
energies

Article

Railway Vehicle Energy Efficiency as a Key Factor in Creating
Sustainable Transportation Systems

Małgorzata Ćwil 1, Witold Bartnik 2 and Sebastian Jarzębowski 3,*
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Abstract: Railway transit forms the backbone of sustainable transportation systems, which are
necessary to limit the effects of global warming. In this paper, the authors seek to determine whether
there is a statistically significant difference in energy consumption between distinct railway vehicle
types. Firstly, the energy consumption measurement methods in the railway transportation sector
are described and compared to each other in respect to precision and cost. Secondly, the use of
energy consumption as a criterion in rolling stock tenders with the associated norm is analysed,
particularly with regard to the life-cycle cost of railway vehicles. In the next part real life data
on energy consumption of six distinct passenger electrical railway vehicle types is presented and
analysed in order to compare the efficiency of different types of rolling stock. The differences in
energy efficiency between rolling stock types may be used to improve the procurement process
ensuring train operating companies obtain less energy-consuming vehicles.

Keywords: railway; energy efficiency; energy consumption

1. Introduction

Transportation is a key element of the worldwide economic system, and its importance
has particularly increased due to the rise of globalization and the transborder supply chains
that have developed since 1990 [1]. It is, however, the only major sector of the EU economy
whose CO2 emissions have not been dropping in a sufficient manner. As shown in Figure 1,
European transportation emissions have only started dropping in 2007 and still remain
above their 1990 level [2]. This is a major challenge for global stakeholders as they strive to
achieve the goals set in the Paris Agreement [3] in order to limit global warming to 1.5 ◦C.
This requires significant emission reductions and transportation’s comparable emissivity
growth means this sector has to cut its environmental footprint faster and harder than
the rest.

One of the major tools needed to achieve the aforementioned emission reduction
is railway transportation. This importance stems from its numerous environmental ad-
vantages. Firstly, railway transportation boasts superior energy efficiency due to the low
friction coefficient for steel wheels on steel rails [4,5]. Secondly, the widespread use of
electrical engines and electrical traction for rail vehicles enables it to provide transportation
with no emissions on-site, while the rise of green energy initiatives and the reduction of
emissions in electricity production mean that a truly zero-emission railway is possible
and has already been implemented, for example in the Netherlands [6]. Thirdly, railways
are extremely efficient in terms of space required to provide transportation, which is the
reason metros and urban rail systems form a critical component of sustainable cities [7].
Undoubtedly, railway transportation has numerous environmental advantages over its
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competitors and studying the differences in energy efficiency between various rolling stock
types is a main aim of the research described in this paper.

Figure 1. CO2 emissions in European Union [3].

As the worldwide urban population is forecast to keep rising [8], the task of providing
billions of city-dwellers with sustainable and affordable transport will have to be performed
relying mostly on rail-based public transportation. Identifying the needs of customers
enables train operators to offer the service that they need and require, in accordance with
the value creation theory [9]. Furthermore, it has been shown that high-speed rail can
compete with air travel on short corridors up to 1000 km [10]. This is made possible by the
location advantage held by railway terminals over airports. Even though the flight time is
shorter due to the significantly higher speed, the additional time needed by travellers to
get to the outbound airport and then to move from the inbound terminal to the city centre
causes these time savings to shrink. Furthermore, the complicated and often crowded
security control procedure and waiting for luggage at the destination leads to even more
time being lost as compared to departing from station 5 minutes after arrival and then
coming immediately into the city centre with baggage on hand. This competition depends
naturally on the location of the airport, as some terminals lie so close to the city centre as to
render the train advantage irrelevant (i.e., New York La Guardia, Warsaw Chopin Airport).
As short-haul flights emit more greenhouse gases, replacing them with railways powered
by green energy offers a huge boost to the climate action. This process has already begun in
France, where the terms of the government’s pandemic-related help for Air France, a major
airline, stipulate that the operator will need to stop competing with high-speed trains on
connections between major French cities [11].
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Environmental management system should provide an initial point for defining the
management of environmental issues in a supply chain management context. Environ-
mental management should encompass all efforts to minimize the negative environmental
impact of the products throughout their life cycle [12]. These efforts should then focus on
the procurement and production process, productive lifetime of the product and finally its
disposal. Several studies have analysed the emission intensity of railways, particularly in
order to compare it to competing modes. It is important to note that emission estimates for
railways may vary significantly depending on the assessment method [13]. This stems from
important approach differences between the three major emission calculation methods,
namely direct emission, well-to-wheel (WTW) and life-cycle assessment (LCA). The WTW
method in particular is important, as it takes into account the emissions generated during
energy production, which can be problematic even for electric railways in countries or
regions where energy generation is based mainly on coal or gas. Meanwhile, the LCA
method emphasizes the emissions related to production and disposal of the vehicle after
its productive lifetime is over.

2. Materials and Methods
2.1. Electrical Energy Measurement in Railway Vehicles

Improving railway transportation energy efficiency requires that efficiency be mea-
sured first. This task is quite straightforward for diesel-fuelled vehicles, as they require
regular refuelling, but electrical vehicles draw power from the catenary and unless mea-
suring devices are mounted onboard the only information available is via substation
measurement. That can still provide valuable information and general consumption co-
efficients for the whole network can be calculated. This used to be the main method
of energy settlement in European railway undertakings [14]. Each train would have its
consumption coefficient calculated based on its mass, composition, stopping pattern and
other factors [15]. Then the total energy consumption for a given period would be divided
between all the trains running in that period according to their coefficients [16]. Although
this method provides useful results, it is worth noting that in a system where energy is
settled via coefficients, no incentive exists for more efficient operations. If any operator or a
single train driver tries to run trains in a more efficient manner (i.e., uses eco-driving), the
total gain from those efforts is spread evenly among all trains thus reducing the incentive
for such environment-friendly actions.

This underlying weakness of the settlement system was observed by the European
Union Agency for Railways (ERA) and has led it to ask the European Committee for
Electrotechnical Standardization (CENELEC) to create a standard for an onboard energy
measuring system (EMS) [17]. This standard was established as the norm EN-50463:
“Railway applications. Energy measurement on board trains. General” [18].

To pay only for energy that was actually consumed by their trains, operators have
started to install energy meters on their vehicles [19,20]. These devices also allow them to
monitor operating efficiency of vehicle types, drivers and routes enabling better decision-
making. At the same time, energy meters allow the energy provider to analyse the quality
of the power supply and can even be used to detect abnormalities related to catenary or
substation problems. These advantages of a fully measured system have been noticed by
regulators. The EU in particular has, via its Technical Specifications for Interoperability
Energy documents, established a general requirement for all operators of electrical trains
to mount energy meters onboard, while obliging infrastructure operators and energy
providers to construct data collection and billing systems. All such devices and systems
must conform to the aforementioned EN 50463 norm. Railway undertakings in Europe
have declared that they will install Energy Measurement Systems (EMS) on all traction units
where it is technically and economically feasible, which should result in the metering of
60% of all traction vehicles by 2025 and 90% by 2030 [21]. Metering therefore has numerous
benefits for both the operator and the energy provider, but these come at a cost, as these
devices require investment and regular maintenance in order to ensure their continued
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precision. For example, in Poland the cost of procurement and installation for one meter
was estimated to be between PLN 11–30 thousand (ca. EUR 2500–6700) [22], while at
the same time metrological legislation required the recertification of those devices every
three years forcing operators to implement procedures related to that process and to keep
additional meters in reserve.

Modern rail vehicles often include advanced TCS (Train Control System) which collect
and analyse data from numerous sensors mounted onboard. As some of these sensors are
installed in the engines and the inverter (modern vehicles run almost exclusively using AC
engines, while legacy networks often use DC power supply), it is possible to determine
the energy consumption through the power input measurement. That method is only an
estimate as the sensors providing data for it do not need to conform to energy metering
specifications. It can; however, be used as a tool for trip efficiency evaluation.

2.2. Factors Affecting Energy Consumption

Energy consumption of running trains is influenced by several factors [23]. Firstly,
there is a division between energy used to propel the train and the energy needed to run
its systems, heating, ventilation, air-conditioning (HVAC) and lights. The running energy
for passenger trains depends strongly on the type of service being operated due to their
different stopping patterns. As the data from the Spanish operator RENFE shows [24],
despite the higher maximal speed of long distance and high-speed trains, their energy
consumption per passenger-km is significantly lower than for commuter and regional trains.
This stems from the fact that accelerating the train after it has been stopped completely
is highly energy consuming. For trains running similar services, the maximal speed
attained also affects the energy consumption significantly. As the kinetic energy increases
squarely with speed, that effect is particularly strong for higher speeds, where the increase
from i.e., 130 km/h to 140 km/h for a commuter train does not provide significant time
savings while leading to higher energy consumption. The driving technique employed
by the vehicle operator is also a significant factor influencing the total energy intake
of the train [25], which has led some operators to implement eco-driving as a method
of increasing their operational efficiency. These approaches are often based on Driver
Advisory Systems (DAS) which supply drivers with dynamic speed recommendations [26].
Another important factor affecting the level of energy consumption in passenger trains
is the weather. Low temperatures require the train to be heated, which in cold winters
may increase the energy use by over 30%. Conversely, due to the fact that an increasing
number of trainsets is equipped with air conditioning, hot weather leads to increased
energy consumption for cooling.

2.3. Energy Consumption as a Tender Criterion

The procurement function has become very important for the organizations to in-
fluence their response to the natural environment issues. Procurement plays strategic
role in an organization and is integrally related with the formation of trading partner-
ships [27]. The environmental criteria in purchasing constitute a very recent research topic,
the study of these issues is not sufficient. There are various literature references related
to environmental aspects in procurement [28–32]. The common issue is the integration of
environmental aspects and concerns into sourcing and supply chain management [33,34]
in order to improve the environmental impact of the supply chain while maintaining
results in economic performance [35–41]. There are also literature sources focusing on
governmental requirements and legal regulations in relation to environmental protection
and CSR [37,42–46].

Railway vehicle procurement used to be based entirely on price. While this approach
has its merits and was the only choice available when there was a lack of sufficient data
to establish the value of other vehicle life cost components, it has been superseded by a
LCC (life-cycle cost) method. According to this methodology, when evaluating the cost of
owning an object, its whole life cycle is taken into account, including the initial investment,



Energies 2021, 14, 5211 5 of 13

maintenance, energy as well as its disposal [47]. In a railway vehicle, this last part is not
necessarily significant and it has therefore become standard to define a TCO (total cost of
ownership) of a train as a sum of the initial price, maintenance and energy costs. There are
varying estimates of the weight of these components in the total cost of ownership, but in
general public information in that area is limited. This is mostly due to the confidential
character of such data, as disclosing it would negatively affect an operator’s competitive
position. The estimates available to the authors have been shown in Table 1.

Table 1. Lifecycle components’ value.

Source Procurement Maintenance Energy

Arup, 2011 31% 44% 25%
Siemens, 2016 34% 29% 37%

Source: [48,49].

These percentages also vary between different types of service patterns operated by
trains. The more frequently the train stops, the higher its specific energy consumption
which will also affect its total life cycle cost. On the other hand, high-speed trains, whose
stopping pattern is very infrequent, incur a high procurement cost due to the technological
and safety requirements of regulators for this kind of vehicles.

The rising awareness of maintenance and energy costs has led operators to start using
LCC analysis in their tendering process. The first such tender was floated in 1986 by the
Swedish State Railways [50]. The use of energy coefficients in the tendering process is
a more recent development and there have been varying approaches to this subject. An
often-used method is to specify a route, usually operated by the tendering entity and to
require producers to declare the amount of energy needed to run that route. This was the
approach used by the Masovian Railways (Koleje Mazowieckie, a large regional operator
in Poland) in their huge, 71 electrical multiple unit (EMU) tender in 2017 [51]. The bidders
had to specify the total consumption of energy of their trains on the route (both ways)
from Warsaw to Minsk Mazowiecki in the least favourable conditions possible out of the
predefined set where the required temperature was between −15 and +30 ◦C A similar
approach has been used by Łódź Metropolitan Railway (ŁKA-Łódzka Kolej Aglomeracyjna,
a small urban rail operator in Łódź), although in that tender the energy consumption was
multiplied by the declared vehicle weight in the final evaluation score. In both cases this
method of establishing energy efficiency has led to protests by the losing bidders and in
the case of the ŁKA tender the winning bidder’s calculation was overturned and the final
result changed. The main problem with using this criterion is its declarative character—the
vehicle’s true efficiency can only be measured after delivery, when it is already too late
to affect the bidding process. The percentages used to evaluate rolling stock tenders in
Poland in the last few years are shown in Table 2 on the basis of the tender documents from
those procurement processes. As indicated in the table, energy costs were present in the
evaluation criteria for the majority of those tenders.

Table 2. Rolling stock evaluation criteria in Polish tenders.

Train Type Procurer Purchase Costs Maintenance Costs Energy Costs Other Criteria

ED160 PKP Intercity S.A. 40% 30% 30% 0%
ED161 PKP Intercity S.A. 40% 30% 30% 0%
Flirt 3 ŁKA 40% 30% 25% 5%
36 WE ŁKA 40% 30% 20% 10%
Flirt 3 KM 20% 25% 13% 39%
ED162 PKP Intercity S.A. 58% 22% 0% 20%
ED250 PKP Intercity S.A. 60% 40% 0% 0%

Source: Official tender documents.
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A special norm, EN 50591, was developed in order to support railway undertakings
in efficient rolling stock procurement [52]. In this document, a method for calculating the
energy efficiency of railway vehicles is proposed taking into account factors such as train
load, track speed profile, line topography and temperature. The norm divides railway
services into six distinct categories, five for passenger traffic: metro, suburban, regional,
intercity, high speed and one for mainline freight.

2.4. Energy Efficiency Improvement

To achieve sustainability of railway transportation, two distinct objectives have to be
met. Firstly, the energy consumption has to be reduced to make trains cheaper and more
competitive compared to their unecological alternatives. Secondly, their energy supply
needs to become green as well.

The authors believe that the search for potential improvement of efficiency is not
a task only for single enterprises but also for entire supply chains [53]. The subject of
increasing the energy efficiency of railway transportation has been analysed extensively in
literature. The seminal work by Gonzales-Gil et al. [54], which focuses on DC-powered
urban rail systems, provides great insight into this topic. The potential improvements are
divided into five main categories: regenerative braking, energy efficient driving, traction
efficiency, comfort functions and measurement and management. All of these areas have
been the subject of intense research, and a detailed description falls outside the scope of this
paper, but it is worth noting that regenerative braking and energy efficient driving concepts
contain the bulk of the savings potential which has led to numerous mathematical publica-
tions describing the optimal driving curve for trains in differing conditions, schedules and
service types [55]. Reducing the braking losses through smooth driving is also mentioned
as a significant source of energy saving potential in other sources [56]. These losses can
also be reduced by using energy storage with two main approaches used in the industry:
trackside- and vehicle-mounted devices [57]. Modernising old and procuring new train
sets also provides a huge sustainability boost, particularly because railway vehicles may
serve for over 50 years, compared to only 10–12 years for buses. Another important method
of improving the railway energy efficiency is the prevention of route conflicts which in
cases of heavy trains and high operational speeds can lead to energy losses as high as 100
MJ [56].

The topic of green power supply for railways has become very popular in recent years.
Although this subject may be outside of control of the railway operator, it is worth noting
that the source of the energy used to power trains is critical to their sustainability. For
example, because the majority of electrical energy (74% in 2021) produced in Poland comes
from burning coal, its mostly electrified and extensive railway network has a large carbon
footprint [58]. The national energy provider (PKP Energetyka) has therefore declared that
by 2030 all of the energy consumed by the Polish railways will be renewable. Achieving
goals similar to that will be of critical importance in order to achieve emission targets
prescribed by the Paris Agreement. Measuring and assessing the energy consumption
of existing rolling stock is therefore an important part in the process of increasing the
efficiency of railways.

2.5. Research Methods

To research the differences in energy consumption between train types, the following
hypothesis is stated:

Hypothesis 1 (H1). The energy consumption differs between distinct train types.

Data from 6 distinct types of electric, passenger railway vehicles was gathered and
analysed. These data were collected from energy meters mounted on trains operated
by a large operator in Eastern Europe. The accumulated data consists of over 1 million
trips (N = 1,042,716) made between April 2016 and December 2020. Besides the energy
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consumption, the researchers additionally gathered the data concerning: train type (with
its weight and number of cars), date of the measurement (which allows to include the
temperature or compare the energy usage between different seasons). It is worth noting
that the objective of this research was to determine whether any differences in specific
energy consumption stemming from technical differences could be detected. For electrical
multiple units these differences may be caused by different approaches to the vehicle
construction, for example the number of powered and unpowered cars or the total number
of axles. This means that for that comparison to be worthwhile, other factors affecting
energy consumption needed to be similar for all train types analysed. Data from all
vehicles were gathered in similar numbers across all seasons and temperatures typical for
Central Europe which enabled the authors to disregard that factor although it might be
interesting to model how the change in temperature affects each type’s energy consumption
separately. The same applies to the number of passengers, which could not be measured
for the purposes of this research; however, the very large sample size and the equal use of
analysed trainsets in different types of day allows the authors to assume that this factor
was not relevant in the detected differences.

The six vehicle types included in the analysis varied by their length, mass, passenger
capacity, and electrical engine type. The vehicles analysed had either a direct current (DC)
or alternating current (AC) propulsion. DC engines are not installed on modern railway
vehicles anymore, but before the invention of efficient inverters companies operating DC
traction had to use matching engines on their vehicles. AC engines are now widespread
due to their higher efficiency, particularly in the acceleration phase. Regenerated energy
was not taken into account in these calculations due to the random character of the network
receiving capability and the fact that DC-powered trains are not able to use regenerative
braking. The stopping pattern was similar among all the services operated by those railway
vehicles and the terrain was mostly flat, so it did not affect the energy consumption signifi-
cantly. To obtain a fair comparison between those train types, their energy consumption
per kilometre (Unit Energy Consumption) was divided by their net running mass in tonnes,
so the final unit of measurement was watthour/tonnekilometer (Wh/tkm). This unit
appropriately represents the amount of energy required to power different trainsets and
allows for comparable analysis.

Each of the six researched train types was represented by a vast number of trips
(Table 3). The lowest number of trips was reported by the train type no. 6 (n = 69,803, 6.7%
of all the trips) and the highest by the train type no. 4 (n = 358,413, 34.4% of all the trips).

Table 3. Number of trips analysed for each of the included train types.

Train type Frequency Percent

1 81,158 7.8
2 145,607 14.0
3 272,127 26.1
4 358,413 34.4
5 115,608 11.1
6 69,803 6.7

Total 1,042,716 100.0

All data were analysed using SPSS v. 26 (Version 26.0. Armonk, NY: IBM Corp.). There
were no missing data about energy consumption or the train type in the whole data set. To
compare the energy usage between distinct train types, ANOVA analysis was performed.
ANOVA provides a statistical test of whether two or more population means are equal, it
this case the average energy consumption between train types was tested [59]. ANOVA
analysis was used to verify the hypothesis that the energy consumption differs between
distinct train types. If the results of the test indicate that there are significant differences
in energy usage between distinct train types, the authors would suggest that the energy
factor should be included as one of the tender criteria.
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3. Results

The average energy consumption for researched train types ranged from 43.862
Wh/tkm to 59.995 Wh/tkm (Table 4). The values of the means and medians did not
differ significantly. On the basis of skewness, the distributions of energy consumption for
all of the train types were not highly asymmetrical. The values of standard deviation show
that the variability of the scores was rather mild; however, on the boxplots a large number
of outliers can be observed (Figure 2).

Table 4. Energy consumption descriptive statistics for each of the train types.

JZE_Wh/tkm
Train Type

1 2 3 4 5 6

N
Valid 81,158 145,607 272,127 358,413 115,608 69,803

Missing 0 0 0 0 0 0
Mean (M) 51.7326 43.8621 50.3594 54.6107 57.9052 59.9948
Median 52.1570 43.1412 50.6346 55.1813 58.0802 60.0966

Std. Deviation (SD) 9.10781 10.21695 10.50929 9.08018 9.81526 7.98946
Skewness −0.241 0.773 0.179 −0.192 −0.310 0.759
Minimum 0.27 0.06 0.07 0.02 0.18 0.53
Maximum 172.24 239.97 232.07 223.11 212.69 219.35

Figure 2. The comparison of energy consumption for each of the vehicle types. Stars denote
atypical observations.

According to Figure 2, some differences in energy consumption per one tonnekilometer
can be observed. The lowest energy consumption is observed in train type no. 2 (according
to median and quartiles) and the highest in train type no. 6.

To verify the hypothesis that there is a statistically significant difference in the energy
consumption between different train types, a one-way ANOVA for independent samples
was performed with the robust test of equality of means (Table 5). The statistical tests were
used in order to generalize the results for the whole population. It turned out that there are
statistically significant differences in energy usage between different train types (F Welch
(5; 310,150.05) = 45776.12; p < 0.001, η2 = 0.18). The observed effect is strong [60].
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Table 5. The results of ANOVA test.

ANOVA

JZE_Wht

Sum of
Squares df Mean Square F Sig. (p)

Between Groups 21,054,343.5 5 4,210,868.7 45,204.318 0.000
Within Groups 97,130,431.4 1,042,710 93.2

Total 118,184,774.9 1,042,715

Robust Tests of Equality of Means

JZE_Wht

Statistic a df1 df2 Sig.
Welch 45,776.120 5 310,150.051 0.000

a Asymptotically F distributed.

The following analysis was used to test in which pairs of trains the statistically sig-
nificant differences in energy consumption can be observed. To verify this, the post hoc
Games–Howell test was performed (Table 6). The Games–Howell test was chosen to com-
pare all possible combinations of group differences because the assumption of homogeneity
of variances was violated. The highest energy consumption per one tonne of weight was
observed in the train type no. 6 (M = 59.995, SD = 7.989). The mean score for this train type
is significantly higher than for the train type no. 5, which is the second in order (M = 57.905,
SD = 9.815, p < 0.001, Cohen’s d = 0.059, 95% CIdiff [1.971;2.209]). The third in order taking
into consideration energy consumption per one tonne is train type no. 4 and the differ-
ence between this train type and no. 5 is statistically significant (M = 54.611, SD = 9.080,
p < 0.001, Cohen’s d = 0.087, 95% CIdiff [3.202;3.387]). Significantly lower energy consump-
tion was observed in train type no. 1 (M = 51.733, SD = 9.108, p < 0.001, Cohen’s d = 0.079,
95% CIdiff [2.777;2.979]). The next in order is train type no. 3 (M = 50.359, SD = 10.509,
p < 0.001, Cohen’s d = 0.035, 95% CIdiff [1.266;1.481]). The lowest energy consumption was
observed in train type no. 2 (M = 43.862, SD = 10.217, p < 0.001, Cohen’s d = 0.157, 95%
CIdiff [6.402;6.593]) (Table 6).

Table 6. The results of Games–Howell test.

Multiple Comparisons

Dependent Variable: JZE_Wht

Games–Howell

(I)
Vehicle_Type

(J)
Vehicle_Type

Mean Difference
(I-J) Std. Error

Sig.
(p)

95% Confidence Interval (CI)

Lower Bound Upper Bound

1

2 7.87055 * 0.04170 0.000 7.7517 7.9894
3 1.37323 * 0.03779 0.000 1.2655 1.4809
4 −2.87808 * 0.03539 0.000 −2.9789 −2.7772
5 −6.17257 * 0.04307 0.000 −6.2953 −6.0498
6 −8.26216 * 0.04401 0.000 −8.3876 −8.1368

2

1 −7.87055 * 0.04170 0.000 −7.9894 −7.7517
3 −6.49731 * 0.03351 0.000 −6.5928 −6.4018
4 −10.74863 * 0.03077 0.000 −10.8363 −10.6609
5 −14.04311 * 0.03937 0.000 −14.1553 −13.9309
6 −16.13271 * 0.04039 0.000 −16.2478 −16.0176

3

1 −1.37323 * 0.03779 0.000 −1.4809 −1.2655
2 6.49731 * 0.03351 0.000 6.4018 6.5928
4 −4.25131 * 0.02522 0.000 −4.3232 −4.1795
5 −7.54580 * 0.03520 0.000 −7.6461 −7.4455
6 −9.63540 * 0.03634 0.000 −9.7389 −9.5318
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Table 6. Cont.

Multiple Comparisons

Dependent Variable: JZE_Wht

Games–Howell

(I)
Vehicle_Type

(J)
Vehicle_Type

Mean Difference
(I-J) Std. Error

Sig.
(p)

95% Confidence Interval (CI)

Lower Bound Upper Bound

4

1 2.87808 * 0.03539 0.000 2.7772 2.9789
2 10.74863 * 0.03077 0.000 10.6609 10.8363
3 4.25131 * 0.02522 0.000 4.1795 4.3232
5 −3.29449 * 0.03261 0.000 −3.3874 −3.2016
6 −5.38408 * 0.03383 0.000 −5.4805 −5.2877

5

1 6.17257 * 0.04307 0.000 6.0498 6.2953
2 14.04311 * 0.03937 0.000 13.9309 14.1553
3 7.54580 * 0.03520 0.000 7.4455 7.6461
4 3.29449 * 0.03261 0.000 3.2016 3.3874
6 −2.08960 * 0.04181 0.000 − 2.2087 −1.9705

6

1 8.26216 * 0.04401 0.000 8.1368 8.3876
2 16.13271 * 0.04039 0.000 16.0176 16.2478
3 9.63540 * 0.03634 0.000 9.5318 9.7389
4 5.38408 * 0.03383 0.000 5.2877 5.4805
5 2.08960 * 0.04181 0.000 1.9705 2.2087

* The mean difference is significant at the 0.05 level.

When the energy consumption between the train types with the highest and the lowest
score in the sample is compared, the difference is even more vivid. The train with the
highest energy consumption (no. 6) uses 59.99 Wh/tkm on average while for the train with
the lowest energy consumption (no. 2) the mean amounts to only 43.86 Wh/tkm (p < 0.001,
Cohen’s d = 1.887, 95% CIdiff [16.018;16.248]).

In summary, statistically significant differences in energy consumption can be ob-
served between any of the six compared vehicle types. Between the trains with the highest
disparity, the difference in energy consumption reached more than 20%. This knowledge
can be beneficial when making decisions about railway vehicle procurement and use.

4. Discussion and Conclusions

The objective of this article was to establish whether there are significant differences
in energy consumption between distinct train types. Firstly, the problems related to
making railway transportation sustainable were presented. In particular, the lack of
progress in reducing transportation sector emissions was pointed out. The challenges
of energy measurement in electrical railway transportation were described, as well as
the EU normative actions directed at metering all vehicles on European railways. The
growing importance of energy consumption in railway operators’ business planning due
to the LCC approach was highlighted, with several examples of tenders shown, where
the energy efficiency criterion was used in order to procure more economical trains. The
lack of research analysing the energy consumption of trains based on real world data was
established. Finally, real-life data on energy consumption from trains operated by a large
regional passenger operator in central and eastern Europe were presented and analysed
in order to discern the differences in energy efficiency between distinct types of electrical
multiple units. These differences are statistically significant and point to large potential
energy savings to be obtained through rolling stock modernisation and procurement.
Among all the trains that have been included in the research, the differences in energy
consumption reach more than 20%, which highlights the long-term advantage of procuring
energy-efficient trains. It is also worth noting that the existing body of research in this
field has either proposed theoretical models of energy consumption [61] or analysed the
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real energy consumption, but for high-speed electrical multiple units only [23], for which
the factors affecting consumption are significantly different from those for regional trains.
This research has therefore extended the existing knowledge in the field of railway energy
consumption. It may, however, be worthwhile to continue this research with the explicit
objectives of determining the factors causing these statistically significant differences as
well as obtaining a verifiable mathematical model enabling the proper estimation of energy
consumption of electrical multiple units. Such research should in particular look at the
differences in construction mentioned in Section 2.5.

At this time, however, many tenders do not account for an energy consumption com-
ponent in their structure (see Table 2) and as the aforementioned differences in energy
efficiency show, this would be beneficial both for the railway operators and the environ-
ment. These steps are necessary to make railways more sustainable and cut their emissions,
which will become critical when CO2 emission permits become more expensive. The results
shown in this paper can support railway operators in the preparation of tenders for the
procurement of new trains as well as in analysing the potential benefits of modernising
older rolling stock. The observed differences in energy consumption may serve as guide-
lines for correct criteria value assignment as well as for cost–benefit analysis in rolling stock
decisions at the strategic level. At the same time, that knowledge may help policy makers to
determine the role which the railway transportation has to play in the global drive towards
sustainability and limiting the effects of global warming. The aforementioned results can
also be used by academics studying the energy efficiency issues related to railway vehicles,
both on the technical as well as economical side. All these efforts would be well supported
by future research directed at establishing more insights about the railway vehicles’ energy
consumption and factors affecting it, as it will help operators plan their costs better.
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