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Abstract: A coupled structural decomposition analysis (SDA) and sensitivity analysis approach is
developed to explore the drivers of China’s CO2 emission intensity at both general and sectoral levels
and from both ex-post and ex-ante perspectives. Two steps are involved—structural decomposition
and sensitivity analysis. First, the popular factor decomposition method, SDA, is implemented to
identify which drivers “have” made the largest contribution to emission intensity changes. Second,
an emerging ex-ante approach, sensitivity analysis, is introduced to answer how and to what
extent such drivers “will” influence future emission intensity at a sectoral level. Based on China’s
input-output tables for 1997–2012, the empirical study provides a hotspot map of China’s energy
system. (1) Direct-emission coefficient and technology coefficient are observed as the top two overall
drivers. (2) For the former, reducing direct-emission coefficient in an emission-intensity sector
(e.g., electricity and heat sectors) by 1% will mitigate China’s total emission intensity by at least 0.05%.
(3) For the latter, future emission intensity is super-sensitive to direct transactions in emission-intensity
sectors (particularly the chemical industry with elasticities up to 0.82%).

Keywords: CO2 emission intensity; Structural decomposition analysis; SDA; Sensitivity analysis;
Input-output model; China

1. Introduction

China’s rapid economic growth has brought forth prosperity; however, such an economic boom
has resulted in large environmental costs, such as uncontrolled CO2 emissions [1,2]. According to
statistical data, China’s total CO2 emissions showed a sharply upward trend from approximately
3206.23 million tons in 2007 to 8506.85 in 2012 at a growth rate above 165%, and China became the
world’s largest CO2 emitter in 2006 [3]. In this context, China has pledged to cut carbon emission
intensity (i.e., emissions per unit of gross domestic product (GDP)) by 40–45% by 2020 and 60%–65%
by 2030 relative to the level of 2005, hitting the emission reduction peak around 2030 [4,5]. A set of
measures have been carried out for a low-carbon economy such as an emissions trading scheme [3].
To design cost-effective mitigation policies, a full understanding of the complicated structure of China’s
energy system in terms of the top drivers of China’s emission intensity is an indispensable fundamental
task [6]. Therefore, this paper attempts to explore the leading drivers of China’s emission intensity—the
most sensitive factors that might cause the highest emissions and should be especially targeted in
mitigation policies.
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According to the existing literature, the input–output (IO)-based structural decomposition analysis
(SDA), a typical ex-post analysis approach, has widely been used to analyze the changes in CO2

emissions or emission intensity. In particular, based on history data for different periods (e.g., China’s
IO tables 1997, 2002, 2007, and 2012 in the case of China), SDA aims to determine the major drivers of
emissions or emission intensity, by measuring the relative contribution that a factor “has” made to the
total change in emission intensity during the sample period, through two main steps [7,8]. First, we
decompose the changes in emissions or emission intensity between two given periods into certain
overall factors [9,10]. Second, we estimate the relative contribution of each candidate factor to the
total changes, and identify the top leading drivers [11]. Obviously, SDA is a typical ex-post analysis
approach, using the IO tables for the sample periods and indicating the drivers that “have” made the
largest contributions to the changes of emissions or emission intensity for the sampling periods [12,13].
Based on the IO-based SDA method, consumption volume and production structure were estimated
as the primary drivers having changed the CO2 emission intensity in US the most currently [10,14],
while final demand effect and energy intensity for Italy [15,16], and carbonization effect and energy
intensity effect for Spanish [17] were also taken into account. In the case of China, the drivers of CO2

emissions and emission intensity have broadly been studied via different SDA variants, as shown
by the recent studies listed in Table 1. From the table, it can be found that emission intensity and
technology coefficient were generally identified to be the leading drivers for China’s CO2 emissions or
emission intensity [18–21].

Table 1. Recent studies on drivers of CO2 emissions and emissions intensity in China via structural
decomposition analysis (SDA).

Authors Studied System Leading Driver(s) Identified Study Period

Zhu et al. [22] CO2 emissions Emission intensity; Consumption level 1992–2005
Su & Ang [23] CO2 emissions Domestic export; Technology coefficient 2002–2007

Guan et al. [19] Carbon emission intensity Emission intensity; Output growth 2002–2009
Su & Ang [18] Carbon emission intensity Emission intensity 2007–2010
Li & Wei [24] CO2 emissions Emission intensity; Technology coefficient 2002–2010
Xia et al. [25] CO2 emissions Emission intensity; Technology effect 2002–2007

Wang et al. [26] CO2 emissions Consumption level; Emission intensity 1992–2007
Su & Thomson [27] CO2 emissions Emission intensity; Total export effect 2006–2012
Chang & Lahr [28] CO2 emissions Emission intensity; Input intensity 2005–2010
Wang & Yang [29] CO2 emissions Energy intensity 2000–2010

Nie et al. [20] CO2 emissions Technology coefficient; Final demand 1997–2010
Su & Ang [30] Carbon emission intensity Emission intensity 2007–2012

Dong et al. [21] Carbon emission intensity Energy intensity; Technology coefficient 1992–2012

However, SDA cannot answer the question concerning the identified drivers—how and to what
extent they “will” influence future emissions or emission intensity from an ex-ante perspective.
Nevertheless, an ex-ante analysis pointing out the hotspots that will lead to massive potential emissions
in the future is quite desirable for understanding the energy system and designing the corresponding
policies [31]. Furthermore, given that SDA usually decomposes the total changes into several overall
factors, it could not probe into more micro-level elements (such as the sectoral coefficients of the target
factors) for a specific, practical mitigation policy [32]. Thus, an ex-ante and specific analysis is strongly
recommended to help SDA in addressing such tricky problems.

Fortunately, the emerging ex-ante analysis tool, IO-based sensitivity analysis, can be introduced as
a perfect complement to SDA for offering an ex-ante and sectoral driver exploration. As a competitive
ex-ante analysis, sensitivity analysis can effectively forecast the contribution of a factor to a given target
system, by measuring the sensitivity of variations in the target system caused by small changes in the
factor [32]. In particular, based on the latest data (e.g., China’s IO table 2012 in the case of China),
sensitivity analysis introduces the concept of elasticity to forecast “if” a target coefficient changes
(e.g., by 1% in practice) in the near future, and how the associate system (e.g., emission intensity for
this study) “will” change accordingly [32,33]. Based on the structure details in IO tables, sensitivity
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analysis can finely capture the sectoral influential elements in terms of large sensitivity [34,35]. Thus,
we specifically introduce a promising such tool, IO-based sensitivity analysis, to extend the ex-post,
overall exploration in SDA into an ex-ante, sectoral one.

Some studies have already employed IO-based sensitivity analysis to investigate how and to
what extent a sectoral coefficient will influence a target system, as shown by the available works
listed in Table 2. Interestingly, all the existing related studies focused on energy and environmental
systems. However, these works mainly concentrated on technology coefficient (Leontief effect) [32–34],
demand coefficient [35,36], and price coefficient [37]; in comparison, other even more important
coefficients, which have been highlighted in the existing ex-post analyses, such as emission-intensity
coefficient [18,26], total export effect [27], input intensity [28], and energy intensity effect [38], were
somehow neglected. However, for a systematical exploration of the emission intensity change,
a comprehensive sensitivity analysis on at least the leading drivers that have made the greatest
contributions to emission intensity change is required. Thus, this paper fills a literature gap by
finely coupling sensitivity analysis and SDA, to investigate the main overall drivers of CO2 emission
intensity change that are identified by SDA based on sensitivity analysis. In particular, this study
incorporates SDA to determine the major drivers for sensitivity analyses from a systematical perspective;
in comparison, the existing related studies pre-determined one or two certain coefficient(s), often
omitting some important ones.

Table 2. Previous studies using input-output (IO)-based sensitivity analysis.

Authors Studied Region Studied System Studied Coefficient(s) Data

Hondo et al. [34] Japan Emission intensity Technology coefficient 1990

Tarancón & Del Río [35] Spain CO2 emissions Technology coefficient;
Demand coefficient 1995

Tarancón et al. [39] Spain CO2 emissions Technology coefficient 2000
Tarancón et al. [40] 15 Eur. countries CO2 emissions Technology coefficient 2003
Tarancón et al. [41] Spain Electricity consumption Technology coefficient 2005
Tarancón & Río [42] - CO2 emissions Technology coefficient -

Wilting [43] Netherlands Greenhouse gas emissions Technology coefficient 2001

Mattila [36] Finland Greenhouse gas emissions Technology coefficient;
DDemand coefficient 2002; 2005

Alcántara et al. [44] Spain Electricity consumption Technology coefficient 2005

Meng et al. [37] China Electricity-saving potential Technology coefficient;
DPrice coefficient 2007

Yuan & Zhao [32] China CO2 emissions Technology coefficient 2010
Yan et al. [33] China Emission intensity Technology coefficient 2010

Li et al. [45] China Emission intensity Technology coefficient;
DEmissions intensity coefficient 2012

Generally, we finely couple SDA and sensitivity analysis, to offer a systematical ex-post, ex-ante,
and overall and sectoral analysis for exploring drivers of China’s emission intensity changes.
In particular, the proposed approach first implements SDA to reveal the top overall drivers of
China’s total emission intensity changes that “have” made the most contribution, and then introduces
sensitivity analysis to probe into their sectoral factors to capture the hotspots that “will” lead to massive
future emissions in China. To the best of our knowledge, it might be the first attempt to formulate
a hybrid SDA and sensitivity analysis approach for exploring the drivers of China’s CO2 emission
intensity. Compared with existing studies, this paper makes major contributions to the literature from
the following two perspectives.

(1) By finely combining SDA and sensitivity analysis, this hybrid approach provides a systematical
ex-post and ex-ante and overall and sectoral analysis on the drivers of China’s total emission intensity.
In particular, it can not only identify the overall drivers that “have” largely impacted China’s total
emission intensity via SDA, but also reveal each top driver’s essential sectoral elements that “will”
lead to massive future emissions in China via sensitivity analysis.

(2) Four hybrid physical-monetary energy IO tables in China for 1997, 2002, 2007, and 2012 are
compiled, to not only capture the long-term trends for 1997–2012 in the ex-post analysis, but also
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conduct the ex-ante analysis based on the most updated data for 2012. In particular, a map of hotspots
in China’s energy system leading to the highest potential emissions can be drafted for facilitating the
design and adjustment of specific, target-mitigation policies.

The rest of the paper is organized as follows. Section 2 describes the formulation process of
the proposed methodology. The empirical results are reported and discussed in Section 3. Section 4
concludes the paper and outlines major directions of future research.

2. Methodology

For a clear discussion, the general framework of the proposed methodology is presented in
Section 2.1. Section 2.2 gives a brief introduction to the standard IO model, based on which the
methodology is built. Sections 2.3 and 2.4 describe the two main steps of the methodology, respectively.

2.1. General Framework

In this section, a hybrid SDA and sensitivity analysis approach is formulated not only to (1)
explore overall drivers that have largely changed CO2 emission intensity via SDA, but also to (2)
investigate each top driver to identify its key sectoral elements leading to potential massive future
emissions via sensitivity analysis. Accordingly, two major steps, structural decomposition analysis and
sensitivity analysis, are included in the proposed model, as per the framework illustrated in Figure 1.Energies 2019, 12, x FOR PEER REVIEW 5 of 24 
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The notation ri,j (i = 1, . . . ,n; j = 1, . . . , K) represents the essential factor in sector i of the jth
overall driver, n is the total number of sectors, and K is the total number of the overall drivers.
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Step 1: Ex-post analysis via SDA
The prevailing factor decomposition, SDA, is implemented to decompose CO2 emission intensity

into four overall drivers: direct-emission coefficient (C), technology coefficient (B), final demands
structure by product (D), and final demands by category (F). Then, the two-polar decomposition
method is introduced to measure the contribution of each driver to the changes in total emission
intensity, to identify the top drivers that have made up the largest changes during the sampling periods.

Step 2: Ex-ante analysis via sensitivity analysis
The top leading drivers are further analyzed via a promising ex-ante analysis method, sensitivity

analysis, to reveal how and to what extent they will influence the emission intensity. In particular, a map
of hotspots in the energy system, i.e., the influential sectoral factors ri,j (i = 1, . . . , n; j = 1, . . . , K) which
will lead to the highest growth in emissions, can be provided, where ri,j is the ith essential element of
the jth major driver. With the above valuable information, insightful suggestions can be deduced for
the design and adjustment of specific, targeted mitigation policies.

2.2. Input-Output Model

The proposed hybrid approach is based on the IO model (or IO table) as per the database.
Therefore, a hybrid physical–monetary energy IO model is compiled, including a basic IO model in
monetary units and an emissions IO model in physical units.

2.2.1. Basic IO Model

The IO model is developed from an inter-industry transaction table to capture the flows of
products between economic sectors (or industries) in a macro-economic system [46,47]. It is assumed
that a total of n interactive economic sectors conduct production activities and provide total outputs
(in term of goods and services) of the whole economic system, which meets total final demand covering
6 categories here: household consumption, government consumption, fixed capital formation, changes
in inventories, net exports, and others.

In a monetary IO model, the output of sector i is computed based on the following balance
equation, while the intermediate input/demand (zi, j), final demand (yi) and output (xi) are represented
in the monetary unit [48,49]:

n∑
j=1

zi, j + yi = xi (1)

where zi, j represents the intermediate input from sector i to sector j, yi is the final demand of sector i,
and xi is the total output of sector i. The technical coefficient ai, j can be defined as the direct consumption
of sector j by unit input of sector i [50].

ai, j = zi, j/x j (2)

where x j is the total input of sector j. The technical coefficients ai, j for different sectors j = 1,.., n constitute
the economy’s direct consumption coefficient matrix of the monetary table A= [ai, j] . The consumption
of sector i can be obtained based on the inverse Leontief matrix (or matrix of total requirement
coefficient), i.e., B = (I−A)−1 =

[
bi,q
]

[51].

xi =
n∑

q=1

bi,q · yq (3)

where bi,q is the qth elements in the ith row of the inverse Leontief matrix B. The final demand structure
by product can be described as [52]

D = [di,t] = [
yi,t

ft
] (4)
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where the element di,t represents the share of sector i in the final demand of category t and
n∑
i

di,t = 1, ft

is the final demand of category t, and yi,t is the final demand of category t for the product by sector
i [53]. Therefore, the final demand can be expressed as

Y = DF (5)

where F = [ ft] = [
n∑
i

yi,t] is the column vector of final demands by category. The column vector of total

output X can be expressed as [54].
X = BDF (6)

2.2.2. Emissions in IO Model

The energy-related CO2 emissions are calculated based on the direct consumption of the energy,
via the IPCC reference approach [55]. The corresponding data are derived from China’s energy balance
tables from 1997, 2002, 2007, and 2012, which were compiled by the China National Bureau of Statistics.
Notably, this study focuses on the CO2 emissions from production (i.e., production-based emissions),
whereas the CO2 emissions from residential energy consumption (which is also available in China’s
energy balance tables) are not considered [56]. Therefore, from the production-based perspective,
sectoral emissions were estimated for each sector from the five types of energy that could possibly be
used (coal (covering raw coal, cleaned coal, and other washed coal), natural gas, coke, finished oil
(covering diesel oil, gasoline, kerosene, and fuel oil), and liquefied petroleum gas) [28].

Let ek,i be the CO2 emissions from the direct consumption of energy k during the production by
sector i (that are calculated based on the data from China’s energy balance tables), which is expressed
in physical units, such that the CO2 emissions from sector i can be computed by ei =

∑m
k=1 ek,i and the

associated direct-emission coefficient C = [ci] ∈ R1×n—the CO2 emissions from the production per
unit of sectoral output—can be defined as [57]

C = [ci] = [
ei
xi
] = [

m∑
k=1

ek,i

xi
] = [

m∑
k=1

ck,i] (7)

where xi is the output of sector i (derived from China’s monetary IO tables). Accordingly, the total
production-based CO2 emissions across different sectors (in physical unit) can be calculated in terms of
the product of direct-emission coefficient C and the output X = [xi] ∈ Rn×1 [58]:

TE = µCX = µCBDF (8)

where µ represents a 1 × m summation row vector. GDP can be expressed as

GDP = λF (9)

where λ is a 1 × n summation row vector. Finally, the total CO2 emission intensity China’s total
emission intensity (CEI) can be defined as

CEI = TE/GDP = µCBDF/λF (10)

where the emission intensity CEI is then in units of kg CO2/yuan [59].

2.3. Structural Decomposition Analysis

A series of economic factors (e.g., economic growth, economic structure, and infrastructure
investment) and technologic factors (particularly the energy-related technology development)
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simultaneously affect the total emission intensity. To identify the top leading drivers among them,
the SDA method has widely been considered to be one of the most useful tools, measuring the relative
contribution of each candidate factor to the changes in total emission intensity [22,60,61].

The changes of total emission intensity CEI in Equation (10) between a reference time (as marked
with subscript 1) and a base time (with subscript 0) can be defined in the form of a ratio.

CEI1/CEI0 =
µC1B1D1F1

µC0B0D0F0
×
λF0

λF1
(11)

According to Equation (11), the changes in total emission intensity can be decomposed into four overall
factors: (1) direct-emission coefficient C, (2) technology coefficient B, (3) final demands structure by
product D, and (4) final demands by category F. The two-polar decomposition method is introduced to
conduct the estimation, i.e., decomposing Equation (11) at the base time and reference time respectively
and then averaging the two polar values as the results [59,62]. From the base time 0, the total emission
intensity in Equation (11) can be decomposed into

CEI1/CEI0 =
µC1B0D0F0

µC0B0D0F0
×
µC1B1D0F0

µC1B0D0F0
×
µC1B1D1F0

µC1B1D0F0
×
µC1B1D1F1

µC1B1D1F0
×
λF0

λF1
(12)

From the reference time 1, it can be

CEI1/CEI0 =
µC1B1D1F1

µC0B1D1F1
×
µC0B1D1F1

µC0B0D1F1
×
µC0B0D1F1

µC0B0D0F1
×
µC0B0D0F1

µC0B0D0F0
×
λF0

λF1
(13)

Finally, the decomposition results are computed by averaging the two polar results in Equations (12)
and (13).

CEI1/CEI0 = ∆C× ∆B× ∆D× ∆F (14)

∆C =

√
µC1B0D0F0

µC0B0D0F0
×
µC1B1D1F1

µC0B1D1F1
(15)

∆B =

√
µC1B1D0F0

µC1B0D0F0
×
µC0B1D1F1

µC0B0D1F1
(16)

∆D =

√
µC1B1D1F0

µC1B1D0F0
×
µC0B0D1F1

µC0B0D0F1
(17)

∆F =

√
µC1B1D1F1

µC1B1D1F0
×
λF0

λF1
×
µC0B0D0F1

µC0B0D0F0
×
λF0

λF1
(18)

where the coefficients ∆C, ∆B, ∆D, and ∆F in Equations (15)–(18) are the changes of factors C, B, D,
and F, respectively.

2.4. Sensitivity Analysis

Because SDA mainly focuses on overall, ex-post analyses, this work especially introduces
sensitivity analysis as a perfect complement to SDA to provide a specific, ex-ante analysis. In particular,
the sensitivity analysis in this study was proposed by Tarancón in 2007, which is based on the IO
model to identify the most relevant factors in terms of environmental indicators at sectoral level [35].
In sensitivity analysis, an indicator, namely coefficient elasticity, was developed to assess which
transactions between economic sectors can be expected to bear a greater impact on CO2 emissions in
sectors [32,33].

Sensitivity analysis can provide a map of hotspots in the energy system, in terms of influential
specific elements, i.e., ri,j (i = 1, . . . , n; j = 1, . . . , K) where ri,j is the ith essential sectoral element of the
jth major driver [32]. In this study, an elasticity indicator is introduced to measure the sensitivity of
total emission intensity to the target coefficient ri,j, i.e., the extent to which a change in ri,j influences
the total emission intensity [33].
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For a clear understanding, a general form of sensitivity analysis on any target driver is
first formulated in Section 2.4.1. Taking for example direct-emission coefficient and technology
coefficient—two leading drivers according to previous studies—the corresponding variants are
developed in Sections 2.4.2 and 2.4.3, respectively; the ones for other drivers follow a similar form.

2.4.1. General Form

At a sector level, the sectoral emission intensity CEIi can be defined as the emissions from the
production per unit of value added in sector i [21,33].

CEIi = ei/VAi (19)

where CEIi represents the emission intensity of sector i, and VAi is the value added of sector i.
Accordingly, the total emission intensity for sectors CEI in Equation (10), i.e., the total CO2 emissions
from the production per unit of GDP, can be expressed as [32]

CEI =
TE

GDP
=

n∑
i=1

ei

n∑
i=1

VAi

(20)

where TE =
n∑

i=1
ei indicates the total CO2 emissions from the production across all the sectors [33].

Based on the elasticity indicator, the sensitivity of emission intensity to the target coefficient ri,j,
i.e., the extent to which a change in ri,j influences emission intensity for sector m, can be defined as

εCEIm,ri, j =
∆CEIm/CEIm

∆ri, j/ri, j
(21)

where ri,j represents the specific element of the jth driver in sector i, εCEIm,ri, j is the elasticity index
reflecting the sensitivity of emission intensity of sector m to the coefficient ri,j, ∆ri, j is the change in
ri,j, and ∆CEIm represents the change of emission intensity in sector m impacted by the change in ri,j
(i.e., ∆ri, j). In practice, a given small variation of the related coefficient, e.g., 1%, is set to calculate such
a sensitivity, i.e., ∆ri, j = 0.01ri, j.

Similarly, the effect of the change ∆ri, j on the total emission intensity from all sectors is expressed as

εCEI,ri, j =
∆CEI/CEI

∆ri, j/ri, j
(22)

where εCEI,ri, j is the elasticity index reflecting the sensitivity of total emission intensity to the coefficient
ri,j. Given that sectoral emission intensity CEIi closely relates to the total emission intensity CEI
according to Equations (19) and (20), the sectoral effect εCEIm,ri, j due to a coefficient change ∆ri, j might
largely impact the total effect εCEI,ri, j .

2.4.2. Sensitivity Analysis on Direct-Emission Coefficient

The direct-emission coefficient C has consistently been identified as the top key driver of China’s
total emission intensity change in the existing studies. According to Equation (7), the direct-emission
coefficient for sector i-ci, the ith sectoral element of the factor C, represents the emissions per unit of
output value in sector i. Obviously, a larger value of direct-emission coefficient corresponds to a higher
emission-intensity sector.
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Based on the general form in Equation (22), the elasticity index εCEI,ci can be estimated by

εCEI,ci =
∆CEI/CEI

∆ci/ ci
=

∆


n∑
i=1

ci · xi

n∑
i=1

VAi


/ n∑

i=1
ci · xi

n∑
i=1

VAi

 ·
ci

∆ci
=

∆
n∑

i=1
ci · xi

n∑
i=1

ci · xi

·
ci

∆ci
(23)

The
n∑

i=1
VAi is the added value (stemming from the 3th quadrant of IO table), without the effect of

sectoral direct-emission coefficients change ∆ci. Obviously, the elasticity index εCEI,ci for ith sectoral
element of the driver C is only dependent on the direct-emission coefficient of sector i(ci). The sensitivity
analysis on direct-emission coefficient C can effectively identify the key sectors, whose changes of
sectoral direct-emission coefficients ∆ci severely impact the total emission intensity CEI in terms of
high εCEI,ci .

2.4.3. Sensitivity Analysis on Technology Coefficient

According to the previous studies, the technology coefficient B is also a key driver of China’s total
emission intensity change. The sensitivity analysis on B has recently aroused an increasing interest in
the research field of CO2 emissions analysis [32,33] to reveal the essential linkages between sectors
which will lead to the highest growth of CO2 emissions.

By introducing Equations (3) and (7), Equation (19) can be rewritten as

CEIi =

ci ·
n∑

q=1
bi,q · yq

VAi
(24)

Accordingly, the changes in emission intensity of sector m (∆CEIm) caused by the variation of
sectoral technology coefficient bm,q (i.e., ∆bm,q) can be defined as

∆CEIm =

cm ·
n∑

q=1
∆bm,q · yq

VAm
(25)

where ∆bm,q represents the variation of the technology coefficient bm,q. ∆CEIm represents the change of
emission intensity in sector m impacting by the change in bm,q (i.e., ∆bm,q). The added value of sector i
(i.e., VAi) is constant despite the change in bm,q. Therefore, the change of emission intensity in sector m
(∆CEIm) here is only dependent on the ∆bm,q, as shown in Equation (25).

Given that B = (I − A)−1 = [bm,q], ∆bm,q is actually the changes in technical coefficient ∆ai,k
corresponding to the technological mix of sector k. According to the core Sherman–Morrison formula
of error-propagation theory [63], a change in the technological mix of sector k (i.e., ∆ai,k) would affect
the quality in emission intensity of sector m (i.e., ∆CEIm), through the changes experienced by the
elements of the inverse Leontief matrix corresponding to row m [63]:

∆bm,q =
bm,i · bk,q · ∆ai,k

1− bk,i · ∆ai,k
(26)

where ∆ai,k is the changes of technology coefficient ai,k. By introducing Equation (26) to Equation (25)
for the relationship between ∆bm,q and ∆CEIm, the relationship running from ∆ai,k (for sector k) to
∆CEIm (for sector m) can be mathematically described as

∆CEIm =
cm

VAm
·

n∑
q=1

bm,i · bk,q · ∆ai,k

1− bk,i · ∆ai,k
· yq =

cm

VAm
·

bm,i · xk · ∆ai,k

1− bk,i · ∆ai,k
(27)
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Based on the elasticity indicator, the extent to which the technology change ∆ai,k influences the
sectoral emission intensity can be estimated by [33]

εCEIm,ai,k =
∆CEIm/CEIm

∆ai,k/ai,k
=

bm,i · ai,k

1− bk,i · ∆ai,k
·

xk
xm

(28)

where the elasticity index εCEIm,ai,k represents the extent to which the change in technology coefficient
∆ai,k of sector k influences the emission intensity of sector m. Obviously, the former factor in Equation (28)
is totally determined by the technology coefficient ai,k; in contrast, the latter factor xk/xm corresponds

to the output of sector k with respect to the that of sector m. The output of sector k (i.e., xk =
n∑

q=1
bk,q · yq)

is affected by technical coefficient (
n∑

q=1
bk,q) and final demand (yq). Accordingly, the elasticity εCEIm,ai,k

measures not only the effect of technological changes ∆ai,k of sector k on the emission intensity of sector
m, but also the effect of the economic structure of final demand. Therefore, εCEIm,ai,k can be termed
as the “structure-relevant” technical coefficient elasticity (TCE). To independently investigate how
the technical change influences the sectoral emission intensity, we employ a uniform vector of final
demand, i.e., yq = 1 for ∀q. Thus, the “technology-relevant” TCE, which only considers the effect of
technological changes, can be obtained as follows:

ε∗CEIm ,ai,k
=

bm,i · ai,k

1− bk,i · ∆ai,k
·

n∑
q=1

bk,q

n∑
q=1

bm,q

(29)

where ε∗CEIm ,ai,k
is the corresponding “technology-relevant” TCE of εCEIm,ai,k , without considering the

impact of the final demand structure. Notably, the assumption of setting the final demand vector to a
uniform vector in calculating the “structure-relevant” TCE ε∗CEIm ,ai,k

might be far away from the real
world. Therefore, the results analyses in Section 3.5 will be mainly based on the elasticity εCEIm,ai,k

(without this assumption), rather than ε∗CEIm ,ai,k
(with this assumption).

However, the elasticity ε∗CEIm ,ai,k
has widely been employed in the existing literature (e.g., [32,33]),

in order to reveal the insightful findings—a general direction of designing mitigation policies, i.e.,
whether to prioritize addressing the technology-relevant coefficients for production (if εCEIm ,ai,k �

ε∗CEIm ,ai,k
) or the structure-relevant ones for final demand (if εCEIm ,ai,k � ε

∗

CEIm ,ai,k
).

Through sensitivity analysis on technology coefficient B, the essential sector linkages, whose
changes in sectoral technology coefficient ∆ai,k severely impact the emission intensity in terms of high
εCEIm,ai,k and ε∗CEIm ,ai,k

values, can be identified.

3. Empirical Study

An empirical study on China is conducted for illustration and verification. First, Section 3.1
presents the data descriptions. Second, the CO2 emissions and emission intensity for 1997–2012 are
estimated via the IO model, as per the results reported in Section 3.2. Third, the proposed hybrid
approach is employed to explore the top overall drivers (discussed in Section 3.3) and key sectoral
factors (Sections 3.4 and 3.5) in changing China’s total emission intensity. Third, Section 3.6 concludes
the major findings and provides the corresponding policy measures.

3.1. Data Descriptions

This paper investigates the leading drivers of China’s total emission intensity change via a hybrid
SDA and sensitivity analysis approach, which is based on the IO tables as the database. Therefore,
four pairs of hybrid physical-monetary energy IO tables for the years 1997, 2002, 2007, and 2012 are
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compiled, covering two types of data—time-series IO tables (in monetary units) and the corresponding
emissions data (in physical units). For the monetary data, China’s IO tables for 1997, 2002, 2007,
and 2012 are obtained from the China Statistical Yearbook, which is compiled by the National Bureau of
Statistics of China. According to China’s standard industrial classification system, this study classifies
China’s industries into 21 sectors (indicating the i and j in Equation (1)), as listed in Table 3.

Table 3. Sectors in China’s input-output model.

Abbr. Sector Abbr. Sector

n1 Coal mining and dressing n12 Chemical industry
n2 Extraction of petroleum and natural gas n13 Non-metallic mineral products
n3 Processing of petroleum, coking, and nuclear fuel n14 Smelting and pressing of metals
n4 Production and supply of electric power and heat n15 Manufacture of metal products
n5 Production and supply of gases n16 Manufacture of general equipment
n6 Agriculture, forestry, animal fishery n17 Production and supply of water
n7 Ores mining and dressing n18 Construction
n8 Manufacture of foods, beverages, and tobacco n19 Transport, storage, and post

n9 Manufacture of textile, leather, fur, feather, and other
fiber products n20 Wholesale and retail trades, hotel,

and catering service
n10 Processing and manufacture of timber and furniture n21 Other services

n11 Manufacture of paper, printing, cultural,
and educational articles

For the physical data, energy consumption data (in standard coal equivalent) are derived from the
China Energy Statistical Yearbook. In particular, the energy balance tables refer to the summation of the
direct energy consumptions by all the sectors and energy losses. In this paper, we collected seven main
types of energy, i.e., coal (covering raw coal, cleaned coal, and other washed coal), natural gas, coke,
finished oil (covering diesel oil, gasoline, kerosene, and fuel oil), liquefied petroleum gas, and heat,
and electricity. Generally, most CO2 emissions are caused by the combustion of fossil fuels, in which
CO2 emissions in heat and electricity generation should be allocated to the heat and electricity sector
and not to heat and electricity use [25]. To avoid double calculation, these energies are aggregated into
5 forms (indicating the k in Equation (7)), without considering the heat, and electricity consumption.
In this paper, the CO2 emissions are generated by the consumption of five types of energy in the
production process of 21 sectors. Therefore, the production-based CO2 emissions (in 10,000 tons of
standard coal equivalent) from fuel combustion are calculated, via the IPCC reference approach [55].
To avoid the potential impact of price changes, monetary tables are all converted to 2002 constant
price (in RMB, 10,000 Yuan) by using sectoral price indexes [64]. In particular, the price indexes for the
industrial sectors (n1–n5 and n7–n17), agriculture sector (n6), transportation sector (n19), and services
sector (n20 and n21) are obtained from the corresponding sectoral price indices tables in China Statistical
Yearbooks, while those for the construction sector (n18) are presented by the investment in fixed assets
according to the China Statistical Abstract [65,66].

3.2. CO2 Emissions and Emission Intensity

Based on the compiled IO tables, the trajectory of China’s production-based emissions (i.e., the TE
in Equation (8)) and total emission intensity (i.e., the CEI in Equation (10)) for 1997–2012 can be obtained,
as illustrated in Figure 2. Generally, China’s total emissions showed a consistent upward trend, from
approximately 3206.23 million tons of standard coal equivalent (TSCE) in 1997 to 8506.85 million TSCE
in 2012 at a growth rate above 165%. In contrast, China’s total emission intensity otherwise declined
by approximately 60.1% from 4.50 to 1.79 TSCE/10,000 yuan for 1997–2012.
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During different periods, the extents to which China’s CO2 emissions (or total emission intensity)
increased (declined) are at different levels. On the one hand, during the period 2002–2007,
China’s total emissions climbed the most dramatically, whereas the emission intensity declined
the slightest. The possible reason might lie in the large expansion of emission-intensity products
(mainly corresponding to technology coefficient (B)), such as the products of processing of petroleum,
coking, and nuclear fuel (n3) (with an 83.46% growth in output for 2002–2007), production and supply
of electric power and heat (n4) (251.84%), non-metallic mineral products (n13) (269.16%), etc., which
largely stimulated China’s emissions thereby suppressing the reduction of total emission intensity.
On the other hand, during 1997–2002 and 2007–2012, China’s total emission intensity dropped quickly,
and the emissions climbed moderately relative to 2002–2007. The latent factors might refer to various
technological effects (particularly corresponding to energy technology) and structural effects (mainly
regarding industrial structure and energy structure), and the top leading drivers will be explored by
the proposed method later.

From the sectoral perspective, the estimated sectoral emissions are reported in Table S1 of the
Supplementary data. According to the results, the top major emitters for 1997–2012 were consistently
the sectors of processing of petroleum, coking, and nuclear fuel (n3), production and supply of electric
power and heat (n4), chemical (n12), non-metallic mineral products (n13), smelting and pressing of
metals (n14), and transport, storage, and post (n19). It is worth noticing that these six sectors made up
the majority of China’s total CO2 emissions. For example, the total emissions of the six sectors accounted
for approximately 88.10% of China’s total emissions in 2012, and the largest emitter, i.e., production
and supply of electric power and heat (n4), contributed approximately 40.92%. Interestingly, these
six sectors are all emission-intensive sectors in terms of high direct-emission coefficients, respectively
approximately 9.48, 9.07, 0.40, 1.27, 1.96, and 0.61 TSCE/104 yuan in 2012. This implies that the
direct-emission coefficient (C) might be a leading driver of China’s CO2 emissions.
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3.3. Top Overall Drivers of Emission Intensity Change

According to the proposed hybrid method (see Figure 1), the first step is to use SDA, an overall
and ex-post analysis, for identifying the major overall drivers that “have” made the largest contribution
to China’s total emission intensity change, as the analytic targets in the second step of sensitivity
analysis. In comparison, the existing sensitivity analyses otherwise pre-determined target coefficients
without a systematical quantitative analysis.

According to Equations (15)–(18), CEI can be decomposed into the changes of (1) direct-emission
coefficient (C), (2) technology coefficient (B), (3) final demands structure by product (D), and (4) final
demands by category (F). The detailed parameters are as shown in Equations (3)–(7) and (10)–(18).
Table 4 presents the decomposition results, in terms of the changes in coefficients and the corresponding
contribution ratios (C-ratio) to the change of China’s total emission intensity. The detailed calculation
process of the SDA results, together with illustrating examples, are provided in the notes of Table 4.
From the results, one important conclusion can be deduced that the factors C and B, in terms of high
absolute C-ratios, were two leading drivers of China’s total emission intensity.

Table 4. Contributions of different factors to China’s total emission intensity.

Factors (Equation) Mark
1997–2002 2002–2007 2007–2012

Change C-ratio Change C-ratio Change C-ratio

Direct-emission coefficient
(Equation (15)) C 0.6130 102% 0.7398 2711% 0.8655 40%

Technology coefficient
(Equation (16)) B 0.9777 6% 1.2541 −2647% 0.8185 55%

Final demands structure by
product (Equation (17)) D 1.0363 −10% 0.9953 49% 0.9497 15%

Final demands by category
(Equation (18)) F 0.9931 2% 1.0012 −13% 1.0335 −10%

Total changes (Equation (14)) CEI 0.6168 100% 0.9245 100% 0.6953 100%

Notes: The product of the four factor-attributable changes are equal to the total changes. For example, the total
change in emission intensity CEI in the period 1997–2002 is 0.6168 = 0.6130 × 0.9777 × 1.0363 × 0.9931. A change
of coefficient above 1 indicates a negative effect on the reduction in total emission intensity, and a value below
1 corresponds to a positive effect. The contribution ratio (C-ratio) is calculated by dividing 1 minus the corresponding
change value by the summation of 1 minus every change value [59]. For instance, the C-ratio of factor C in the
period 1997–2002 is 102% = (1 − 0.6130) / [(1−0.6130) + (1−0.9777) + (1 − 1.0363) + (1 − 0.9931)]. A positive C-ratio
indicates a positive effect on the reduction in total emission intensity, and a negative value implies a negative effect.

During different periods, the leading drivers of China’s total emission intensity change were
different. For the period 1997–2002, the decline of China’s total emission intensity was mainly caused
by the factor C with the C-ratio of approximately 102%, while the absolute C-ratios of other factors
were all below 10%. For the period of 2002–2007, the coefficients C and B, respectively with the
C-ratios of approximately 2711% and −2647%, became the major factors largely impacting China’s total
emission intensity. Notably, the absolute C-ratios for coefficients C and B in the period 2002–2007 were
extraordinarily large, and the direct reason is that the associated factor-attributable changes in total
emission intensity (i.e., 26.02% and 25.41%, respectively) were disproportionally larger than the overall
change in total emission intensity (i.e., 7.55%). The great contribution of direct-emission coefficient C
to the emission intensity decrease for 2002–2007 could be attributable to the considerable effort made
by China to reduce total emission intensity, particularly in terms of promoting the use of renewable
energy (e.g., biogas, geothermal energy, and tidal energy), upgrading coal-fired industrial boilers,
and developing coal direct liquefaction technology [67]. In comparison, the large negative effect of
technology coefficient B implies a deteriorating production structure during 2002–2007, mainly due to
a large expansion of emission-intensive products [60]. For example, the production of steel was about
182.4 million tons in 2002; however, it jumped to 489.3 million tons in 2007. Similarly, the output of iron
and cement increased by about 178.9% and 87.7%, respectively, during 2002–2007 [68]. For 2007–2012,
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the two factors B and C stood out again, explaining approximately 55% and 40% of the reduction in
China’s total emission intensity, respectively, whereas the figures for other factors were in the range of
[−10%, 15%].

The roles of different factors in China’s total emission intensity change can be then identified,
and the two factors C and B are observed much more influential. First, the factor C is consistently
tested to be a key driver of China’s total emission intensity change for all the sampling periods, with
the C-ratios all above 40%. This result implies that the emission-intensive sectors, in terms of high
sectoral direct-emission coefficients (ci), should be especially targeted in mitigation policies. Second,
the factor B played an extremely prominent role in China’s total emission intensity change, particularly
for the periods after 2002 (with C-ratios all above 55%). Specifically, without carefully addressing
the factor B (in terms of the expansion of emission-intensity products), although the factor C made a
great effort to reduce China’s total emission intensity for 2002–2007, such a positive effect (in terms
of a C-ratio of 2711%) was almost offset by the negative effect of the factor B (−2647%). In contrast,
a large improvement in B (in terms of the highest C-ratio) for 2007–2012 effectively promoted China’s
emissions mitigation, even with the relatively weak effects of other factors. Third, as for the other
two factors, D and F, the effects on China’s total emission intensity change were relatively week,
and their joint C-ratios were approximately 8%, 36%, and 5% for the periods of 1997–2002, 2002–2007,
and 2007–2012, respectively.

Generally speaking, the SDA results indicate that the factors C and B were the top two leading
overall drivers, which have contributed to 40% and 55%, respectively, of the changes in China’s total
emission intensity during the whole sampling period 1997–2012. Such a contribution was substantially
outstanding for the period 2002–2007, with absolute C-ratios even above 2000%. Interestingly,
our finding is generally in line with prior studies [18,24,38], i.e., that the technology (B) and emission
factors (C) were the top two leading drivers for changing China’s total emission intensity. Accordingly,
an interesting question arises regarding how and to what extent these two determining factors will
influence China’s total emission intensity, and the answer can provide helpful insights into designing
specific, targeted mitigation policies for China. However, previous SDA-based studies have not
addressed such an interesting question. Therefore, this hybrid method further introduces sensitivity
analysis as a perfect complement to SDA, for further revealing how these two top drivers (identified
by SDA) will impact future emission intensity from an ex-ante and sectoral perspective.

3.4. Key Sectoral Factors of Direct-Emission Coefficient

In the second step of the proposed approach, leading overall drivers of China’s total emission
intensity change are investigated via an emerging ex-ante analysis—sensitivity analysis—to further
capture their essential specific elements at sectoral levels. In contrast to the existing sensitivity analyses
pre-determining the target coefficients without a systematical quantitative analysis, this study especially
employs SDA to determine them as those “having” made the largest contribution to China’s total
emission intensity change in the past.

In this section, the direct-emission coefficient (C) is explored for its sensitive sectoral elements—the
key sectors which will exert significant influences on the factor C and hence China’s total emission
intensity. Table S2 of Supplementary data lists the results of sectoral direct-emission coefficients ci
calculated based on the latest data (i.e., the IO table for 2012), and Figure 3 presents their corresponding
elasticity values—εCEI,ci , the extent to which a 1% change in ci (the specific element of factor C in
sector i) influences the total emission intensity. From the results, an interesting finding can be obtained
that the key sectors for the factor C (in terms of large elasticities) are all emission-intensive sectors
(in terms of high sectoral direct-emission coefficients). The parameter ci is calculated by Equation (7),
and its elasticity value can be obtained by Equation (23).
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From Figure 3, it can be obviously seen that China’s total emission intensity is the most sensitive to
the changes in the direct-emission coefficients of processing of petroleum, coking, and nuclear fuel (n3),
production and supply of electric power and heat (n4), chemical (n12), non-metallic mineral products
(n13), smelting and pressing of metals (n14), and transport, storage, and post (n19). Specifically, their
elasticities εCEI,ci all surpass 0.045%, while the figures for other sectors are below 0.020% except for
coal mining and dressing (n1) (approximately 0.039%). The results indicate that a 1% improvement of
the direct-emission coefficient in any one of the six sectors will reduce at least 0.045% of China’s total
emission intensity. Interestingly, the direct-emission coefficients of the six sectors are all at high levels,
respectively approximately 9.48, 9.07, 0.40, 1.27, 1.96, and 0.61 TSCE/104 yuan in 2012. The hidden
reason is easy to understand: according to Equation (23), the elasticity εCEI,ci for the factor C is closely
related to its sectoral elements, i.e., sectoral direct-emission coefficient (ci). Furthermore, these six
sectors are also the largest emitters of China’s emissions for 1997–2012 (see Figure 2). Therefore,
the processing of petroleum, coking, and nuclear fuel (n3), production and supply of electric power
and heat (n4), chemical (n12), non-metallic mineral products (n13), smelting and pressing of metals
(n14), and transport, storage, and post (n19) can be identified as the key sectors that might lead to the
highest growth in China’s emissions.

Such an insightful result at the sectoral level implies that China’s total emission intensity is the most
sensitive to the changes in direct-emission coefficients of the six sectors, i.e., processing of petroleum,
coking, and nuclear fuel (n3), production and supply of electric power and heat (n4), chemical
(n12), non-metallic mineral products (n13), smelting and pressing of metals (n14), and transport,
storage, and post (n19), which should be especially targeted when controlling the major driver C.
Accordingly, a series of related measures are recommended to be carried out for reducing their sectoral
direct-emission coefficients (ci), which will effectively improve the direct-emission coefficient (C)
thereby reducing China’s total emission intensity. Promising measures are extensive application of
energy-efficient machinery and equipment in the emission-intensive industries [33], enhancing the
share of cleaner fossil fuels such as natural gas and promoting renewable energy in energy input [60],
encouraging cleaner technology innovation and adopting economic instruments such as taxes or
subsidies [28].

3.5. Key Sectoral Factors of Technology Coefficient

The technology coefficient B is the Leontief inverse matrix, with elements bi,k (or ai,k) representing
the direct or indirect demand for the goods and services produced domestically by sector i made
by sector k [32]. For a target sector m, the associated elasticities, εCEIm,ai,k and ε∗CEIm ,ai,k

, measure the
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extent to which the change in sectoral technology coefficient ai,k influences the sectoral emission
intensity CEIm. Here, the six top emission-intensive sectors, whose sectoral emission intensities are
the most significantly influential in terms of the total emission intensity (as identified in Section 3.4),
are especially focused on as the target sectors. Two types of elasticities are considered—ε∗CEIm ,ai,k
focusing on technological changes (see Equation (29)), and εCEIm,ai,k incorporating structural changes
(see Equation (28))—which allow discussion of the technology coefficient B from the two perspectives
of technological change and structural change, respectively. Accordingly, the “structure-relevant”
technical coefficient elasticity (TCE) for factor B (technology coefficient), i.e., εCEIm,ai,k can be obtained
by Equation (28). The “technology-relevant” TCE for factor B (technology coefficient), i.e., ε∗CEIm ,ai,k

,
can be obtained by Equation (29).

Figure 4 only shows the elasticity values εCEIm,ai,k of the essential technology coefficients with the
threshold of 0.1 (i.e., εCEIm,ai,k > 0.1) [33], together with the corresponding “technology-relevant” TCE
ε∗CEIm ,ai,k

. For example, the result εCEI3,a3,19 = 0.2592 means that a 1% improvement in the technology
coefficient a3,19 of the intermediate products provided by processing of petroleum, coking, and nuclear
fuel (n3) less consumed by transport, storage, and post (n19) during the production process will reduce
the emission intensity of n3 by approximately 0.2592%.
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Figure 4. Elasticity values for technology coefficient (B) based on sensitivity analysis. The top
6 emission-intensive sectors are considered in sensitivity analysis: a Processing of petroleum, coking,
and nuclear fuel (n3), b Production and supply of electric power and heat (n4), c Chemical (n12),
d Non-metallic mineral products (n13), e Smelting and pressing of metals (n14) and f Transport, storage,
and post (n19). The notation ai,j is the technical coefficient, i.e., the direct consumption of sector j by
unit input of sector i. The blue bars denote the “structure-relevant” technical coefficient elasticity (TCE)
of ai,j greater than 0.1, ranging from small to large in the vertical axis. In addition, the red bars are the
corresponding “technology-relevant” TCE with the same changes of technology coefficients ai,j. Here,
only technical coefficients ai,j with the “structure-relevant” TCEs above 0.1 are presented.
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From Figure 4, one important conclusion can be drawn, which is that the emission intensities of
the six key sectors, i.e., processing of petroleum, coking, and nuclear fuel (n3), production and supply
of electric power and heat (n4), chemical (n12), non-metallic mineral products (n13), smelting and
pressing of metals (n14), and transport, storage, and post (n19), are all the most sensitive to changes
in technology coefficients of their own industries, in terms of the highest elasticity values (higher
than 0.1%), i.e., the technology coefficients of the key six sectors with direct transaction relations have
greater influences on the emission intensity than those with indirect transaction relations. In particular,
the emission intensities of production and supply of electric power and heat (n4), chemical (n12),
smelting and pressing of metals (n14) and transport, storage, and post (n19) are all the most sensitive
to the technology changes of the intermediate products both produced and consumed by themselves;
and those of processing of petroleum, coking, and nuclear fuel (n3) and non-metallic mineral products
(n13) are the most significantly influenced by the technology changes of the self-supplied intermediate
products but consumed by transport, storage, and post (n19) and construction (n18), respectively. These
results repeatedly support the extremely crucial roles of the six key sectors in China’s emission intensity,
which should also be targeted in particular when controlling the major driver B. Effective measures
are suggested to reduce the activity levels and avoid surplus productions in these emission-intensive
industries, such as enhancing environmental taxes, developing new energy conservation technologies
and phasing out outdated technologies to reduce the loss rate in energy processing and conversion [60].

Through indirect transaction relations, some other industries might also exert significant influences
on the emission intensity. An outstanding one is the manufacture of general equipment (n16) whose
changes in technology coefficient consuming self-supplied intermediate products, i.e., a16,16, will
significantly influence the emission intensity of all six key sectors, and those consuming the intermediate
products produced by smelting and pressing of metals (n14), chemical (n12), and transport, storage,
and post (n19) are also influential. For example, apart from the direction transaction relations with
the key six sectors, the elasticity of technology coefficient a16,16 ranks first for production and supply
of electric power and heat (n4) and chemical (n12), and second for processing of petroleum, coking,
and nuclear fuel (n3), non-metallic mineral products (n13), smelting and pressing of metals (n14)
and transport, storage, and post (n19). Interestingly, these results are consistent with the existing
literature [32,33], in which the important role of manufacture of general equipment (n16) in China’s
emission intensity were similarly observed via the sensitivity analysis of the technology coefficient.
The hidden reason might lie in the production structure of manufacture of general equipment (n16).
In particular, the products consumed by n16 accounted for approximately 13.20%, 7.85%, 31.97%,
and 12.36% of the total consumption produced by chemical (n12), non-metallic mineral products (n13),
smelting and pressing of metals (n14), and transport, storage, and post (n19) in 2012, respectively.
Moreover, construction (n18) and transport, storage, and post (n19) are also worth noticing, whose
changes in technology coefficients remarkably impact the emission intensities of non-metallic mineral
products (n13) and processing of petroleum, coking, and nuclear fuel (n3), respectively.

When comparing the elasticity and its “technology-relevant” TCE, two interesting findings can be
observed. On the one hand, there is a relationship εCEIm ,ai,k � ε

∗

CEIm ,ai,k
for most technology coefficients,

such as a3,19 for processing of petroleum, coking, and nuclear fuel (n3) (i.e., εCEI3,a3,19 = 0.2592% �
ε∗CEI3,a3,19

= 0.0809%) and a13,18 for non-metallic mineral products (n13) (with 0.7324% � 0.1741%).
This implies the emission intensities for these sectors are significantly impacted by the final demand
structure, i.e., the technology coefficients will impose a stronger influence on China’s total emission
intensity when considering the effect of final demand structure. Accordingly, the adoption of effective
measures to improve final demand structure is advised when addressing the technology coefficients,
such as energy structure improvement by promoting the use of cleaner fossil fuels instead of coal
in energy input for the non-metallic mineral sector (n13) [60]. On the other hand, there are also
two exceptions, i.e., a14,15 for smelting and pressing of metals (n14) (with 0.1670%� 0.1937%) and a12,12

for transport, storage, and post (n19) (with 0.0683%� 0.1055%), where εCEIm ,ai,k � ε
∗

CEIm ,ai,k
, otherwise

supporting the importance of technological improvements. In these two peculiar cases, technology
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coefficients will influence the emission intensities mainly via the technological effect rather than the
structure effect, and efficient measures for technological improvement are more desirable, such as
introducing energy-efficient equipment (e.g., energy-saving cooling equipment in the smelting and
pressing of metals sector (n14) [69]).

3.6. Subsection Data Descriptions

Based on the proposed hybrid approach, a rich array of new and interesting findings, i.e., drivers
leading to the largest emissions at both overall and sectoral levels and from both ex-post and ex-ante
perspectives, are explored. These outstanding factors constitute a map of hotspots in China’s energy
system as shown in Figure 5, which can provide helpful insights into specific, targeted mitigation
policies. In particular, the top leading drivers (i.e., C in Equation (3) and B in Equation (7)) and high
elasticity value for these factors (i.e., εCEI,ci in Equation (23), εCEIm,ai,k in Equation (28) and ε∗CEIm ,ai,k

in
Equation (29)) can be highlighted.
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Figure 5. Map of hotspots in China’s energy system leading to the highest potential emissions.
The notation ai,j indicates the technical coefficient, i.e., the direct consumption of sector j by unit
input of sector i, with its “structure-relevant” technical coefficient elasticity reflected by the width
of the corresponding arrow. The direction of an arrow presents the subordination from a key
involved coefficient to the higher-level one, with the former impacting the latter greatly (or the latter
super-sensitive to the former).

The proposed hybrid approach first employs SDA to identify the top overall drivers that have
largely impacted China’s total emission intensity for 1997–2012—direct-emission coefficient (C) and
technology coefficient (B). This finding provides helpful insights into the major directions of mitigation
policies for China—the government could reduce China’s emission intensity, by curbing key sectoral
elements of driver C (i.e., direct-emission coefficients ci of sector i) and driver B (technology coefficients
ai,j of emission-intensive sectors). To accordingly design the specific, targeted policies, sensitivity
analysis is especially conducted to respectively explore the sectoral key elements of the two determine
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drivers, which will lead to massive future emissions. The corresponding results, together with
promising measures, are as follows.

For driver C, the sensitivity analysis reveals that the emission-intensive sectors with the high
direct-emission coefficients are the key sectors (in terms of large elasticity εCEI,ci), which will cause
the highest CO2 emissions: processing of petroleum, coking, and nuclear fuel (n3), production and
supply of electric power and heat (n4), chemical (n12), non-metallic mineral products (n13), smelting
and pressing of metals (n14) and transport, storage, and post (n19). According to Equation (23),
the elasticity εCEI,ci for driver C is determined mainly by sectoral direct-emission coefficient (ci). Thus,
policy measures, e.g., energy technology update and energy structure improvement, are strongly
recommended for reducing the key sectoral direct-emission coefficients ci (i = 3, 4, 12, 13, 14, 19),
and thereby China’s total emission intensity to a largely proportional extent (according to the large
elasticity εCEI,ci ). Promising sector-specific measures are as follows: (1) introducing recyclable fluidized
bed combustion technology in the chemistry industry (n12) [70]; (2) employing compressed air energy
storage technology in the production and supply of electric power industry (n4) [71]; (3) promoting the
use of solar energy in the non-metallic mineral industry (n13) [72]; (4) using biodiesel in the transport
sector (n19) [73].

Regarding driver B, its key sectoral elements—the essential sector linkages ai,k, whose changes
will severely impact China’s total emission intensity—are deeply explored. First, the sensitivity
analysis reveals that the emission intensities of the key sectors are the most sensitive to the changes
in the technology coefficients of their own industries, i.e., the direction relations of a4,4, a12,12, a14,14,
and a19,19 (with the highest elasticity εCEIm,ai,k ). Second, in indirect relations with the six key sectors,
outstanding hotspots are the manufacture of general equipment industry (n16) whose changes in
technology coefficient consuming self-supplied intermediate products a16,16 exert significant influences
on the emission intensities of all the six key sectors, and the construction industry (n18) and transport,
storage, and post (n19) whose changes of technology coefficients greatly impact the emission intensities
of non-metallic mineral products (n13) and processing of petroleum, coking, and nuclear fuel (n3),
respectively. According to the nature of elasticity εCEIm,ai,k , a 1% improvement in the technology
coefficient ai,k (i.e., the intermediate products provided by Sector i less consumed by Sector k during
the production process) will reduce the emission intensity of Sector m by approximately εCEIm,ai,k ,
and thereby China’s total emission intensity. Accordingly, reducing the activity levels of these sector
linkages is a simple but efficient way to cut down China’s emission intensity, via efficient economic
measures (e.g., environmental taxes) for these sectors that highly rely on the self-suppled intermediate
products [60].

Based on Equation (28), the elasticity εCEIm,ai,k for driver B is impacted largely by the sectoral input
(xj) in addition to the technology coefficient (ai,j). Thus, saving inputs (particularly energy inputs)
and introducing new technology in the related sectors becomes another efficient way to improve
technology coefficient (B) and hence China’s emission intensity. Possible sector-specific measures for
energy conversation include: (1) using evaporative condenser and oxygen-enriched technology in
the smelting and pressing of metals industries (n14) [67,74]; (2) introducing the straw pyrolysis gas
technology in processing of petroleum, coking, and nuclear fuel (n3) [75]; (3) promoting ground source
heat pump in the construction industry (n18) [76].

4. Conclusions and Policy Implications

To systematically investigate the drivers of China’s CO2 emission intensity change, this study
might be the first attempt to couple SDA and sensitivity analysis to propose a hybrid approach.
Generally, the major contributions of this work to the literature can be summarized in the following
two ways. First, the hybrid approach not only explores the major drivers of China’s total emission
intensity change at an overall level and from an ex-post perspective as did most previous studies for
China, but also probes each top leading driver to identify its essential specific elements at a sectoral
level and from an ex-ante perspective via the promising method of sensitivity analysis. Second, four
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hybrid physical-monetary energy IO tables in China for 1997, 2002, 2007, and 2012 are compiled,
to not only capture the long-term trends for 1997–2012 in the ex-post analysis, but also conduct the
ex-ante analysis based on the most updated data for 2012. In particular, the proposed method is
implemented to explore the drivers of China’s CO2 emission intensity change and provide a hotspot
map of energy systems for specific, targeted mitigation policies. From the ex-post perspective, SDA is
implemented to identify the top overall drivers that have largely affected total emission intensity, i.e.,
direct-emission coefficient (C) and technology coefficient (B). The results point out the major directions
to control China’s emission intensity-curbing key sectoral direct-emission coefficients (regarding C)
and technology coefficients (regarding B). From the ex-ante perspective, the hybrid method introduces
sensitivity analysis to deeply investigate the two drivers at sectoral levels, revealing which essential
sectoral factors will lead to massive future emissions. For the driver C, the sensitivity analysis reveals
that the high emission-intensive sectors are the key sectors which will cause the highest emissions:
processing of petroleum, coking, and nuclear fuel (n3), production and supply of electric power and
heat (n4), chemical (n12), non-metallic mineral products (n13), smelting and pressing of metals (n14),
and transport, storage, and post (n19). Regarding B, the emission intensities are the most sensitive to
the changes of the technology coefficients in the direct relations with the six key sectors. Accordingly,
China should make a great effort to control the emission intensities and the activity levels of the six key
sectors, thereby significantly reducing the total emission intensity. The empirical study provides new
valuable findings for designing and adjusting specific, targeted mitigation policies for China.

However, there are still many interesting works for the future research. First, the empirical study
especially focuses on China, and the hybrid method could be applied to other regions, states, and cities
in the world to verify its generalization and universality. Second, in SDA, some other important
factors, such as population change and per-capita carbon emission, could also be considered. Third,
the sensitivity analysis only investigates the top two leading drivers, and a comprehensive analysis for
various factors is desirable. We will consider these interesting issues in the near future.
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