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Abstract: Many oil wells in closed reservoirs continue to produce in the pseudo-steady-state flow
regime for a long time. The principal objective of this work is to investigate the characteristics of
two key pseudo-steady-state parameters—pseudo-steady-state constant (bDpss) and pseudo-skin
factor (S)—for a well penetrated by a fracture with an azimuth angle (θ) in an anisotropic reservoir.
Firstly, a general analytical pressure solution for a finite-conductivity fracture with or without an
azimuth angle in an anisotropic rectangular reservoir was developed by using the point-source
function and spatial integral method, and two typical cases were employed to verify this solution.
Secondly, with the asymptotic analysis method, the expressions of pseudo-steady-state constant and
pseudo-skin factor were obtained on the basis of their definitions, and the effects of permeability
anisotropy, fracture azimuth angle, fracture conductivity and reservoir shape on them were discussed
in detail. Results show that all the bDpss-θ and S-θ curves are symmetric around the vertical line,
θ = 90◦ and form a hump or groove shape. The optimized fracture direction in an anisotropic
reservoir is perpendicular to the principal permeability axis. Furthermore, a new formula to calculate
pseudo-skin factor was successfully proposed based on these two parameters’ relationship. Finally,
as an application of pseudo-steady-state constant, a set of Blasingame format rate decline curves for
the proposed model were established.

Keywords: pseudo-steady-state flow; anisotropic reservoir; fracture azimuth angle;
pseudo-steady-state constant; pseudo-skin factor; Blasingame format decline curves

1. Introduction

Considering that steady state condition rarely occurs in reservoirs, pseudo-steady-state (PSS)
flow regime is one of the most important regimes for all closed reservoirs [1,2]. This regime may last
for a long time, and many oil or gas wells continue to produce in this regime; thus, a considerable
productivity may be recovered from these reservoirs. Therefore, it is of great significance for a closed
reservoir to investigate its characteristics in the PSS flow regime.

Pseudo-steady-state constant and pseudo-skin factor are two key parameters to reflect upon the
property of PSS flow regime. The former parameter is an auxiliary variable to build up new rate
decline curves, like “Fetkovich” format and “Blasingame” format, which can improve the precision of
well test and is also an important method to estimate the hydrocarbon reserves in place and assess
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the recoverable amount of the oil from the reservoirs [3–6]. Moreover, Hagoort (2009) found that
pseudo-steady-state constant can be used for the measurement of the productivity of the well in
the PSS flow period [7]. He also obtained a useful relationship that pseudo-steady-state constant is
the reciprocal of the dimensionless production index. The latter parameter is extremely useful to
determine the productivity increase or decrease caused by partial penetration or slant of a well, or
fracture configuration [8–12]. Cinco-Ley (1975) first introduced the definition of the pseudo-skin factor
for a slanted well and demonstrated that the calculation of the pseudo-skin factor permitted evaluation
of the well condition [8]. Ozkan (1988) used the pseudo-skin factor to compare the performance of
horizontal wells to that of vertically fractured wells and unstimulated vertical wells [10]. Hydraulic
fracturing can increase the productivity of tight porous medium. There are many solutions, including
the analytical type, semi-analytical type, and numerical type, to investigate the flow efficiency of
fractured wells in the transient period [13–19]. However, there are few researches focusing on the
pseudo-steady-state problem of fractured wells. Based on the pseudo-skin factor for a uniform-flux
inclined fracture presented by Cinco-ley [8], Jia et al. (2016) discussed the effect of inclination angle,
fracture conductivity and permeability anisotropy on the pseudo-skin factor for a finite-conductivity
inclined fracture connected to a slanted wellbore [12]. Their conclusions provide a theoretical basis for
optimizing the well pattern and designing the reservoir stimulation.

Although the studies of PSS flow have been very common, the related studies of fractured wells
in the anisotropic reservoirs are still rarely reported at present. Coordinate transformations, including
rotation transformation and scaling transformation, are the main methods to deal with the issue
of reservoir anisotropy. The principle of these methods is to convert the anisotropic system into
the equivalent isotropic system [8,12,20–25]. Kucuk and Brigham (1979) transformed the Cartesian
coordinates into the elliptical coordinates and solved the elliptical flow problems that existed in the
infinite conductivity vertically fractured wells in anisotropic reservoirs [20]. Spivey and Lee (1999)
established an equivalent isotropic system for a horizontal or hydraulically fractured well at an arbitrary
azimuth in an anisotropic formation [24]. Cinco-Ley (1975) and Jia et al. (2015) presented a set of
coordinate transformation system to investigate the transient pressure for an inclined fracture [8,12].
Using the scaling transformation, Xu et al. (2017) obtained an analytical solution for a finite-conductivity
fracture at an arbitrary azimuth in a rectangular anisotropic reservoir [25]. On the basis of their work,
PSS flow of these models can be easily discussed. However, coordinate rotation transformation is not
appropriate for a rectangular reservoir, and coordinate scaling transformation may cause the fracture
shape to change and cannot reflect the actual flow behavior in an anisotropic rectangular reservoir.

As introduced from the previous literature, in terms of the studies of fractured wells, except Spivey
and Lee (1999) and Xu et al. (2017) [24,25], there is little research considering the effect of the fracture
azimuth angle in an anisotropic reservoir. Due to the defects existed in the proposed approaches,
the primary purpose of this work is to find a new way to deal with permeability anisotropy for a
finite-conductivity fracture with an azimuth angle in an anisotropic rectangular reservoir and further
to investigate its corresponding pseudo-steady-state parameters.

In this work, firstly, an analytical solution was obtained for a well penetrated by a vertical fracture
with or without an azimuth angle in an anisotropic rectangular reservoir, and two cases were employed
to validate this analytical solution. Secondly, the expressions of pseudo-steady-state constant and
pseudo-skin factor for this model were derived in detail, and the influence of permeability anisotropy,
fracture azimuth angle, fracture conductivity and reservoir shape on these two parameters were
discussed. In addition, a new formula to calculate the pseudo-skin factor was obtained, and also a set of
new Blasingame type curves for this model were established by using the pseudo-steady-state constant.

2. Physical Model

Figure 1 is a schematic illustration of a well penetrated by a vertical fracture with an azimuth
angle in the anisotropic rectangular reservoir. In order to simplify the mathematical model, several
basic assumptions are made as follows:
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(1) This rectangular reservoir is closed at every boundary, and it is anisotropic in the horizontal
direction and its porous medium is homogeneous. It has a uniform thickness h with constant
porosity φ and its permeability in x and y direction are kx and ky, respectively.

(2) Flow in this reservoir is considered to be a slightly compressible single-phase fluid with constant
viscosity µ and total compressibility ct, and obeys Darcy’s law.

(3) The reservoir is fully penetrated by a finite-conductivity vertical fracture, which lies at an arbitrary
azimuth angle θ in the x-y plane (0

◦

≤ θ < 180
◦

).
(4) No fluid is assumed to flow at the fracture tip. The total flow contribution of the fracture to the

wellbore is q.
(5) The half length of the fracture is assumed to have constant length x f , constant width w f and

constant permeability k f .

(6) Gravity effects are neglected and basic laminar flow occurs in the system.
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Figure 1. Schematic representation of a vertical well penetrated by a finite-conductivity fracture with
an azimuth angle in an anisotropic rectangular reservoir.

3. Mathematical Model

To obtain the pseudo-steady-state parameters, we first developed a pseudo-steady-state solution
of a fracture with an azimuth angle in an anisotropic rectangular reservoir. Figure 2 presents a
detailed derivation process of the pseudo-steady-state solution, and the key of this process lies in the
development of the model’s unsteady-state and pseudo-steady-state solution. The related derivation
of STEP 1, STEP 2, STEP 3 and STEP 4 is presented in this section, and the detailed derivation of STEP
5 is given in Appendix A.
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Figure 2. Derivation process of pseudo-steady-state solution of a fracture with an azimuth angle in an
anisotropic rectangular reservoir.

Gringarten and Ramey (1973) provided the basic instantaneous source function in an infinite slab
reservoir under the closed boundary condition [26]:

Su(u, ue, t) =
1
ue

1 + 2
∞∑

n=1

exp
(
−

n2π2ηut

u2
e

)
cos

nπuw

ue
cos

nπu
ue

 u = x, y (1)

where ηu = ku
φµct

, u = x, y.
The instantaneous point-source function in an anisotropic rectangular reservoir can be obtained

by considering the intersection of a plane source in the x direction and a plane source in the y direction
in a closed linear reservoir, where we do not consider the z-component.

S(x, y, xe, ye, t) = Sx(x, xe, t) × Sy(y, ye, t) = 1
xe

[
1 + 2

∞∑
n=1

exp
(
−

n2π2ηxt
x2

e

)
cos nπxw

xe
cos nπx

xe

]
·

1
ye

[
1 + 2

∞∑
n=1

exp
(
−

n2π2ηyt
y2

e

)
cos nπyw

ye
cos nπy

ye

] (2)

By means of the superposition theorem [26], we obtained the pressure distribution in the anisotropic
rectangular reservoir:

ppoint(x, y, xe, ye, t) = pi −
1
φct

∫ t

0
q(τ)Sx(x, xe, t− τ) · Sy(y, ye, t− τ)dτ (3)

For the sake of the simplicity, a series of dimensionless variables are listed in Table 1.

Table 1. Dimensionless variables.

Parameters Definitions

Dimensionless time tD = kt
µφctx2

f

Dimensionless pressure pD =
2πkh(pi−p)

qµB

Dimensionless coordinate in the x- and y-axis xD = x
x f

, yD =
y

x f
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Table 1. Cont.

Parameters Definitions

Dimensionless wellbore coordinate in the x- and y-axis xwD = xw
x f

, ywD =
yw
x f

Dimensionless length of the reservoir in the x axis xeD = xe
x f

Dimensionless width of the reservoir in the y axis yeD =
ye
x f

Permeability anisotropic factor β =
√

kx
ky

Dimensionless fracture conductivity C f D =
k f w f

kx f

Dimensionless time based on drainage area tDA = tD
A

Using these variables, we can obtain the dimensionless form for Equation (3):

ppointD(xD, yD, xeD, yeD, β, tD) =
2π

xeDyeD

∫ tD

0
Sx(xD, xeD, β, τD) · Sy(yD, yeD, β, τD)dτD (4)

where

SxD(xD, xeD, β, τD) = 1 + 2
∞∑

n=1

exp

−n2π2βτD

x2
eD

 cos
nπxwD

xeD
cos

nπxD

xeD
,

SyD(yD, yeD, β, τD) = 1 + 2
∞∑

n=1

exp

−n2π2τD

βy2
eD

 cos
nπywD

yeD
cos

nπyD

yeD
.

Note that we do not take a coordinate scaling transformation to convert the anisotropic system
into the equivalent isotropic system and all the derivations are conducted in the anisotropic system,
which is different from the method of Xu et al. (2017) [25] and avoids the fracture deformation caused
by the coordinate scaling transformation.

Applying the Laplace transform to Equation (4), we have the point-source solution for a rectangular
reservoir in Laplace domain:

sppointD(xD, yD, xeD, yeD, β, s)

=
πβ
xeD

[
cosh(ξ0(yeD−|yD±ywD|))

ξ0sinh(ξ0 yeD)
+ 2

∞∑
n=1

cos nπxwD
xeD

cos nπxD
xeD

cosh ξn(yeD−|yD±ywD|)
ξnsinhξn yeD

]
(5)

where ξn =

√
βs + β2 n2π2

x2
eD

(n = 0, 1, 2 · · ·). When β = 1, Equation (5) can be regressed to the solution

of a vertical well in an isotropic rectangular reservoir.
According to the coordinate system in Figure 1, the following equations can be easily obtained

(θ is the fracture azimuth angle):

y′wD = ywD + ηD sinθ, x′wD = xwD + ηD cosθ, ηD =
η

x f
(−1 ≤ ηD ≤ 1).

where x′wD and y′wD are the dimensionless coordinate along the fracture.
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After substituting the above equations into the point-source solution (Equation (5)), taking ηD as
the integral variable and conducting the integral from −1 to 1, we can get the infinite-conductivity
fracture pressure distribution under constant production rate:

spinfD(xD, yD, xeD, yeD, β,θ, s)

=
πβ
xeD



1
2

1∫
−1

cosh(ξ0(yeD−(yD+(ywD+ηD sinθ))))
ξ0sinh(ξ0 yeD)

dηD

+ 1
2

1∫
−1

cosh(ξ0(yeD−|yD−(ywD+ηD sinθ)|))
ξ0sinh(ξ0 yeD)

dηD

+
1∫
−1

∞∑
n=1

cos nπ(xwD+ηD cosθ)
xeD

cos nπxD
xeD

cosh ξn(yeD−|yD−(ywD+ηD sinθ)|)
ξnsinhξn yeD

dηD

+
1∫
−1

∞∑
n=1

cos nπ(xwD+ηD cosθ)
xeD

cos nπxD
xeD

cosh ξn(yeD−(yD+(ywD+ηD sinθ)))
ξnsinhξn yeD

dηD



(6)

Let

R1 =
πβ

2xeD

1∫
−1

cosh(ξ0(yeD − (yD + (ywD + ηD sinθ)))) + cosh
(
ξ0

(
yeD −

∣∣∣yD − (ywD + ηD sinθ)
∣∣∣))

ξ0sinh(ξ0yeD)
dηD,

R2 =
πβ

xeD

1∫
−1

∞∑
n=1

cos
nπ(xwD + ηD cosθ)

xeD
cos

nπxD

xeD

cosh ξn(yeD −
∣∣∣yD − (ywD + ηD sinθ)

∣∣∣)
ξnsinhξnyeD

dηD,

R3 =
πβ

xeD

1∫
−1

∞∑
n=1

cos
nπ(xwD + ηD cosθ)

xeD
cos

nπxD

xeD

cosh ξn(yeD − (yD + (ywD + ηD sinθ)))
ξnsinhξnyeD

dηD,

This pressure solution, Equation (6), can be sorted as follows:

spinfD(xD, yD, xeD, yeD, β,θ, s) = R1 + R2 + R3 (7)

Selecting the equivalent average pressure point presented by Gringarten et al. (1974): xD =

xwD + 0.732 cosθ, yD = ywD + 0.732 sinθ, we can further obtain an approximate infinite-conductivity
fracture solution in Laplace domain [27].

Because of the symmetry, it is not necessary to study all the values of azimuth angle. In this work,
we only consider the azimuth angle’s range: 0

◦

≤ θ < 180
◦

. When θ , 0
◦

, by using the traditional
integral method, R1, R2 and R3 in Equation (7) can be simplified as:

R1 =
πβ

2xeDξ
2
0 sinθ

sinhξ0(yeD−(2ywD−0.268 sinθ))−sinhξ0(yeD−(2ywD+1.732 sinθ))
sinh(ξ0 yeD)

−
πβ

2xeDξ
2
0 sinθ

sinhξ0(yeD−1.732 sinθ)+sinhξ0(yeD−0.268 sinθ)
sinh(ξ0 yeD)

+ π
sxeD sinθ

(8)
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R2 = β
(
π

xeD

)2
cosθ

∞∑
n=1

n
cosh ξn(yeD−2ywD−1.732 sinθ)

sinhξn yeD

ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

sin nπ(xwD+cosθ)
xeD

−β
(
π

xeD

)2
cosθ

∞∑
n=1

n
cosh ξn(yeD−2ywD+0.268 sinθ)

sinhξn yeD

ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

sin nπ(xwD−cosθ)
xeD

+
βπ sinθ

xeD

∞∑
n=1

sinhξn(yeD−2ywD+0.268 sinθ)
sinhξn yeD[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

cos nπ(xwD−cosθ)
xeD

−
βπ sinθ

xeD

∞∑
n=1

sinhξn(yeD−2ywD−1.732 sinθ)
sinhξn yeD[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

cos nπ(xwD+cosθ)
xeD

(9)

R3 = β
(
π

xeD

)2
cosθ

∞∑
n=1

n
sin

[
nπ

xeD
(2xwD+1.732 cosθ)

]
+sin

(
nπ0.268 cosθ

xeD

)
2ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cosh ξn(yeD−0.268 sinθ)
sinhξn yeD

−β
(
π

xeD

)2
cosθ

∞∑
n=1

n
sin

[
nπ

xeD
(2xwD−0.268 cosθ)

]
−sin

(
nπ1.732 cosθ

xeD

)
2ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cosh ξn(yeD−1.732 sinθ)
sinhξn yeD

−
βπ sinθ

2xeD

∞∑
n=1

cos
[

nπ
xeD

(2xwD−0.268 cosθ)
]
+cos

(
nπ1.732 cosθ

xeD

)
[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] sinhξn(yeD−1.732 sinθ)
sinhξn yeD

−
βπ sinθ

2xeD

∞∑
n=1

cos
[

nπ
xeD

(2xwD+1.732 cosθ)
]
+cos

(
nπ0.268 cosθ

xeD

)
[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] sinhξn(yeD−0.268 sinθ)
sinhξn yeD

+
βπ sinθ

xeD

∞∑
n=1

cos
nπ(2xwD+1.464 cosθ)

xeD
+1[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

]

(10)

Let the last term in the right side of Equation (10) equal to R31:

R31 =
βπ sinθ

xeD

∞∑
n=1

cos nπ(2xwD+1.464 cosθ)
xeD

+ 1[(
nπ cosθ

xeD

)2
+ (ξn sinθ)2

] (11)

Equation (11) is not conducive to the rapid convergence. According to the following formula [28]:

∞∑
n=1

cos nx
n2 + α2 =

π
2α

coshα(π− x)
sinhαπ

−
1

2α2 0 ≤ x ≤ 2π (12)

Equation (11) can be converted to the following form, which is convenient to get a simple
rapid algorithm:

R31 =
βεθπ

2 sinθ
√
βs

cosh xeDεθ
√
βs

(
1− 2 (xwD+0.732 cosθ)

xeD

)
+ cosh xeDεθ

√
βs

sinhxeDεθ
√
βs

−
π

sxeD sinθ
(13)

where εθ =

√
sin2 θ

(cos2 θ+β2 sin2 θ)
.

Substituting Equation (13) into Equations (8) and (10), the infinite-conductivity fracture equivalent
pressure solution in an isotropic rectangular reservoir can be further expressed as follows:

spinfwD(xwD, ywD, xeD, yeD, β,θ, s) = R′1 + R′2 + R′3
(
0
◦

< θ < 180
◦
)

(14)
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where
R′1 =

βπ

2xeDξ
2
0 sinθ

sinhξ0(yeD−(2ywD−0.268 sinθ))−sinhξ0(yeD−(2ywD+1.732 sinθ))
sinh(ξ0 yeD)

−
βπ

2xeDξ
2
0 sinθ

sinhξ0(yeD−1.732 sinθ)+sinhξ0(yeD−0.268 sinθ)
sinh(ξ0 yeD)

+
βεθπ

2 sinθ
√
βs

cosh xeDεθ
√
βs

(
1−2

(xwD+0.732 cos θ)
xeD

)
+cosh xeDεθ

√
βs

sinhxeDεθ
√
βs

,

R′2 = R2,

R′3 = β
(
π

xeD

)2
cosθ

∞∑
n=1

n
sin

[
nπ

xeD
(2xwD+1.732 cosθ)

]
+sin

(
nπ0.268 cosθ

xeD

)
2ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cosh ξn(yeD−0.268 sinθ)
sinhξn yeD

−β
(
π

xeD

)2
cosθ

∞∑
n=1

n
sin

[
nπ

xeD
(2xwD−0.268 cosθ)

]
−sin

(
nπ1.732 cosθ

xeD

)
2ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cosh ξn(yeD−1.732 sinθ)
sinhξn yeD

−
βπ sinθ

2xeD

∞∑
n=1

cos
[

nπ
xeD

(2xwD−0.268 cosθ)
]
+cos

(
nπ1.732 cosθ

xeD

)
[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] sinhξn(yeD−1.732 sinθ)
sinhξn yeD

−
βπ sinθ

2xeD

∞∑
n=1

cos
[

nπ
xeD

(2xwD+1.732 cosθ)
]
+cos

(
nπ0.268 cosθ

xeD

)
[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] sinhξn(yeD−0.268 sinθ)
sinhξn yeD

.

When θ = 0
◦

, the fracture is parallel to x axis and the above process related to the two terms,
R1 and R3, is not applicable to this case. However, we can directly substitute the equivalent average
pressure point and θ = 0

◦

into Equation (7), and easily obtain the corresponding equivalent pressure
solution of the infinite-conductivity fracture at θ = 0

◦

:

spinfwD(xwD, ywD, xeD, yeD, β,θ, s) = F1 + F2
(
θ = 0

◦
)

(15)

where

F1 =
βπ

xeD

cosh ξ0(yeD − 2ywD) + cosh ξ0yeD

ξ0sinh(ξ0yeD)
,

F2 = 2β
∞∑

n=1

1
n

cos
nπxwD

xeD
cos

nπ(xwD + 0.732)
xeD

sin
nπ
xeD

cosh ξn(yeD − 2ywD) + cosh ξnyeD

ξnsinh(ξnyeD)
.

Therefore, using Equations (14) and (15), we can calculate the equivalent wellbore pressure of an
infinite-conductivity fracture with or without an azimuth angle.

Wang et al. (2014) developed a conductivity influence function to deal with the flow in a
finite-conductivity fracture [29]. Based on the result of Wang et al. (2014), for a well penetrated by
a single finite-conductivity fracture with or without an azimuth angle, its pressure solution under
constant rate can be written as follows:

spwD

(
xwD, ywD, xeD, yeD, β,θ, C f D, s

)
= spinfwD(xwD, ywD, xeD, yeD, β,θ, s) + s f

(
C f D, s

)
(16)

where f
(
C f D, s

)
is the fracture conductivity influence function.

s f
(
C f D, s

)
= 2π

∞∑
n=1

1

n2π2C f D + 2
√

n2π2 + s
+

0.4063π

π
(
C f D + 0.8997

)
+ 1.6252s

(17)

According to the Stehfest (1970) numerical inversion [30], the pressure solution in the real time
domain can be written:

pwD
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD

)
= pinfwD(xwD, ywD, xeD, yeD, β,θ, tD) + f

(
C f D, tD

)
(18)
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4. Model Validation

4.1. Validation of a Fractured Well in an Isotropic Rectangular Reservoir

Chen and Raghavan (1997) presented a finite-conductivity fracture solution for a vertical fracture
parallel to the x axis in an isotropic rectangular reservoir [31]. They considered two cases in an 8:1
rectangle reservoir: a well located at the center of the rectangle (xwD/xeD = 0.5, ywD/yeD = 0.5, θ = 0◦,
β = 1), and a well located close to the rectangle’s longer side (xwD/xeD = 0.5, ywD/yeD = 0.1, θ = 0◦,
β = 1). Obviously, these two scenarios are special cases of our model. Thus, we can validate our model
by substituting the parameter values above into our model and comparing our results with Chen
and Raghavan’s. Figure 3a,b show the comparison results of the dimensionless pressure at different
fracture conductivity for a well located at the center of the rectangle and close to the rectangle’s longer
side, respectively. It demonstrates that our results show excellent agreement with the work of Chen
and Raghavan within the whole production life.

4.2. Validation of a Finite-Conductivity Fracture with an Azimuth Angle in an Anisotropic Reservoir

As mentioned above, Xu et al. (2017) presented a solution for a finite-conductivity fracture with an
azimuth angle in an anisotropic rectangular reservoir by using the scaling transformation [25]. Figure 4
shows the comparison of the dimensionless pressure derivative for a vertical fracture at different
azimuth angle. As presented in Figure 4, the pressure derivative of our model is in good agreement
with that of Xu et al. The deviations of the results are mainly at early time, which may be caused by
the different approaches to deal with the reservoir anisotropy.

These two validations (Figures 3 and 4) indicate that the equivalent wellbore pressure solution
proposed in this study is reliable.Energies 2019, 12, x FOR PEER REVIEW 10 of 30 
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5. Pseudo-Steady-State Flow Parameters

Pseudo-steady-state constant and pseudo-skin factor are two key parameters in the PSS flow
period, which can help us to understand this period’s characteristics and also analyze this period’s
productivity. In this section, pseudo-steady-state constant and pseudo-skin factor corresponding to
our model were obtained with the asymptotic analysis method.

5.1. Pseudo-Steady-State Constant

Pratikno et al. (2003) proposed a pseudo-steady-state formula when developing an analytical
solution for a single finite-conductivity fracture in the isotropic circular reservoir [6]:

pDpss(tDA) = 2πtDA + bDpss (19)

For an isotropic circular reservoir, pseudo-steady-state constant, bDpss, is only related to the
dimensionless reservoir drainage radius and fracture conductivity, CfD. Pseudo-steady-state constant is
of great importance for the analysis of new rate decline curves. The general definitions of the variables
used for “Fetkovich” format rate decline curves can be written as follows [3]:

qDd = qDbDpss (20)

tDd =
2π

bDpss
tDA (21)

In order to eliminate the possibility of the multiple solutions and errors existed in well test,
Blasingame et al. (1989) presented the integral average method [32]. The auxiliary “decline” variables
used for “Blasingame” format rate decline curves are given by:

(1) Rate integral function: qDdi

qDdi =

tDd∫
0

qDd(τ)dτ

tDd
(22)

(2) Rate integral-derivative function: qDdid

qDdid = −
dqDdi

d ln(tDd)
= −tDd

dqDdi

dtDd
= qDdi − qDd (23)
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Based on the pressure solution under constant rate (Equation (16)), combining the Duhamel
principle and the above equations, we can set up new Blasingame type curves for a well penetrated by
a finite-conductivity vertical fracture in an anisotropic rectangular reservoir. The key to establish these
type curves is to derive the pseudo-steady-state constant with the asymptotic analysis method.

Through a series of asymptotic analysis, we obtain an approximate pressure solution for our
model in the PSS flow regime (Appendix A). Its pseudo-steady-state constant is further obtained:

At 0
◦

< θ < 180
◦

,

bDpss =
βxeDπ sinθ

(cos2 θ+β2 sin2 θ)

[
1
3 −

(xwD+0.732 cosθ)
xeD

+
(xwD+0.732 cosθ)2

x2
eD

]
+ xeD cosθ

2π × ∞∑n=1

cosh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ sin

(
nπ0.268 cosθ

xeD

)}
−

∞∑
n=1

cosh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
− sin

(
nπ1.732 cosθ

xeD

)}
+
βxeD sinθ

2π × ∞∑n=1

sinh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
−sinh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
+ cos

(
nπ1.732 cosθ

xeD

)}
−

∞∑
n=1

sinh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+sinh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ cos

(
nπ0.268 cosθ

xeD

)}
+

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

)

(24)

At θ = 0
◦

,

b′Dpss = 2βπ yeD
xeD

{
1
3 −

1
2
|yD+ywD|+|yD−ywD|

yeD
+ 1

4

[
(yD+ywD)

2+(yD−ywD)
2

y2
eD

]}
+2 xeD

π

∞∑
n=1

1
n2 cos nπxwD

xeD
cos nπxD

xeD
sin nπ

xeD

cosh nβπ
xeD

(yeD−|yD±ywD|)

sinh
(

nβπ
xeD

yeD

)
+

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

) (25)

The derivation of this parameter is presented in detail in Appendix A. We can note that for a well
penetrated by a vertical fracture with or without an azimuth angle in an anisotropic rectangular reservoir,
bDpss or b′Dpss, is independent of time, but this parameter is closely related to permeability anisotropy,
fracture conductivity, fracture azimuth angle, well location, and rectangular boundary condition.

5.2. Pseudo-Skin Factor

For an anisotropic rectangular reservoir, in the PSS flow regime, there is a difference
between the wellbore pressure for a well penetrated by a vertical fracture with an azimuth angle,
pwD

(
xwD, ywD, xeD, yeD, β,θ, C f D, tD →∞

)
, and the wellbore pressure for a well penetrated by a vertical

fracture parallel to the x axis, pwD
(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD →∞
)
. This difference remains

constant and can be handled as a pseudo-skin factor [8,12,33], which can be defined as:

S = pwD
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD →∞

)
− pwD

(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD →∞
)

(26)

Fracture azimuth angle, θ, in the first term of the right-hand side of Equation (26), can take any
value. Obviously, like the pseudo-steady-state constant, the pseudo-skin factor for our model is also
dependent on permeability anisotropy, fracture conductivity, fracture azimuth angle, and rectangular
boundary condition.
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6. Results and Discussion

In this section, we mainly focus on the effects of permeability anisotropy, fracture conductivity,
reservoir shape, and fracture azimuth angle on PSS flow. The relationship between pseudo-steady-state
constant and pseudo-skin factor was also discussed. Finally, as an application, we established a set of
Blasingame format curves for this model by using the derived pseudo-steady-state constant.

6.1. Analysis of Parameters’ Influence on Pseudo-Steady-State Flow

6.1.1. Permeability Anisotropy

According to the definition of permeability anisotropy, the reservoir tends to be isotropic when β
approaches to one, and when β > 1 the seepage capacity in the x-axis direction becomes stronger as the
value of permeability anisotropy increases, and when β < 1 the seepage capacity in the y-axis direction
becomes stronger as the value of permeability anisotropy decreases.

Figure 5a,b demonstrate the effects of permeability anisotropy, β ≤ 1 and β ≥ 1 on the
pseudo-steady-state constant at different fracture azimuth angles, respectively. As is displayed
in Figure 5a, when β < 1, for the same value of permeability anisotropy, the pseudo-steady-state
constant first goes up and then goes down as the fracture azimuth angle increases from 0◦ to 180◦.
The bDpss − θ curves are symmetric around the vertical line, θ = 90

◦

and form a hump shape. With the
increase of permeability anisotropy, the pseudo-steady-state constant decreases and the corresponding
hump gradually flattens out until it becomes a horizontal line for the same other parameters’ value.
Similarly, it is shown in Figure 5b that when β > 1, the bDpss − θ curves are also symmetric around
the vertical line, θ = 90

◦

. But, the pseudo-steady-state constant first goes down and then goes
up as the fracture azimuth angle increases from 0◦ to 180◦ and forms a groove shape, which is
different from the curves’ shape in Figure 5a. With the increase of permeability anisotropy, the
pseudo-steady-state constant decreases and the corresponding groove gradually deepens for the same
other parameters’ value.

Figure 6a,b show the influence of permeability anisotropy, β ≤ 1 and β ≥ 1, on the pseudo-skin
factor at different fracture azimuth angle, respectively. Compared with Figure 6a,b, the shape and
trend of the S− θ curves are similar to those of the bDpss − θ curves for the same parameters’ value, but
the shape of the hump and groove in the S− θ curves is more striking than that in the bDpss − θ curves,
which seems that there is a stretching transformation.Energies 2019, 12, x FOR PEER REVIEW 13 of 30 
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Pseudo-skin factor can directly reflect the stimulation effect in the PSS flow regime, but
pseudo-steady-state constant cannot. According to the definition of pseudo-skin factor, a negative
pseudo-skin factor indicates an increase in well productivity compared with the fracture parallel
to x axis, and a positive pseudo-skin factor represents the stimulation effect of the fracture with an
azimuth angle is not better than that of the fracture parallel to x axis. Therefore, from the S− θ curves
in Figure 6, we can find out an optimal fracture azimuth angle for an anisotropic reservoir. When β ≤ 1,
all the calculated pseudo-skin factors are positive, which indicates the optimized fracture direction
is perpendicular to the principal permeability axis (y axis) or parallel to the secondary permeability
axis (x axis). However, when β ≥ 1, all the calculated pseudo-skin factors are negative, which also
demonstrates that the optimized fracture direction is perpendicular to the principal permeability axis,
but the corresponding principal permeability axis is x axis. These results provide a theoretical basis for
optimizing the stimulation in an anisotropic reservoir.

6.1.2. Fracture Conductivity

Figures 7 and 8 present the effects of fracture conductivity (C f D = 0.1π, π, 10π, 100π, 1000) on
pseudo-steady-state constant and pseudo-skin factor at varied fracture azimuth angles, respectively.
The shape and trend of the bDpss − θ and S− θ curves for different fracture conductivity are similar
to the previous case of different permeability anisotropy, β ≥ 1 (Figures 5b and 6b). As presented
in Figure 7, the pseudo-steady-state constant and pseudo-skin factor first go down and then up as
the fracture azimuth angle increases from 0◦ to 180◦ and also form a groove shape. As the fracture
conductivity increases, the pseudo-steady-state constant gradually increases, but increases more and
more slowly, even when the fracture conductivity is larger than 100π, the change of pseudo-steady-state
constant can be neglected. Interestingly, all the S − θ curves for different fracture conductivity are
perfectly coincident (Figure 8) and it demonstrates that fracture conductivity has no obvious effect on
the pseudo-skin factor. In fact, it can be interpreted that the pseudo-steady-state flow is controlled
by reservoir boundary condition and has nothing to do with the fracture conductivity, which only
affects the early flow regime. For the optimization of fracture conductivity, we need to study its early
unsteady flow behavior.
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6.1.3. Reservoir Shape

As mentioned earlier, PSS flow is mainly controlled by reservoir boundary, thus reservoir shape
needs to be investigated in detail. Here, we keep the total drainage area of this rectangular reservoir
constant and study the effects of reservoir shape on PSS flow by varying the length of the rectangular
reservoir. In this work, we set the total area (xeD × yeD) as 10,000 and take the length of the rectangle,
xeD, equal to 50, 75, 100, 125 and 150, respectively.

Figure 9 exhibits the effects of reservoir shape on the pseudo-steady-state constant at different
azimuth angle and permeability anisotropy. For a given permeability anisotropy, the shape and
trend of the bDpss − θ curves are also similar to the previous case of different permeability anisotropy
(Figure 5a,b). The pseudo-steady-state constant increases gradually with the increase of the length for
the other parameters’ value.

Corresponding to the parameter value in Figure 9, Figure 10 demonstrates the effects of reservoir
shape on the pseudo-skin factor at varied azimuth angle and permeability anisotropy. We can easily
find that the optimized fracture direction for a given permeability anisotropy is consistent with the
previous results. However, the S − θ curves for different reservoir shape at the same permeability
anisotropy almost overlap together, which indicates that the optimized fracture direction almost has
nothing to do with the reservoir shape. Therefore, in an anisotropic rectangular reservoir, the optimized
fracture direction mainly depends on permeability anisotropy.
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6.2. Analysis of the Relationship between Pseudo-Steady-State Constant and Pseudo-Skin Factor

When investigating the effects of different parameters on pseudo-steady-state constant and
pseudo-skin factor, we can note that the trend of the bDpss − θ and S− θ curves is similar for the same
parameters’ values, which tempts us to discuss whether there is an intrinsic relationship between these
two parameters.
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In Appendix A, we formulated the approximate equivalent pressure for a well penetrated
by a finite-conductivity fracture in the PSS flow regime. For the fracture with an azimuth angle,
its approximate equivalent pressure in the PSS flow regime can be sorted as Equation (26).

And for the fracture parallel to x axis (θ = 0
◦

), its approximate equivalent pressure in the PSS
flow regime can be sorted as:

p′Dpss
(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD
)
=

2π
xeDyeD

tD + b′Dpss (27)

In the PSS flow regime, we can have the following approximations:

pwD
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD →∞

)
≈ pDpss

(
xwD, ywD, xeD, yeD, β,θ, C f D, tD →∞

)
(28)

p′wD

(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD →∞
)
≈ p′Dpss

(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD →∞
)

(29)

Based on the definition of the pseudo-skin factor, the relationship between the pseudo-skin factor
and the pseudo-steady-state constant can be derived as follows:

S = pwD
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD →∞

)
− p′wD

(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD →∞
)

≈ pDpss
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD →∞

)
− p′Dpss

(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD →∞
)

≈

(
2π

xeD yeD
tD + bDpss

)
tD→∞

−

(
2π

xeD yeD
tD − b′Dpss

)
tD→∞

≈ bDpss − b′Dpss

(30)
where bDpss is the pseudo-steady-state constant for a fully penetrating fracture with an azimuth angle in
an anisotropic rectangular reservoir, and b′Dpss is the pseudo-steady-state constant for a fully penetrating
fracture parallel to x axis (θ = 0◦) in an anisotropic rectangular drainage area.

Based on Equation (30), we can first calculate the pseudo-steady-state constant, bDpss and b′Dpss,
and then use this relationship to calculate the pseudo-skin factor. Therefore, Equation (30) can be
regarded as a new formula to compute the pseudo-skin factor.

Figure 11 shows the comparison results of the pseudo-skin factor calculated from its definition
and this new formula. The well agreement between the calculation results of these two methods at
different azimuth angles can be seen in this figure. When the azimuth angle is close to 90◦, there is a
slight discrepancy between the pseudo-skin factors calculated from these two methods, which may be
caused by calculating the trigonometric functions in the expressions. This comparison indicates that
this new formula presented in this study is reliable.Energies 2019, 12, x FOR PEER REVIEW 17 of 30 
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6.3. Establishment of Blasingame Format Rate Decline Curves by Using Pseud-Steady-State Constant

Pseudo-skin factor can be used to compare the stimulation effect and optimize the fracture
direction, but pseudo-steady-state constant has no physical meaning. However, as an important
auxiliary variable, pseudo-steady-state constant can help us to establish “Fetkovich” or “Blasingame”
format rate decline curves, then we can further extend our study from pseudo-steady-state flow to
unsteady flow [6]. These new format rate decline curves can deal with the problem of both variable
flow rate and variable wellbore pressure [5], thus our mathematical model is not subject to wellbore
condition any more. Meanwhile, based on these curves, we could recognize the model’s flow regimes,
analyze its flow behavior and also conduct the well test [34–36]. Hence, all the above study depends
on the pseudo-steady-state constant. Here, as an application of pseudo-steady-state constant, we
established a set of Blasingame format rate decline curves for the proposed model in this study.

Figure 12 shows the whole flow process of a well penetrated by a finite-conductivity fracture with
the azimuth angle of 45◦, including the unsteady flow in the early time and the pseudo-steady-state
flow in the late time. As is described in Figure 12, the flow progress in this model can be divided into
five flow regimes: bilinear flow regime, linear flow regime, radial flow regime, transition flow regime
and pseudo-steady-state flow regime.

Energies 2019, 12, x FOR PEER REVIEW 17 of 30 

 

 
Figure 11. Comparison of pseudo-skin factors calculated from definition and new formula. 

6.3. Establishment of Blasingame Format Rate Decline Curves by Using Pseud-Steady-State Constant 

Pseudo-skin factor can be used to compare the stimulation effect and optimize the fracture 
direction, but pseudo-steady-state constant has no physical meaning. However, as an important 
auxiliary variable, pseudo-steady-state constant can help us to establish “Fetkovich” or 
“Blasingame” format rate decline curves, then we can further extend our study from 
pseudo-steady-state flow to unsteady flow [6]. These new format rate decline curves can deal with 
the problem of both variable flow rate and variable wellbore pressure [5], thus our mathematical 
model is not subject to wellbore condition any more. Meanwhile, based on these curves, we could 
recognize the model’s flow regimes, analyze its flow behavior and also conduct the well test [34–36]. 
Hence, all the above study depends on the pseudo-steady-state constant. Here, as an application of 
pseudo-steady-state constant, we established a set of Blasingame format rate decline curves for the 
proposed model in this study. 

Figure 12 shows the whole flow process of a well penetrated by a finite-conductivity fracture 
with the azimuth angle of 45°, including the unsteady flow in the early time and the 
pseudo-steady-state flow in the late time. As is described in Figure 12, the flow progress in this 
model can be divided into five flow regimes: bilinear flow regime, linear flow regime, radial flow 
regime, transition flow regime and pseudo-steady-state flow regime. 

 
Figure 12. Flow regimes on Blasingame format curves for a well penetrated by a fracture with an 
azimuth angle in an anisotropic rectangular reservoir. 

Figure 12. Flow regimes on Blasingame format curves for a well penetrated by a fracture with an
azimuth angle in an anisotropic rectangular reservoir.

Figures 13–16 present the Blasingame format curves for the previous parameters, including
fracture azimuth angle, permeability anisotropy, fracture conductivity and reservoir shape, respectively.
The qDdi − tDd curves (dash lines) and the qDdid − tDd curves (solid lines with symbol) have a similar
decline trend, but the latter ones are more salient in terms of typical features. Fracture azimuth
angle mainly affects early-time flow, and the effect of permeability anisotropy is concentrated in
the intermediate-time flow. But, fracture conductivity has a strong effect on both the early- and
intermediate-time flow and so does reservoir shape. We also can find that all the curves in each
figure normalize in the pseudo-steady-state flow regime. Based on the flow regime identification and
sensitivity analysis, we can estimate the formation property parameters via well test interpretation.

In addition, as shown in Figure 13, the value of qDdi in the early-time flow period increases
gradually with the increase of fracture azimuth angle. Because of the symmetry in this research, we can
obtain a peak value when the fracture azimuth angle is equal to 90◦, which verifies the previous point
that the optimized fracture direction is perpendicular to the principal permeability axis. Meanwhile,
Figure 15 demonstrates that the value of qDdi in the early- and intermediate-time flow period increases
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as the fracture conductivity increases, but the value of qDdi will not increase any more when the fracture
conductivity is larger than 10π (closed to 30). Therefore, the optimized fracture conductivity is about
30 for the reservoirs under the given parameters’ value in Figure 15 and it is not necessary to pursue a
larger fracture conductivity in hydraulic fracturing.
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7. Conclusions

This paper investigated two important pseudo-steady-state parameters for a well penetrated by a
finite-conductivity fracture with an azimuth angle in an anisotropic rectangular reservoir. From the
results of this investigation, the following conclusions can be drawn:

(1) The equivalent wellbore pressure solution for a single finite-conductivity fracture with or without
an azimuth angle in an anisotropic rectangular reservoir was developed by using the point-source
function and spatial integral method. It showed excellent agreement with the work of Chen and
Raghavan, and Xu et al., which demonstrates that the proposed pressure solution is reliable.

(2) An approximate pressure solution for this model in the pseudo-steady-state flow regime was
derived with the asymptotic analysis method. The expressions of pseudo-steady-state constant
and pseudo-skin factor were further obtained on the basis of their definitions.



Energies 2019, 12, 2449 20 of 27

(3) Except for the isotropic reservoirs, all the bDpss − θ and S− θ curves are symmetric around the
vertical line, θ = 90

◦

and form a hump or groove shape. Fracture conductivity and reservoir shape
almost have no effect on the pseudo-skin factor for a given anisotropic reservoir. The optimized
fracture direction mainly depends on permeability anisotropy and is perpendicular to the principal
permeability axis.

(4) Based on the definitions of pseudo-steady-state constant and pseudo-skin factor, a new formula to
calculate the pseudo-skin factor was successfully proposed with their relationship. The comparison
of the pseudo-skin factors calculated from its definition and the new formula at different azimuth
angle verified the reliability of this new formula.

(5) As an application of pseudo-steady-state constant, a set of Blasingame format rate decline curves
for the proposed model were established. Five flow regimes can be observed on the typical
Blasingame format curves. Fracture azimuth angle mainly affects the early-time flow, and
permeability anisotropy mainly affects the intermediate-time flow. But fracture conductivity and
reservoir shape have a strong effect on both the early- and intermediate-time flow. All the curves
normalize in the pseudo-steady-state flow regime. Additionally, there is an optimized fracture
conductivity for a given anisotropic rectangular reservoir.
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Nomenclature

Field Variables
x Distance in the x axis, m
y Distance in the y axis, m
u Distance in the x or y axis, m
xe Reservoir length in the x axis, m
ye Reservoir length in the y axis, m
ue Reservoir length in the x or y axis, m
h Reservoir thickness, m
x f Fracture half length, m
w f Fracture width, m
kx Permeability in the x-axis, 10−3µm2

ky Permeability in the y-axis, 10−3µm2

k =
√

kxky Equivalent system permeability, 10−3µm2

k f Fracture permeability, 10−3µm2

θ Angle between x axis and the extension direction of fracture, deg
pi Reservoir initial pressure, MPa
φ Porosity, fraction
µ Fluid viscosity, mPa·s
ct Total compressibility, 1/MPa
β Permeability anisotropic factor
q Wellbore flow rate, m3/d
ηu Principal diffusivities
ξn Correlation coefficient, n = 0,1,2 . . . . . .
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Dimensionless Variables
pD Dimensionless pressure in real time domain
pD Dimensionless pressure in Laplace domain

ppointD
Dimensionless point-source solution in an anisotropic rectangular reservoir in Laplace
domain

pinfD Dimensionless pressure for an infinite-conductivity fracture in real time domain
pinfD Dimensionless pressure for an infinite-conductivity fracture in Laplace domain

pinfpDpss
Dimensionless pressure for an infinite-conductivity fracture paralleled to the x axis in real
time domain

pinfpDpss
Dimensionless pressure for an infinite-conductivity fracture paralleled to the x axis in
Laplace domain

pDpss Dimensionless pseudo-steady-state pressure in real time domain
tD Dimensionless time
tDA Dimensionless time based on drainage area
tDd Dimensionless decline time
bDpss Dimensionless pseudo-steady-state constant
qDd Dimensionless decline rate
qDdi Dimensionless decline rate integral
qDdid Dimensionless decline rate integral derivative
xD Dimensionless distance in the x axis
yD Dimensionless distance in the y axis
xeD Dimensionless reservoir length in the x axis
yeD Dimensionless reservoir width in the y axis
xwD Dimensionless wellbore location in the x axis
ywD Dimensionless wellbore location in the y axis
x′wD Dimensionless coordinate in the x axis
y′wD Dimensionless coordinate in the y axis
C f D Dimensionless fracture conductivity
f
(
C f D

)
Impact function of dimensionless fracture conductivity in real time domain

f
(
C f D

)
Impact function of dimensionless fracture conductivity in Laplace domain

Ri Dimensionless coefficient, i = 1, 2, 3 . . . . . .
εθ Dimensionless coefficient related to β and θ
S Dimensionless pseudo-skin factor
s Dimensionless time variable in Laplace domain
ηD Dimensionless integral variable
ξn Dimensionless coefficient, n = 0, 1, 2 . . . . . .
ai Dimensionless pseudo-steady-state coefficient, i = 1, 2
Fi Dimensionless coefficient, i = 1, 2
JD Dimensionless productivity index

Appendix A Derivation of Our Model’s Pseudo-Steady-State Constant

For a well penetrated by a finite-conductivity fracture in an anisotropic rectangular reservoir, the key to
derive the pseudo-steady-state constant lies in obtaining an approximate pressure solution for this mode in the
PSS flow regime.

The equivalent wellbore pressure solutions for the fracture with or without an azimuth angle are different.
Thus, here we studied these two cases separately.
(1) When the azimuth angle 0

◦

< θ < 180
◦

,

spwD

(
xwD, ywD, xeD, yeD, β,θ, C f D, s

)
= R′1 + R′2 + R′3 + s f

(
C f D, s

)
(A1)

where

s f
(
C f D, s

)
= 2π

∞∑
n=1

1

n2π2C f D + 2
√

n2π2 + s
+

0.4063π

π
(
C f D + 0.8997

)
+ 1.6252s

,
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R′1 =
βπ

2xeDξ2
0 sinθ

sinhξ0(yeD−(2ywD−0.268 sinθ))−sinhξ0(yeD−(2ywD+1.732 sinθ))
sinh(ξ0 yeD)

−
βπ

2xeDξ2
0 sinθ

sinhξ0(yeD−1.732 sinθ)+sinhξ0(yeD−0.268 sinθ)
sinh(ξ0 yeD)

+
βεθπ

2 sinθ
√
βs

cosh xeDεθ
√
βs

(
1−2

(xwD+0.732 cosθ)
xeD

)
+cosh xeDεθ

√
βs

sinhxeDεθ
√
βs

,

R′2 = β
(
π

xeD

)2
cosθ

∞∑
n=1

n
cosh ξn(yeD−2ywD−1.732 sinθ)

sinhξn yeD

ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

sin nπ(xwD+cosθ)
xeD

−β
(
π

xeD

)2
cosθ

∞∑
n=1

n
cosh ξn(yeD−2ywD+0.268 sinθ)

sinhξn yeD

ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

sin nπ(xwD−cosθ)
xeD

+
βπ sinθ

xeD

∞∑
n=1

sinhξn(yeD−2ywD+0.268 sinθ)
sinhξn yeD[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

cos nπ(xwD−cosθ)
xeD

−
βπ sinθ

xeD

∞∑
n=1

sinhξn(yeD−2ywD−1.732 sinθ)
sinhξn yeD[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] cos nπ(xwD+0.732 cosθ)
xeD

cos nπ(xwD+cosθ)
xeD

,

R′3 = β
(
π

xeD

)2
cosθ

∞∑
n=1

n
sin

[
nπ

xeD
(2xwD+1.732 cosθ)

]
+sin

(
nπ0.268 cosθ

xeD

)
2ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cosh ξn(yeD−0.268 sinθ)
sinhξn yeD

−β
(
π

xeD

)2
cosθ

∞∑
n=1

n
sin

[
nπ

xeD
(2xwD−0.268 cosθ)

]
−sin

(
nπ1.732 cosθ

xeD

)
2ξn

[(
nπ cosθ

xeD

)2
+(ξn sinθ)2

] cosh ξn(yeD−1.732 sinθ)
sinhξn yeD

−
βπ sinθ

2xeD

∞∑
n=1

cos
[

nπ
xeD

(2xwD−0.268 cosθ)
]
+cos

(
nπ1.732 cosθ

xeD

)
[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] sinhξn(yeD−1.732 sinθ)
sinhξn yeD

−
βπ sinθ

2xeD

∞∑
n=1

cos
[

nπ
xeD

(2xwD+1.732 cosθ)
]
+cos

(
nπ0.268 cosθ

xeD

)
[(

nπ cosθ
xeD

)2
+(ξn sinθ)2

] sinhξn(yeD−0.268 sinθ)
sinhξn yeD

.

Gradshteyn and Ryzhik (2014) presented a series of useful expressions [28], which are easy for us to simplify
the above equations:

∞∑
n=1

n sin nx
n2 + α2 =

π
2

sinhα(π− x)
sinhαπ

0 < x < 2π (A2)

∞∑
n=1

sin nx
n

=
π− x

2
0 < x < 2π (A3)

∞∑
n=1

cos nx
n2 =

π2

6
−
πx
2

+
x2

4
0 ≤ x ≤ 2π (A4)

Then, R′1 can be simplified as,

R1 =
β

xeDξ2
0 sinθ

 ∞∑n=1

sin nπ (2ywD−0.268 sinθ)
yeD

−sin nπ (2ywD+1.732 sinθ)
yeD

−sin nπ 1.732 sinθ
yeD

−sin nπ 0.268 sinθ
yeD

n+
(
ξ0 yeD
π
√

n

)2


+

βεθπ
2 sinθξ0

 2
xeDεθξ0

π
π

∞∑
n=1

cos
[
n2π

(xwD+0.732 cosθ)
xeD

]
+1

n2+
(

xeDεθξ0
π

)2 + 2
xeDεθξ0

π π


(A5)

Considering that the dimensionless time in the PSS flow regime is close to infinite and correspondingly the
Laplace variable, s, tends to zero, R′1 can be further sorted as follows:

R′1 ≈
β

xeDξ2
0 sinθ ×

1
2

[(
π−π

(2ywD−0.268 sinθ)
yeD

)
−

(
π−π

(2ywD+1.732 sinθ)
yeD

)
−

(
π−π 1.732 sinθ

yeD

)
−

(
π−π 0.268 sinθ

yeD

)]
+

βεθπ
2 sinθξ0

2
xeDεθξ0

π
π

[
π2

3 −π
2 (xwD+0.732 cosθ)

xeD
+ π2 (xwD+0.732 cosθ)2

x2
eD

]
+

βπ
xeDξ2

0 sinθ

≈
2π

xeD yeDs +
βπxeD sinθ

(cos2 θ+β2 sin2 θ)

[
1
3 −

(xwD+0.732 cosθ)
xeD

+
(xwD+0.732 cosθ)2

x2
eD

]
(A6)
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Similarly, when tD →∞ , s→ 0 , the sum of R′2 and R′3 can be simplified:

R′2 + R′3 = xeD cosθ
2π × ∞∑n=1

cosh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ sin

(
nπ0.268 cosθ

xeD

)}
−

∞∑
n=1

cosh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
− sin

(
nπ1.732 cosθ

xeD

)}
+
βxeD sinθ

2π × ∞∑n=1

sinh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
−sinh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
+ cos

(
nπ1.732 cosθ

xeD

)}
−

∞∑
n=1

sinh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+sinh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ cos

(
nπ0.268 cosθ

xeD

)}

(A7)

Thus, we can obtain an approximate pressure solution in the PSS flow regime:

PDpss
(
xwD, ywD, xeD, yeD, β,θ, C f D, s

)
= 2π

xeD yeDs2 +
βπxeD sinθ

(cos2 θ+β2 sin2 θ)

{
1
3 −

(xwD+0.732 cosθ)
xeD

+
(xwD+0.732 cosθ)2

x2
eD

}
+ xeD cosθ

2π ×
1
s× ∞∑n=1

cosh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ sin

(
nπ0.268 cosθ

xeD

)}
−

∞∑
n=1

cosh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
− sin

(
nπ1.732 cosθ

xeD

)}
+
βxeD sinθ

2π ×
1
s× ∞∑n=1

sinh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
−sinh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
+ cos

(
nπ1.732 cosθ

xeD

)}
−

∞∑
n=1

sinh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+sinh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ cos

(
nπ0.268 cosθ

xeD

)}
+ f

(
C f D, s

)

(A8)

Employing the inversion theorem of the Laplace transformation to Equation (A8), we can easily obtain the
real space form of this approximate pressure solution.

pDpss
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD

)
= 2π

xeD yeD
tD +

βπxeD sinθ
(cos2 θ+β2 sin2 θ)

{
1
3 −

(xwD+0.732 cosθ)
xeD

+
(xwD+0.732 cosθ)2

x2
eD

}
+ xeD cosθ

2π × ∞∑n=1

cosh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ sin

(
nπ0.268 cosθ

xeD

)}
−

∞∑
n=1

cosh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
− sin

(
nπ1.732 cosθ

xeD

)}
+
βxeD sinθ

2π × ∞∑n=1

sinh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
−sinh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
+ cos

(
nπ1.732 cosθ

xeD

)}
−

∞∑
n=1

sinh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+sinh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ cos

(
nπ0.268 cosθ

xeD

)}
+ f

(
C f D, tD

)

(A9)

In the PSS flow regime, based on the result of Riley et al. (1991) [37], Wang et al. (2012) presented an
approximate formula for the conductivity influence function in the real space [38], which only depends on the
fracture conductivity in this regime:

f
(
C f D, tD →∞

)
≈ f

(
C f D

)
≈

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

) (A10)
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Therefore, this approximate pressure solution can be further expressed as:

pDpss
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD

)
= 2π

xeD yeD
tD +

βπxeD sinθ
(cos2 θ+β2 sin2 θ)

{
1
3 −

(xwD+0.732 cosθ)
xeD

+
(xwD+0.732 cosθ)2

x2
eD

}
+ xeD cosθ

2π × ∞∑n=1

cosh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ sin

(
nπ0.268 cosθ

xeD

)}
−

∞∑
n=1

cosh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
− sin

(
nπ1.732 cosθ

xeD

)}
+
βxeD sinθ

2π × ∞∑n=1

sinh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
−sinh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
+ cos

(
nπ1.732 cosθ

xeD

)}
−

∞∑
n=1

sinh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+sinh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ cos

(
nπ0.268 cosθ

xeD

)}
+

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

)

(A11)

Recalling the general identity for PSS flow [6], we have:

pDpss
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD

)
= atD + bDpss (A12)

When a = 2π
xeD yeD

, we finally got our model’s pseudo-steady-state constant:

bDpss =
βxeDπ sinθ

(cos2 θ+β2 sin2 θ)

[
1
3 −

(xwD+0.732 cosθ)
xeD

+
(xwD+0.732 cosθ)2

x2
eD

]
+ xeD cosθ

2π × ∞∑n=1

cosh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ sin

(
nπ0.268 cosθ

xeD

)}
−

∞∑
n=1

cosh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
+cosh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
sin

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
− sin

(
nπ1.732 cosθ

xeD

)}
+
βxeD sinθ

2π × ∞∑n=1

sinh
[
β nπ

xeD
(yeD−2ywD+0.268 sinθ)

]
−sinh

[
β nπ

xeD
(yeD−1.732 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD − 0.268 cosθ)
]
+ cos

(
nπ1.732 cosθ

xeD

)}
−

∞∑
n=1

sinh
[
β nπ

xeD
(yeD−2ywD−1.732 sinθ)

]
+sinh

[
β nπ

xeD
(yeD−0.268 sinθ)

]
n2(cos2 θ+β2 sin2 θ)sinh

(
β nπ

xeD
yeD

) {
cos

[
nπ
xeD

(2xwD + 1.732 cosθ)
]
+ cos

(
nπ0.268 cosθ

xeD

)}
+

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

)

(A13)

(2) When the azimuth angle, θ = 0
◦

,

sPwD
(
xwD, ywD, xeD, yeD, β,θ, C f D, s

)
= F1 + F2 + s f

(
C f D, s

)
(A14)

where

F1 =
βπ

xeD

cosh ξ0
(
yeD −

∣∣∣yD ± ywD
∣∣∣)

ξ0sinh(ξ0yeD)
,

F2 = 2β
∞∑

n=1

1
n

cos
nπxwD

xeD
cos

nπ(xwD + 0.732)
xeD

sin
nπ
xeD

cosh ξn(yeD −
∣∣∣yD ± ywD

∣∣∣)
ξnsinh(ξnyeD)

.

When tD →∞ , s→ 0 , F1 and F2 can be simplified as:

F1 =
βπ
xeD

cosh ξ0(yeD−|yD±ywD|)

ξ0sinh(ξ0 yeD)
=

βπ
xeD

 2
ξ2

0 yeD
+

2yeD

π2

∞∑
k=1

cos kπ |yD±ywD |
yeD

k2+
( ξ0 yeD

π

)2


≈

βπ
xeD

{
2

βsyeD
+

2yeD

π2

∞∑
k=1

1
k2

[
cos kπ |yD+ywD|

yeD
+ cos kπ |yD−ywD|

yeD

]}
= 2π

xeD yeDs + 2βπ yeD
xeD

{
1
3 −
|yD+ywD|+|yD−ywD|

2yeD
+

[(yD+ywD)
2+(yD−ywD)

2]
4y2

eD

} (A15)
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F2 = 2β
∞∑

n=1

1
n cos nπxwD

xeD
cos nπxD

xeD
sin nπ

xeD

cosh ξn(yeD−|yD±ywD|)

ξnsinh(ξn yeD)

= 2 xeD
π

∞∑
n=1

1
n2 cos nπxwD

xeD
cos nπxD

xeD
sin nπ

xeD

cosh nβπ
xeD

(yeD−|yD±ywD|)

sinh
(

nβπ
xeD

yeD

) (A16)

In the PSS flow regime, employing the inversion theorem of the Laplace transformation to
Equations (A15) and (A16), and combining with Equation (A10), we can obtain the approximate pressure for the
fracture parallel to the x axis:

p′Dpss

(
xwD, ywD, xeD, yeD, β,θ = 0

◦

, C f D, tD
)
= 2π

xeD yeD
tD

+2βπ yeD
xeD

{
1
3 −

1
2
|yD+ywD|+|yD−ywD|

yeD
+ 1

4

[
(yD+ywD)

2+(yD−ywD)
2

y2
eD

]}
+2 xeD

π

∞∑
n=1

1
n2 cos nπxwD

xeD
cos nπxD

xeD
sin nπ

xeD

cosh nβπ
xeD

(yeD−|yD±ywD|)

sinh
(

nβπ
xeD

yeD

)
+

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

)
(A17)

Similarly, recalling the general identity for PSS flow [6], we have:

p′Dpss
(
xwD, ywD, xeD, yeD, β,θ, C f D, tD

)
= a′tD + b′Dpss (A18)

when a′ = 2π
xeD yeD

, we can get the pseudo-steady-state constant for the fracture parallel to the x axis:

b′Dpss = 2βπ yeD
xeD

{
1
3 −

1
2
|yD+ywD|+|yD−ywD|

yeD
+ 1

4

[
(yD+ywD)

2+(yD−ywD)
2

y2
eD

]}
+2 xeD

π

∞∑
n=1

1
n2 cos nπxwD

xeD
cos nπxD

xeD
sin nπ

xeD

cosh nβπ
xeD

(yeD−|yD±ywD|)

sinh
(

nβπ
xeD

yeD

)
+

0.95−0.56ψ+0.16ψ2
−0.028ψ3+0.0028ψ4

−0.00011ψ5

1+0.094ψ+0.093ψ2+0.0084ψ3+0.001ψ4+0.00036ψ5 ψ = ln
(
C f D

) (A19)
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