11, 906. https://

doi.org/10.3390/pr11030906

Academic Editors: José Barbosa,

Luis Ribeiro and Paulo Leitao

Received: 26 February 2023

Revised: 12 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

An Integrated Fuzzy DEMATEL and Fuzzy TOPSIS Method for
Analyzing Smart Manufacturing Technologies
Fawaz M. Abdullah * , Abdulrahman M. Al-Ahmari and Saqib Anwar

Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800,
Riyadh 11421, Saudi Arabia; alahmari@ksu.edu.sa (A.M.A.-A.); sanwar@ksu.edu.sa (S.A.)
* Correspondence: fmuthanna@ksu.edu.sa; Tel.: +966-553989419

Abstract: I4.0 promotes a future in which highly individualized goods are mass produced at a
competitive price through autonomous, responsive manufacturing. In order to attain market compet-
itiveness, organizations require proper integration of I4.0 technologies and manufacturing strategy
outputs (MSOs). Implementing such a comprehensive integration relies on carefully selecting I4.0
technologies to meet industrial requirements. There is little clarity on the impact of I4.0 technologies
on MSOs, and the literature provides little attention to this topic. This research investigates the
influence of I4.0 technologies on MSOs by combining reliable MCDM methods. This research uses
a combination of fuzzy DEMATEL and fuzzy TOPSIS to evaluate the impact of I4.0 technologies
on MSOs. The fuzzy theory is implemented in DEMATEL and TOPSIS to deal with the uncertainty
and vagueness of human judgment. The FDEMATEL was utilized to identify interrelationships
and determine criterion a’s weights, while the fuzzy TOPSIS approach was employed to rank the
I4.0 technologies. According to the study’s findings, cost is the most critical factor determining
MSOs’ market competitiveness, followed by flexibility and performance. On the other hand, additive
manufacturing (AM) is the best I4.0 technology for competing in the global market. The results
present an evaluation model for analyzing the relative important weight of multiple factors on MSOs.
They can also assist managers in concentrating on the most influential factors and selecting the proper
I4.0 Technology to preserve competitiveness.

Keywords: industry 4.0; digitalization; manufacturing strategies; MCDM; fuzzy DEMATEL;
fuzzy TOPSIS

1. Introduction

Today’s manufacturers are challenged with an ever-increasing demand for product
diversity and unpredictable market requirements. In order to keep up with the ever-
changing market, boost product quality, and maximize efficiency, manufacturers must
embrace novel techniques [1]. There has recently been a collaboration between international
organizations in order to develop the smart manufacturing [2]; with enhanced technology
for sensing, and decision-making, autonomous manufacturing activities can be performed
to meet customer demands [3]. Smart manufacturing uses product lifetime data to improve
all aspects of manufacturing. Hence, I4.0 is a breakthrough wave that meets customer needs
efficiently. Designers describe this “flexible integration of the global value chain”—making
customer-requested products efficient [4,5]. Its goal is to create cost-effective, flexible
workflows that deliver high-quality, personalized products at low unit costs.

Cost-efficient, intelligent, effective, customized, and configurable products are possible
with I4.0. Automation and data exchange help I4.0 digitalize manufacturing [6]. Cyber-
physical systems (CPS) are emphasized for their potential to integrate machines, factories,
and business processes and for their distinctive features, such as autonomous information
sharing, activity triggering, decision-making, and independent control [7]. With CPS
and the IoT, intelligent devices are constantly interacting and communicating with one
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another, bridging the gap between the digital/virtual and real/physical worlds [8]. I4.0
improves industrial capability by making it easier to produce the appropriate products of
the best quality, with fast delivery, at a low price, while keeping the environment safe [9].
It is feasible to make things and machines smarter by enabling them to connect with
and learn from one another thanks to quicker computers, intelligent devices, and more
inexpensive [10].

A manufacturing strategy (MS) is a long-term plan for using the resources of the
manufacturing system to achieve the company’s goals [11]. A manufacturing strategy is
an approach to production that aims to maximize performance while striking a balance
between different performance objectives. All manufacturing policies should be developed
in tandem with or in support of the company strategy, which should be a priority for the
highest levels of management [12]. These days, a company’s manufacturing capabilities
are one of its most distinguishing features in the marketplace [13]. Therefore, businesses
must develop their production plans. To increase manufacturing production, it is necessary
to establish a connection between manufacturing goals and business goals [14]. In order to
increase output and performance as a whole, I4.0 and MSOs need to be properly aligned.

To help businesses compete in today’s global economy, this research developed a
hybrid MCDM model for ranking I4.0 technologies. FDEMATEL analyzes the interrelation-
ships and feedback between the criteria under uncertainty and calculates weights. Thus,
FTOPSIS is used to rank the I4.0 technologies. It is widely known that the conventional
production system cannot preserve the business’s competitive edge due to insufficient and
predetermined assets, fixed routes, a lack of communication, autonomous management,
and fragmented data. Business is faced with new challenges caused by globalization, in-
cluding a more complex and competitive market, trading environments, and unpredictable
and hazardous. In order to maintain a competitive edge, businesses must invest in I4.0
technologies that affect MSOs. Deep digitalization integration with the broader economy
has emerged as a crucial method for enhancing industrial production’s competitiveness
and quality growth [15,16]. The research contributes to identifying and classifying MSOs
relevant to I4.0 technologies through a review of pertinent literature and the opinions of
experts in the field. The proposed method investigated the effects of I4.0 technologies on
MSOs, allowing managers to make more informed decisions and enhance their market
competitiveness.

The outline of this study is as follows: The literature review is addressed in Section 2.
In Section 3, the authors discuss the methodology. Section 4 presents the findings and
discusses them. Discussion of implications in Section 5. Finally, the conclusion and future
study are provided.

2. Literature Review

Smart manufacturing, defined as I4.0′s key pillar, incorporates various technologies
and digitally changes businesses to reach market competency, as shown in Figure 1. The
manufacturing and development of new items have become increasingly complex and
complicated. While there are numerous modifications and differences in customer needs,
the system must be highly flexible to create various products on a similar system [17]. In
the twenty-first century, manufacturers face new challenges brought on by globalization,
such as unexpected market shifts. The new emerging production paradigm is called per-
sonalization or personalized production, and it is motivated by consumers’ desire to have
input into and ownership over product design [18]. A dedicated production line, a flexible
manufacturing system, and a reconfigurable manufacturing system are all parts of the
industry 4.0 production system [19]. In order to boost overall production and performance,
I4.0 and MSOs need to be properly aligned. According to the reported studies [14,20–27],
the I4.0 technologies are shown in Figure 2 and described in our previously published
paper [25].
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An organization’s manufacturing strategy is its long-term plan for employing its man-
ufacturing system’s resources in service of its overarching business strategy and achieving
its objectives [11]. It is also known as a framework aims to improve a business’s ability to
compete in its industry by ensuring its manufacturing resources are designed, managed,
and developed to provide a balanced set of performance characteristics [28]. Manufacturing
strategies assist businesses in developing a well-organized manufacturing structure [29]. A
manufacturing firm’s productivity and ability to distinguish itself from the competition
are both improved by a well-organized structure. Strategically, it becomes a factor in
the competition for such businesses, as it helps them differentiate themselves from their
competitors [13]. In the literature, MSOs are also known as competitive priorities [23,30].
Competitive priorities motivate the entire company to gain an advantage over its rivals.
The description of MSOs is shown in Table 1.
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Table 1. Manufacturing strategies outputs [23,30].

Criteria Description

Cost Maintaining market-competitive rates while reducing total costs.

Quality Maintaining a high degree of customer satisfaction while establishing and
maintaining rigorous standards, quality control, and management procedures.

Delivery The time between receiving an order and delivering it to the customer.

Flexibility Ability to offer customized products and services and raise or reduce the
number of existing products to respond quickly to customer demands.

Performance Product features and their ability to achieve things other products cannot.
Innovativeness Quickly introducing new products or redesigning current ones.

Numerous studies have clarified the significance of integrating I4.0 technologies to
improve MSOs. May and Kiritsis [31] used I4.0 technologies to achieve error-free assembly
lines, boosting productivity, quality, customer satisfaction, profitability, and long-term via-
bility in the manufacturing sector. Tortorella and Fettermann [32] employed I4.0 technolo-
gies, including big data, IoT, etc., to boost MSOs quality and performance. Ghobakhloo [21]
built a balancing framework serves as a jumping-off point for researchers and industry
professionals to develop a comprehensive strategy for an easy transition from traditional
manufacturing to I4.0, resulting in improved performance across the board. Ghobakhloo
and Fathi [33] utilized I4.0 technologies to demonstrate how SME manufacturers may
optimize their information technology investment to create lean, digitalized production
procedures that boost their long-term competitiveness and performance. Tortorella and
Giglio et al. [34] used I4.0 technologies to increase operational efficiency in Brazil’s lean
production (LP) system.

As the manufacturing process becomes more complex, manufacturers are greatly
concerned about making good decisions. Therefore, in a fuzzy environment, MCDM tech-
niques can significantly decrease the problem’s complexity [35–37]. Commonly, researchers
use the DEMATEL to determine if there is a link between the variables. This approach
assists in creating a structural model to analyze how various factors interact in extended
and comprehensive studies [38]. These factors are graded based on the type of relationship
they reflect and the degree of their interdependence. This method uses matrices to convert
interdependencies into a group of causes and effects and impact relationship diagrams to
identify the influential factors of a complex structural system. DEMATEL can help identify
real solutions, specific problems, clusters of complex issues, and weight calculations based
on interdependencies [39,40].

DEMATEL demonstrates graphically and statistically the relevance and intensity
of relationships [41]. It represents and quantifies the degree to which complex system
elements are interdependent [42]. Crisp values frequently indicate human judgments for
determining the interaction between components when DEMATEL is applied. In contrast,
in the real world, exact values are often inadequate [43]. Fuzzy logic is necessary because
people’s preferences are typically ambiguous and difficult to quantify with precise numbers.
This research employs fuzzy set theory and the DEMATEL technique to build a structural
model of the interaction between several criteria [44]. In 1965, Lotfi A. Zadeh established
the discipline of fuzzy logic to examine the ways in which humans deal with ambiguity
and uncertainty when making decisions. Several judgements are brought on by limits
and ambiguous, uncertain events, as is evident from an evaluation of decision-making
issues in real-world transactions [45]. It is argued that converting linguistic notions into
fuzzily defined numbers is better than combining distinct individual or group perspectives,
conceptions, or judgments. The fuzzy DEMATEL method necessitates the construction of a
causality map, as well as the gathering of impact and causality indicators for each factor.
The technique creates the causal diagram and categorizes factors based on their distances
from the element’s center and their degrees of cause and effect (into cause groups or effect
groups). In the end, it presents several suggestions for further research and managerial
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implications. Last but not least, it highlights key elements that facilitate more effective
problem-solving [46].

The TOPSIS ranking approach is well-known for its ability to rank alternatives in
descending order of importance. According to TOPSIS, the optimal decision is the one that
is most similar to the optimal positive solution and most different from the optimal negative
solution. As a result, the optimal solution is one that maximizes benefits while minimizing
costs. This means the worst possible values for each criterion may be found in the negative
ideal solution, while the best possible values can be found in the perfect solution [47].
One of TOPSIS’s main advantages is that it ranks alternatives by their influence using
unlimited data for each indication [48]. Dos Santos et al. [49] proposed that TOPSIS be
used with other MCDM methods to provide more efficient and flexible problem-solving.
MCDM methods have been used more frequently in recent research, individually or in
combination with other MCDM approaches. In recent studies, hybridizations of MCDM
approaches, such as DEMATEL and TOPSIS, have been observed [50–54]: DEMATEL,
TOPSIS, ANP [55–57], AHP-BWM [58], and DEMATEL, AHP and TOPSIS [59–61]. The
literature review revealed that no prior studies had presented a hybrid integrated fuzzy
DEMATEL-TOPSIS to investigate how I4.0 technologies can affect MSOs.

3. Research Methodology

This section demonstrates a hybrid MCDM method to help decision makers evaluate
and rank the impact of I4.0 technologies on MSOs. Figure 3 shows the I4.0 technologies and
MSOs evaluation network. This study’s experts were chosen according to their expertise
and experience [62]. According to [63], The minimum required of experience for an
acceptable expert is ten years, either in academia, industry, or both. The majority of the
selected manufacturing firms were active participants in I4.0. Research participants include
top-level executives, general managers, department heads, specialist engineers, academics,
and professionals working in manufacturing strategies related to industrial organizations,
with an emphasis on MSOs. Specialists need in-depth knowledge of the manufacturing
process, focusing on smart manufacturing techniques.Processes 2023, 11, x FOR PEER REVIEW 6 of 20 

 

 

 
Figure 3. I4.0 technologies on MSOs evaluation network. 

Experts are also expected to have experience with I4.0 technologies, either from a 
theoretical or practical perspective. Their responsibilities may have included market strat-
egy and operations. As a result, they have a deep understanding of production methods. 
Experts in the field of academia were similarly selected among professors and PhDs, who 
have contributed to scholarly journals with works on industry 4.0. 

A personal interview was conducted with an expert explaining the research and an 
online interview with those unable to attend in person. Initial participants were contacted 
via email to confirm their participation and explain the study’s goals. Most experts re-
sponded positively. Unfortunately, only 14 of the planned professional respondents filled 
out the surveys in their entirety. Therefore, the selected academic experts significantly 
contributed significantly to this sector. 

Proposed Model 
In order to attain market competitiveness, a hybrid MCDM for ranking I4.0 technol-

ogies is developed. It can be accomplished using the following phases. 
Phase 1. Constricting the MCDM model 

Figure 4 illustrates the phases of the evaluation model designed for the impact of I4.0 
technologies on MSOs’ evaluation networks. In the first phase, researchers reviewed the 
literature related to this topic and documented their findings; we focused on the I4.0 
concept and its associated technologies and manufacturing strategies. We reviewed past 
works on I4.0 technologies and conducted interviews with experts. With the experts’ 
agreement, a primary network was established. The evaluation’s scope was determined 
and then a framework was built for this network. 

Figure 3. I4.0 technologies on MSOs evaluation network.

Experts are also expected to have experience with I4.0 technologies, either from a
theoretical or practical perspective. Their responsibilities may have included market
strategy and operations. As a result, they have a deep understanding of production
methods. Experts in the field of academia were similarly selected among professors and
PhDs, who have contributed to scholarly journals with works on industry 4.0.
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A personal interview was conducted with an expert explaining the research and an on-
line interview with those unable to attend in person. Initial participants were contacted via
email to confirm their participation and explain the study’s goals. Most experts responded
positively. Unfortunately, only 14 of the planned professional respondents filled out the
surveys in their entirety. Therefore, the selected academic experts significantly contributed
significantly to this sector.

Proposed Model

In order to attain market competitiveness, a hybrid MCDM for ranking I4.0 technolo-
gies is developed. It can be accomplished using the following phases.

Phase 1. Constricting the MCDM model

Figure 4 illustrates the phases of the evaluation model designed for the impact of I4.0
technologies on MSOs’ evaluation networks. In the first phase, researchers reviewed the
literature related to this topic and documented their findings; we focused on the I4.0 concept
and its associated technologies and manufacturing strategies. We reviewed past works
on I4.0 technologies and conducted interviews with experts. With the experts’ agreement,
a primary network was established. The evaluation’s scope was determined and then a
framework was built for this network.
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Phase 2. Fuzzy DEMATEL Method

Several types of research have effectively used the DEMATEL method to evaluate the
factors about knowledge and expert practices in the context of MCDM issues. The FDEMA-
TEL was used to find interrelationships and establish the weights for criteria. The three
numbers (l, m, r) represent a triangular fuzzy number, l for the most pessimistic, and r for
the most optimistic. Equation (2) explains the triangle fuzzy number membership function.

Zk =

C1
C2
...
Cn


[0, 0, 0] xk

12
xk

21 [0, 0, 0]
. . .
. . .

xk
1n

xk
2n

...
...

...
...

xk
n1 xk

n2 · · · [0, 0, 0]

 (1)

µN (x)=


0, x < l
x−l
m−l , l ≤ x ≤ m
r−x
l−m , m ≤ x ≤ r
0, x > r

(2)

where l represents the fuzzy left score, r is the fuzzy right score, and m is the fuzzy center
score of the triangle. The steps of the fuzzy DEMATEL approach are as follows [27,54,55]:

Step 1. Create a fuzzy scale, decision goals, and criteria (C, Q, D, F, P I);
Step 2. Choose experts with relevant knowledge and experience to compare pair-

wise effects;
Step 3. Create a semantic evaluation form that categorizes the degree of influence

between various factors into the five categories listed in Table 2. The form needs to be
simple to read and understand;

Table 2. Fuzzy triangular numbers used in FDEMATEL [24,64].

Linguistic Terms Symbol Fuzzy Triangular Numbers

No impact NO (0.00,0.10,0.30)
Very low impact VL (0.10,0.30,0.50)

Low impact L (0.30,0.50,0.70)
High impact H (0.50,0.70,0.90)

Very high impact VH (0.70,0.90,1.00)

Step 4. Obtain the initial direct influence matrix. The interpretation of the semantic
assessment table by experts should be used to generate a direct effect matrix;

Step 5. In order to account for uncertainty in human judgments, convert the direct
impact from step three into fuzzy triangular values, as shown in Table 2;

Step 6. Create fuzzy direct-relation matrices ZK by having evaluators create fuzzy
pairwise impact correlations between components in a n x n matrix, where k is the number
of experts;

Step 7. Once the numbers are defuzzed using the CSCF method, the overall score can
be determined by taking the weighted average of the left and right scores of the membership
function. This approach is the most effective in the literature for producing consistent
outcomes [65,66]. The CFCS method determines the maximum and minimum fuzzy values
within a fuzzy number range. The overall score is defined as a weighted average based on
membership functions. Each population score results in a fresh beginning influence matrix.
Listed below are the detailed procedures:

Normalize the fuzzy triangular numbers, where 0 ≤ xij ≤ 1:

xlk
ij =

lk
ij −minlk

ij

∆max
min

(3)
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xmk
ij =

mk
ij −minlk

ij

∆max
min

(4)

xrk
ij =

rk
ij −minlk

ij

∆max
min

(5)

∆max
min = maxrk

ij −minlk
ij (6)

Calculate the left and right normalized scores:

xlsk
ij =

xmk
ij(

1 + xmk
ij − xlk

ij
) (7)

xrsk
ij =

xrk
ij(

1 + xrk
ij − xmk

ij
) (8)

Obtain the crisp values:

xk
ij =

xlsk
ij ∗
(

1− xlsk
ij

)
+ xrsk

ij ∗ xrsk
ij(

1− xlk
ij + xrsk

ij
) (9)

Create the total normalized crisp values of the expert, k:

zk
ij = minlk

ij + xk
ij ∗ ∆max

min (10)

Collect the crisp normalized values for each factor to construct the direct relation-
ship matrix:

zij =
Z1

ij + Z2
ij + · · ·+ Zn

ij

n
(11)

The initial direct influence matrix is utilized to generate a standardized direct influence
matrix, where X =

[
xij
]

n∗n, and 0 ≤ xij ≤ 1. The calculation is as follows:

X = s ∗ Z (12)

s =
1

max
1≤i≤n

∑m
j=n zij

, i, j = 1, 2, . . . , n. (13)

Compute the influence matrix T =
[
tij
]

n∗n. The factors tij display the indirect influence
between factors i and j. The influence matrix T reflects the entirety of the impact relationship
between items. The matrix is computed as follows:

T = lim
m→∞

(
X+ X2+ X3 . . . Xm )

= X∗(1− X)−1 (14)

Using the following formulas, calculate the degree of each factor’s influence, influ-
enced, center, and cause degree: Di Represents the degree to which one factor influences
another factor in MSOs.

The influence degree : Di = ∑n
j=1 tij (15)

The affected degree Rj: How much one factor affects another among a set of MSOs.

The affected degree : Rj = ∑n
i=1 tij (16)

The center degree
(

Rj − Di
)
, indicates the relative importance of factors within

the MSOs.
The center degree =

{(
Rj + Di

)∣∣i = j
}

(17)
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For the cause degree,
When Rj + Di Is positive, the factor belongs to the cause group.
When Rj − Di is negative, the factor belongs to the effect group.

The cause degree =
{(

Rj − Di
)∣∣i = j

}
(18)

Step 8. Estimate the relative weights of each criterion by using Equation (19).

wi =
Rj + Di

∑n
i=1 Rj + Di

(19)

Fuzzy TOPSIS method

Chen [67] created the fuzzy TOPSIS method for solving uncertain MCDM problems.
Decision makers Dr(r = 1, . . . , k) estimate criteria weights and alternative evaluations
using linguistic data. Thus, Wr

j represents the importance of the jth criterion, Cj (j = 1, . . . ,
m), outlined by the rth decision maker. Similarly, Wr

j represents the score of the ith I4.0
technology (alternatives), Ai (i = 1, 2, . . . , n), regarding criterion j, as indicated by the rth
decider. The fuzzy triangular numbers required by fuzzy TOPSIS are presented in Table 3.
Under these assumptions, the procedure includes the following [68–70]:

Table 3. Fuzzy TOPSIS scale.

The Extent of the Influence Fuzzy Triangular Number

Very high impact (VH) 7.00 9.00 9.00
High impact (H) 5.00 7.00 9.00

Medium impact (M) 3.00 5.00 7.00
Low impact (L) 1.00 3.00 5.00

Very Low impact (VL) 1.00 1.00 3.00

Step 1. As shown by Equations (20) and (21), aggregate the relative significances and
evaluations of alternatives provided by k decision makers.

Wj =
1
k

[
W1

j + W2
j + · · ·+ Wk

j

]
(20)

xj =
1
k

[
x1

j + x2
j + · · ·+ xk

j

]
(21)

Step 2. Use Equations (22) and (23) to combine the criteria and alternatives in the
fuzzy decision matrix (W).

D =


. .

x11 x12

. . .

. . .
.

x1m

...
...

...
...

xn1 xn2 · · · xnm

 (22)

Wj = [W1 + W2 + · · ·+ Wm] (23)

Step 3. The fuzzy decision matrix can be normalized via a linear-scale transformation
(D). The Equations (24)–(26) provide the normalized fuzzy decision matrix R.

R =
[
rij
]

m X n (24)

rij =

(
lij
u+

j
,

mij

u+
j

,
uij

u+
j

)
and u+

j = maxi uij(benefit criteria) (25)
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rij =

(
l−j
uij

,
l−j
mij

,
l−j
lij

)
and l−j = maxi lij(cos t criteria) (26)

Step 4. Multiply the relative importance of each criterion results to the weighted
normalized decision matrix V, Wj, according to the factors of the normalized fuzzy decision
matrix, rij, as shown in the following Equation (27).

V =
[
vij
]

m×n (27)

where vij is provided by Equation (28).

vij = xij × wij (28)

Step 5. Determine the fuzzy positive ideal solution (FPIS, A+) and fuzzy negative
ideal solution (FNIS, A−) using Equations (29) and (30).

A+ =
{

v+1 , v+j , . . . , v+m
}

(29)

A− =
{

v−1 , v−j , . . . , v−m
}

(30)

Step 6. Compute the distances dj
+ and dj

− with equations for each possible option
(31) and (32).

dj
+ = ∑n

j=1 dv

(
vij, v+j

)
(31)

dj
− = ∑n

j=1 dv

(
vij, v−j

)
(32)

where d is the vertex-based distance between two fuzzy values. This can be demonstrated
using the Equation (33).

d(x, z) =

√
1
3

[
(lx − lz)

2 + (m−mz)
2 + (ux − uz)

2
]

(33)

Step 7. Applying Equation (34), determine the closeness coefficient CCi.

CCi =
dj

+

dj
+ + dj

− (34)

Step 8. Determine the decreasing order of the alternatives based on the closeness
coefficient, CCi. The optimal option is the one that is closest to the FPIS and farthest from
the FNIS.

4. Results and Discussions
4.1. FDEMATEL Calculations

Experts were provided a questionnaire to determine how each pair of criteria related.
“How much influence does each component on the left has on the factor on the right?” was
asked for each option. As shown in Table 2, respondents rated their level of satisfaction on
a scale from one to five. Table 4 displays the fuzzy triangular numbers of a single expert
generated by translating linguistic data to a fuzzy linguistic scale based on the results
from the experts. Based on the fuzzy evaluation, the original direct relation matrix is used
to compute the crisp value of MSO criteria. As indicated in Table 5, the total relation
matrix can be obtained. The impact relation among factors is shown in Table 6. The final
results of the DEMATEL analysis are obtained, as shown in Table 7. Figure 5 illustrates
the interdependence and relationship of MSOs. As shown in Table 7, the six outputs can
be categorized by their respective causes and effects, and previous studies support this
finding [26].
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Table 4. Fuzzy direct-influence matrix.

MSOs C Q D F P I

C 1 1 1 0.5 0.7 0.9 0.5 0.7 0.9 0.1 0.3 0.5 0.3 0.5 0.7 0.5 0.7 0.9
Q 0.7 0.9 1 1 1 1 0 0.1 0.3 0 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5
D 0.5 0.7 0.9 0 0.1 0.3 1 1 1 0.5 0.7 0.9 0.3 0.5 0.7 0 0.1 0.3
F 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.9 1 1 1 1 0.5 0.7 0.9 0.3 0.5 0.7
P 0.5 0.7 0.9 0.5 0.7 0.9 0.3 0.5 0.7 0.1 0.3 0.5 1 1 1 0.3 0.5 0.7
I 0.5 0.7 0.9 0.3 0.5 0.7 0.3 0.5 0.7 0.5 0.7 0.9 0.7 0.9 1 1 1 1

Table 5. The total relation matrix.

C Q D F P I

C 2.029233 1.795513 1.617931 1.694632 1.764429 1.658888
Q 1.735788 1.678583 1.337094 1.455012 1.60132 1.387805
D 1.514706 1.263646 1.388454 1.371973 1.23373 1.150883
F 1.841684 1.665435 1.5855 1.779387 1.695742 1.576388
P 1.833782 1.703286 1.430495 1.598728 1.787755 1.531724
I 1.742721 1.549935 1.35726 1.600236 1.578245 1.612278

The threshold is 1.5.

Table 6. The impact relation among factors.

C Q D F P I

C 2.029233 1.795513 1.617931 1.694632 1.764429 1.658888
Q 1.735788 1.678583 0 0 1.60132 0
D 1.514706 0 0 0 0 0
F 1.841684 1.665435 1.5855 1.779387 1.695742 1.576388
P 1.833782 1.703286 0 1.598728 1.787755 1.531724
I 1.742721 1.549935 0 1.600236 1.578245 1.612278

Table 7. Final results of DEMATEL analysis.

R D R+D R−D Dispatcher Receiver Weights Rank

C 10.56 10.70 21.26 −0.14 R 0.18599 1
Q 9.20 9.66 18.85 −0.46 R 0.16493 4
D 7.92 8.72 16.64 −0.79 R 0.14558 6
F 10.14 9.50 19.64 0.64 D 0.17186 2
P 9.89 9.66 19.55 0.22 D 0.17101 3
I 9.44 8.92 18.36 0.52 D 0.16062 5
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4.2. Fuzzy TOPSIS Method

This part discusses how TOPSIS can be used to rank I4.0 technologies. Thus, the factors
that most contribute to the overall differentiation of each technology can be identified, es-
tablishing a foundation for the development and implementation of effective improvement
strategies. Due to space limitations in this study, Table 8 displays a sample of the collected
data from one of the experts used to evaluate the alternatives in this study. Both positive
and negative, fuzzy ideal solutions are illustrated in Tables 9 and 10. Consequently, the
distances dj

+ and dj
− for each choice and the closeness coefficient CCi for I4.0 technologies

are displayed in Table 11. Figure 6 shows the closeness coefficients CCi as well as the final
ranking of I4.0 technologies.

Table 8. An example of collected data.

MSOs IoT CM BD AIR AM AR MS CPS CS BC

C H M M H H L L H L M
Q M L H VH H M M VH L M
D VH M L H L L M H L M
F H M L M VH H H H L M
P H M H H M L H VH H H
I L L L L VH M M H VL L

Table 9. Distance from fuzzy positive ideal solution (FPIS).

MSOs IoT CM BD AIR AM AR MS CPS CS BC

C 0.00804 0.00300 0.00067 0.00350 0.00712 0.00067 0.00000 0.10609 0.09819 0.09819
Q 0.04445 0.05290 0.04605 0.02138 0.02437 0.05382 0.05477 0.00000 0.06093 0.06659
D 0.03851 0.04670 0.05008 0.02032 0.04441 0.04834 0.05515 0.00000 0.05190 0.05283
F 0.03009 0.04241 0.03717 0.03349 0.02293 0.02710 0.02804 0.00000 0.04376 0.03232
P 0.04978 0.05780 0.05303 0.02453 0.02790 0.05303 0.04978 0.00000 0.05393 0.05393
I 0.05829 0.07187 0.06948 0.07361 0.00000 0.05934 0.06040 0.05152 0.08190 0.06948

dj
+ 0.22916 0.27467 0.25648 0.17683 0.12674 0.24230 0.24815 0.15761 0.39061 0.37334

Table 10. Distance from fuzzy negative ideal solution (FNIS).

MSOs IoT CM BD AIR AM AR MS CPS CS BC

C 0.1048 0.1055 0.1060 0.1054 0.1049 0.1060 0.1061 0.0000 0.0080 0.0080
Q 0.0394 0.0260 0.0357 0.0531 0.0459 0.0252 0.0244 0.0666 0.0214 0.0000
D 0.0337 0.0209 0.0191 0.0395 0.0230 0.0198 0.0013 0.0560 0.0187 0.0187
F 0.0173 0.0016 0.0079 0.0126 0.0315 0.0221 0.0205 0.0438 0.0000 0.0142
P 0.0141 0.0000 0.0078 0.0345 0.0299 0.0078 0.0141 0.0578 0.0063 0.0063
I 0.0336 0.0224 0.0237 0.0103 0.0819 0.0324 0.0313 0.0422 0.0000 0.0237

dj
− 0.24286 0.17642 0.20018 0.25543 0.31707 0.21325 0.19767 0.26636 0.05436 0.07085

Table 11. Fuzzy TOPSIS final result.

I4.0 T. FPIS (di
+) FNIS (di

−) CCi Rank

IoT 0.229 0.243 0.5145 4
CM 0.275 0.176 0.3911 8
BD 0.256 0.200 0.4384 7
AIR 0.177 0.255 0.5909 3
AM 0.127 0.317 0.7144 1
AR 0.242 0.213 0.4681 5
MS 0.248 0.198 0.4434 6
CPS 0.158 0.266 0.6283 2
CS 0.391 0.054 0.1222 10
BC 0.373 0.071 0.1595 9
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Figure 6 depicts the ranking of I4.0 technologies and their respective closeness coef-
ficients. Using Equation (34), these values were calculated. With a score of 0.714.4, AM
outperformed all other Technologies in terms of market competitiveness. Frequently, addi-
tive manufacturing is seen as the most essential pillar of the I4.0 transition. This conclusion
is supported by value and prior research. The capabilities of conventional production
technology physically constrain intelligent factories. Since I4.0 requires mass customization,
nontraditional production techniques must be developed [71].

Consequently, studies have shown that additive manufacturing is an essential compo-
nent of I4.0 [71,72]. AM has become an important technology for making customized items
due to its capacity to construct complicated objects with enhanced features (new materials,
shapes). Due to its superior product quality, AM is applied in various areas, including
aerospace and manufacturing [72]. The second technology is cyber-physical systems with
0.6283. Other technologies’ rankings are shown in Figure 6.

The ranking of I4.0 technologies according to each MSOs

To evaluate the I4.0 technologies by each MSO, a weighted normalized average fuzzy
decision matrix is used. The results of this ranking are displayed in Figure 7. It shows the
relative relationships and the differentiation indices for each MSO’s consolidated findings.
The ranking of other I4.0 technologies according to each MSOs is shown in Figure 7. Table 12
demonstrates that the MS technology has the highest total score of 0.10874 out of all the
I4.0 technologies concerning cost. This is followed by BD, CM, and AIR, each with scores
of 0.10823, 0.10645, and 0.10606, respectively. Consequently, Table 12 reveals that various
I4.0 technologies appear moderately or less critical in reducing costs.

Table 12. The weighted normalized average fuzzy decision matrix.

MSOs IoT CM BD AIR AM AR MS CPS CS BC

Cost 0.10259 0.10645 0.10823 0.10606 0.10329 0.10823 0.10874 0.00524 0.01192 0.01192
Quality 0.11935 0.10690 0.11624 0.14115 0.13492 0.10586 0.10482 0.15776 0.09860 0.08199
Delivery 0.06685 0.05885 0.05656 0.07542 0.06056 0.05770 0.04742 0.08684 0.05542 0.05485
Flexibility 0.09242 0.08378 0.08724 0.08983 0.10019 0.09501 0.09414 0.11574 0.08292 0.09069
Performance 0.08098 0.07441 0.07806 0.09703 0.09411 0.07806 0.08098 0.11235 0.07733 0.07733
Innovativeness 0.08155 0.07214 0.07371 0.06195 0.12546 0.08077 0.07998 0.08704 0.05646 0.07371
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The comparison of prior research on the ranking and selection for I4.0 technologies is
summarized in Table 13. It indicates that they utilize a different approach for evaluating
the influence of I4.0 Technologies on MSOs. The rankings and selection of I4.0 technologies
in order to decrease cost, improve flexibility, improve performance, and improve innova-
tiveness are the same. Due to the uncertainty and vagueness of human judgment, there is a
small difference in the ranking and selection of I4.0 technologies on quality and delivery,
which was not considered in the previously reported study.

Table 13. Comparisons between previous results and current findings considering I4.0
technologies selections.

Research Findings Previous Study [25]
Technology

Guideline SelectionMethod Used A Hybrid MCDM Z-Score

Data Collection Expert Opinions Expert Opinions

Cost
MS MS First
BD BD Second

Quality CPS AIR First
AIR BD Second

Delivery CPS BD First
AIR IoT Second

Flexibility AM AM First
CPS CPS Second

Performance
CPS CPS First
AIR AIR Second

Innovativeness
AM AM First
CPS CPS Second
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5. Implications

Researchers have placed a substantial emphasis on MSO-related I4.0 technologies
in recent years. Unfortunately, a well-structured approach is currently lacking to help
businesses evaluate and choose the most suitable I4.0 technologies. The purpose of this
study is to rank different I4.0 technologies using a hybrid fuzzy MCDM approach and
assess their potential and influence on MSOs.

This model provides insightful information to decision makers, practitioners, cluster
managers, and smart manufacturing researchers. An important contribution to this field is
identifying how I4.0 technologies affect MSOs. As the adoption of smart manufacturing
methods develops, firms focus on the manufacturing systems’ characteristics influenced by
technology improvements. I4.0 technologies are the essential enablers required to create
smart manufacturing systems. However, the degree to which and the specific technologies
chosen for this purpose depends on the organization’s strategic decisions regarding the
desired level of smartness. The level of smartness describes the organization’s readiness to
deploy smart manufacturing for a specific process, manufacturing asset, and facility [73].
In each category, I4.0 technologies must be aligned with long-term strategic objectives to
improve manufacturing performance [74,75].

To gain a better understanding of factors affecting MSOs’ adoption of I4.0 technologies,
FDEMATEL was utilized to study root cause-and-effect relationships of factors affecting
MSOs’ I4.0 adoption [64]. By identifying MSO receivers and dispatchers, the FDEMATEL
results support the efficient development and implementation of long-term plans. It has
also been used to determine the relative importance of MSO factors. Fuzzy TOPSIS was
also utilized to prioritize the alternatives. MSOs are ranked based on a system’s structure
and the significant factors that influence it, allowing researchers and manufacturers to
understand how I4.0 technologies are ranked.

Based on practical management implications, this report provides managers with criti-
cal insights for improving MSOs’ utilization of I4.0 technologies. In order to be competitive
in the market and receive useful feedback, managers should prioritize the right I4.0 tech-
nologies in their production plans, as shown in this study. This ranking of Technology leads
to enhance performance and competition. According to the ranking, organizations may
benefit from integrating these technologies into their already-established, well-designed
procedures [76]. This study also shows that industrial companies are increasingly recogniz-
ing the importance of implementing I4.0 technologies to remain competitive or perhaps
boost their market share.

6. Conclusions

This research aims to determine the impact of I4.0 technologies on MSOs. Using a
hybrid MCDM approach, the I4.0 technologies are ranked. The contribution of this research
is tremendous from both a practical and theoretical perspective. Identifying I4.0 technolo-
gies and MSOs contributes to a better understanding of the fourth industrial revolution.
Quantitative research into the effects of I4.0 technologies on MSOs was conducted, strength-
ening the understanding of their interdependence. This research contributed theoretical
considerations for future empirical studies of the connection between I4.0 and MSOs, specif-
ically as it relates to MSOs’ efforts to enhance their performance in order to increase their
market competitiveness. According to the study’s findings, manufacturers can improve
their worldwide competitiveness by adopting I4.0 technologies. The article offers a unique
perspective on how MSOs should prioritize I4.0 technologies. By providing a ranking, this
article assists businesses to recognize the value in integrating these technologies into their
existing, well-thought-out procedures. As a result of this competitiveness was increased
and performance was enhanced. Moreover, this research enables firms to shift from con-
ventional to smart manufacturing, demonstrating how these technologies can play a crucial
part in gaining a competitive advantage for a business.

The results indicated that cost (C) was the most influential factor, followed by flexibility
(F) and performance(P). Other criteria are often of moderate significance to MSOs when
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adopting I4.0 technologies. Additive manufacturing is the most effective I4.0 technology
for competing in the global market, according to the research. Following that are AIR and
CPS. Other I4.0 technologies are less important to MSOs for implementation.

In addition to these contributions and findings, this study has a few limitations that
will be addressed in future research as follows:

• It is also possible to evaluate the impact of I4.0 technologies on MSOs using multi-
criteria methods such as VIKOR, ELECTRE, GRA, SAW, etc.;

• So far, no significant case studies or empirical research have been conducted to de-
termine how MSOs are affected by I4.0 technologies. So, an empirical study can be
conducted in the future;

• As an extension of this research, several I4.0 technologies, such as digital twins and
others, may be analyzed to enhance manufacturing;

• The initial criteria were established by identifying six MSOs and ten I4.0 technologies.
Broader criteria set may have been applied by examining additional criteria and
technologies.
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