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Abstract: The huge influence of the sampling rate on the performance of the digital PID control of a
voltage source inverter (VSI) is revealed. It is shown that an appropriately chosen continuous-time
model of a digital controller with the PWM power converter behaves like the actual discrete-time
system, which allows for a simple controller analysis and design. The variable structure nature
of the inverter with both the RC rectifier and an abruptly changing resistive load with two modes
of operation within the sampling period is directly taken into account. Two simulation models, a
discrete-time PWM and a continuous-time, of an inverter are presented, which are used to tune
the PID controller and to evaluate the control performance. The behavior of the system in both
modes is explained on the basis of the root loci and frequency characteristics. The results obtained
for three sampling rates: 12.8, 25.6, and 51.2 kHz, are presented and compared with an actual VSI
experiment. A comparison with other results obtained for this VSI shows that properly tuned PID
control outperforms the more sophisticated solutions based on the coefficient diagram method (CDM)
and the passivity based control (PBC).

Keywords: VSI; PID control; PWM; carrier frequency; variable structure; THD; performance evalua-
tion; modeling; simulation

1. Introduction

DC/AC inverters, also called voltage source inverters (VSI), are commonly used as a
basic component of uninterruptible power supply units (UPS) which provide emergency
power to a load when the mains power fails. They convert the DC energy contained in
batteries into the appropriate AC voltage. Sinusoidal output of switching power inverters
consisting of passive conservative components and semiconductor devices operated as
switches is achieved by the pulse-width modulated (PWM) signal.

The performance of the inverter is usually measured as the value of the total harmonic
distortion (THD) of the output voltage under the the standard non-linear RC rectifier load.
Another measure of performance is the distortion of the output voltage caused by a sudden
decrease or increase in the resistive load. We apply both performance indices irrespective
of the source of the distortion.

Since the performance of simple inverters without feedback control is usually not
satisfactory, a plenitude of control schemes were proposed in the literature. They can be
classified into two main categories: single-loop control and multiple input controllers,
including multi-loop structures. Multi-loop architectures usually consist of two loops. The
external loop is based on a resonant (R), proportional resonant (PR), or repetitive controller
(RC), and the inner loop, for the filter capacitor current control, is based on a proportional or
more complex controller [1–3]. The outer loop is responsible for reference signal following
while the inner loop for fast disturbance attenuation. Even more complicated multi-
loop structures with the DC-bus voltage decoupling and load current compensation are
presented and discussed in [4]. Another sophisticated solution based on multiple inputs
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is the passivity based control (PBC) [5–7] which uses three input variables: the output
voltage, and the inductor and output currents [8]. These structures require not only
additional sensors and data conditioning channels but also reasonable knowledge of
system parameters and involve high computational overheads.

Despite having excellent capability of reference following at constant resistive load,
single-loop control based on a resonant (R), proportionally resonant (PR) [9,10], or repetitive
controller (RC) [2] have poor disturbance rejection properties [11]. Therefore, single-loop
solutions focused on disturbance rejection rather than on the reference following. The
latter can be compensated by the appropriate modification of the reference signal. One of
the latest approaches belonging to this category is the coefficient diagram method (CDM)
which leads to dynamical controllers of higher order [12–14].

It should be noted that the results presented in numerous publications refer to inverters
exhibiting diverse values of inductance L and capacitance C that constitute the LC filter,
and of the sampling frequency fs. The voltages and rating powers of the inverters are also
different. The sampling frequency varying in various publications between 1.8–20 kHz
is treated as imposed and its value remains beyond any discussion. Therefore, a fair
comparison of the results of various solutions obtained in these case studies is very difficult
if not impossible. There are also papers, e.g., [2,4], that totally neglect digital data processing
and treat inverters as continuous-time systems, or, e.g., [3,9], which use sampling rate just
for discretization of continuous-time controllers designed neglecting the effect of sampling.

For more overall results, comparisons should be made for inverters with the same
parameters. The best way to have some flexibility in parameter choice is the possession of
a theoretical model that allows the design to be made, and a simulation model that takes
the basic parameters of the PWM system into account to verify the results.

The main novelty of the paper is the disclosure of the huge impact of sampling rate
on the performance of the controlled inverter. The article focuses on the results of the
proportional-integral-differential (PID) control tuned for the case of RC rectifier load via a
method based on both mathematical model and simulation, which is an alternative to the
one presented in recent research [14,15]. Contrary to the popular approach to load current
as an independent disturbance, our approach is based on the variable structure nature of
the inverter where there are two operating modes during the period of the output voltage:
load mode and no-load mode.

2. Description of the Test Bed

In order to compare our results with experiments and prior results [14,15], we refer to
the setup whose simplified schematic diagram is depicted in Figure 1.

It is assumed that the inverter feeds the load whose model is presented in Figure 2.
Due to the EN6240 standard stating that for the UPS below 3 kW the most typical is rectifier
load, we pay main attention to non-linear load adopted from reference [14]. The parameters
of this load fulfil the requirement that its power factor is about 0.7.

The output voltage is rectified prior to its measurement, with its sign delivered
separately to the microprocessor. This increases the analog-to-digital resolution from 12 to
13 bit. A galvanic isolation is provided both in the path of the output voltage measurement
system and in the path of discrete control PWM output. The analog isolation amplifier
with capacitor coupling that uses signal switching at the frequency of 500 kHz produces
a significant high-frequency output ripple with peak-to-peak values of 20 mV. Therefore,
an additional low pass filter is used in the measurement path designed according to the
guidelines of the Texas Instruments Data Sheet. Its dynamics are much faster than the
sampling period and they are neglected when modeling the dynamics of the control loop.
The value of the measurement path gain kD = [Vout]/Vout, where [Vout] is the integer
output from the ADC, was determined experimentally as kD = 110.8 V−1.

It is also assumed that the nominal value of the DC-bus voltage is Vnom
DC = 40 V.
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Figure 1. Schematic of the experimental rig. LC filter components: a torroidal core coil with
nominal inductance LF = 1 mH made of alloy-powder Super-MSS material and MKP type metallized
polypropylene capacitor with nominal capacitance CF = 50 µF. Further details and photo can be
found in [14].

(a) (b)

Figure 2. Models of the loads. (a) Non-linear rectifier RC load, RLs = 1 Ω, RL = 100 Ω, CL = 430 µF
(b) Periodically switched resistive load, RL = 50 Ω.

The control system is based on the STM32F407VGT6 microprocessor with 168 MHz
clock. The input frequency of the counters of the PWM modulator equal to 84 MHz. The
inverter is designed for the carrier frequency fs = 25,600 Hz providing 512 switching cycles
within the period 20 ms resulting from the output voltage frequency of 50 Hz. As a result,
the PWM period h equals to 20 ms/512 ≈ 39 µs.

The reference sine wave is constructed from a quarter of the period represented by
128 values, expressed in machine units, and stored in an array. For a sampling rate of
51.2 kHz there are 256 values but for 12.8 kHz the sine wave is represented by only 64 values.
It is the largest source of quantization in this system.

The maximum value that can be reached by the comparator within one PWM period
is 84,000,000/25,600 = 3281. This means that the maximum value of duty cycle d = 1 is
reached for the value of control signal [u] = 3280 machine units. As a result, the relationship
between the duty cycle d and control signal [u] expressed in machine units, or u expressed
in volts is determined by

d = sat{kM[u]} = sat{kMkDu}, (1)

where kD = 110.8 V−1, kM = 1/3280. For fs = 12,800 Hz there is kM = 1/6560, and for
fs = 51,200 Hz, kM = 1/1640. Observe that

kPWM = kMkD. (2)
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Then
d = sat{kPWMu} (3)

and the mean value of the PWM modulated signal on the input to the LC filter is deter-
mined by

vin = VDCd = VDCsat{kPWMu}. (4)

3. Simulation and Controller Tuning

Both the rectifier load and jump-wise switching of the load resistance make the system
a variable structure one. Therefore, a part of the system consisting of the LC filter and the
load is modeled as an electric circuit, while the rest is modeled using standard SIMULINK
blocs. The interface between them is accomplished with measurement and controlled
voltage source blocks.

Although a real controller works on variables expressed in machine units related to
the physical ones by the coefficient kD, we use physical units in simulation models. For the
sake of simplicity, in the conceptual phase we neglect signal quantization introduced by
the ADC and PWM modulator. There are, however, no obstacles to include quantization
at the realization step. It should be noticed that the elements of the electric circuits are
just models of the electronic components depicted in Figures 1 and 2. In particular, the
equivalent serial resistance RF characterizes the power losses on switches, e.g., static power
losses on the resistances of the switches and the dynamic switching power losses, the
power losses on the serial resistances of the filter inductor winding together with the
resistances of serial inverter connections and the power losses of the filter core, which are
dependent on the material of the filter coil core. This resistance is a non-linear function
of the switching frequency and the inductor current. It is not possible to calculate RF
analytically and it should be determined experimentally, e.g., using methods described
in [16,17]. Similarly, RLs in the rectifier load model in Figure 2 is supposed to model a
non-linear diode characteristic, which is hardly acceptable for small voltages. For these and
another reasons, such as imperfections in the sensor circuits, switching rise and fall times,
and discrepancies of transistor and diode characteristics, simulation and experimental
results may differ in some detail in the practical implementation.

3.1. Simulation Model of the PWM Modulated Inverter

The organization of the controller is as follows. At the beginning of the PWM pulse,
a program interrupt is generated that triggers the sampling of the output voltage, AD
conversion, and computation of the control signal [u(i)] stored in the registers of the two
PWM comparators to determine the duty ratio d(i) in the next sampling period. This
program organization results in a one-step delay in the controller. Therefore, the one step
delayed realization of the classical discrete-time PID control law

Hc(z) = kr[1 +
h
Ti

1
1− z−1 +

Td
h
(1− z−1)] (5)

= kc
b0 + b1z−1 + b2z−2

1− z−1 (6)

is modeled by the following expressions

w(i) = w(i− 1) + kakc[b0e(i) + b1e(i− 1) + b2e(i− 2)], (7)

with the control signal
u(i) = w(i− 1) (8)

and the control error

e(i) = r(i)− vout(i), r(i) = Vm sin(2π f × ih). (9)
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Here, h is the sampling period, i is the number of sampling instant, f is the AC
frequency, r(i) is the sinusoidal set-point, vout(i) is the output voltage, Vm is the amplitude
of the reference sinusoid, e(i) is the control error, kc is the controller gain. The coefficient ka
is an additional controller gain enabling fine tuning, or adaptation to changes of DC-bus
voltage VDC as follows

ka = Vnom
DC /VDC, (10)

where Vnom
DC means the nominal voltage of the DC bus for which the controller is designed,

while VDC is its current value. In theoretical considerations it will be ka = 1.
From (1) the relationship between the duty cycle d(i) and the control signal u(i) reads

d(i) = sat{kMkDu(i)} = sat{kPWMu(i)}. (11)

This allows the construction of a simulation model that includes a PWM modulator,
an LC filter, and a discrete-time controller, as depicted in Figure 3. The power stage of the
inverter consisting of the PWM modulator and inverter bridge is modeled by a custom
SIMULINK procedure which enables the choice of the modulation type and quantization
or its lack. The coefficients b0, b1 and b2 of (5) are determined from c1, c2 and kc defined in
Section 3.2 and obtained by an optimization procedure described in Section 3.3. They are
expressed as follows:

b0 =
1
8
(2 + c1h)(2 + c2h), b1 = −1

8

(
8− 2c1c2h2

)
, b2 =

1
8
(2− c1h)(2− c2h). (12)

Since the controller is designed for nominal conditions then it is assumed that VDC = Vnom
DC ,

and then ka = 1. If this is not the case then the adaptation coefficent ka given in Equation (8)
should be applied to preserve the optimal controller settings also for VDC changed.

Figure 3. Schematic diagram of a PWM based simulation model of the discrete-time control system.

3.2. Quasi-Continuous-Time Simulation Model

Simulations based on the PWM model are very time-consuming. Therefore, an alterna-
tive approach to the PWM controlled system is adopted, which assumes its approximation
by a delayed continuous time system whose parameters depend on the sampling period.
The QCT approach requires a discrete-time controller to be approximated by a continuous-
time one. It has been shown that these approximations give exceptionally exact results
compared to those based on the PWM model.

From (4) it follows that the mean value of the input voltage from the PWM modulator
can be expressed as vin(i) = VDCd(i). From (11) there is

vin(t) = VDCsat{kPWMu(t)}, (13)

where u(t) = u(i) for ih < t ≤ (i + 1)i. When using the QCT approach u(t) is treated as a
continuous time variable.
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The passage of the PWM signal through a dynamical system exhibits a delay of h/2.
Therefore, assuming that the control path does not saturate, the modulator plus inverter
bridge transfer function KPWM(s) can be expressed as

KPWM(s) = VDCkPWMe−s h
2 = kPe−s h

2 , (14)

with
kP = VDCkPWM (15)

being the gain of the power module. From (5)–(9) the transfer function of the controller
plus one step delay caused by information processing is

z−1Hc(z−1) = z−1kc
b0 + b1z−1 + b2z−2

1− z−1 . (16)

Its quasi-continuous-time counterpart bases on the substitution

z−1 =
2
h − s
2
h + s

=
1− s h

2

1 + s h
2

≈ e−sh (17)

leading to a function

kc
(s + c1)(s + c2)

s(s + 2
h )

e−sh. (18)

Absorption of the transfer function of the power module in (14) finally gives

kPkc
(s + c1)(s + c2)

s(s + 2
h )

e−s 3
2 h. (19)

The resulting simulation model is displayed in Figure 4.

Figure 4. Schematic diagram of the QCT based simulation model of the control system
vin = VCDsat{v/VCD}.

3.3. Controller Tuning for Non-Linear RC Load

The LC filter with the transfer function K(s) determined in (33), which can also be
written as

K(s) =
s1s2

(s + s1)(s + s2)
, s1,2 = σ(1± jθ) (20)

plays the role of the plant to be controlled, whose output is supposed to follow the reference
sinusoid Vm sin ωt in spite of the variable load. Since vout(t) is an unbiased periodic
function then it can be presented as

vout(t) =
∞

∑
k=1

Ak sin(kωt + ϕk). (21)
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Denoting the distortion function ψ(t) as

ψ(t) =
vout(t)− A1 sin(ωt + ϕ1)

A1
=

1
A1

∞

∑
k=2

Ak sin(kωt + ϕk), (22)

the quality of the produced output voltage can be expressed by the value of THDH de-
fined as

THDH =
1

A1

√√√√ H

∑
k=2

A2
k (23)

for H high enough.
In order to choose the best controller parameters for the case of rectifier load, the

values of THD were computed based on simulated outputs. Since simulations based on
the PWM model are time consuming they were replaced by faster simulations based on the
QCT model. The QCT counterpart of Hc(z) determined in (5) is

Kc(s) = kc
(s + c1)(s + c2)

s(s + 2
h )

. (24)

The parameters c1,2 of the controller were assumed complex, such that

c1,2 = kσ × σ(1± kθ × jθ). (25)

The THD values are calculated on a dense mesh of values of both variables kσ and kθ ,
with the loop gain k = kpkc selected so that the gain margin ∆A of the no-load system has
some assumed value. The choice of k is performed based on the Nyquist plot using the
MATLAB function margin. This ensures stability of the systems taken into account when
computing THD on the mesh of remaining controller parameters. The resulting values of
THD as functions of variables kσ and kθ computed for selected k are shown in Figure 5 for
three values of fs, from which a pair (k0

σ, k0
θ) ensuring minimum value of THD is chosen.

(a) (b) (c)

Figure 5. Surfaces of THD values as functions of kθ and kσ for three sampling rates: (a) fs = 12.8 kHz,
(b) fs = 25.6 kHz and (c) fs = 51.2 kHz. The optimum values (k0

σ, k0
θ) are denoted by dots.

Finally, based on c1,2 calculated from (25), the values b0, b1 and b2 of the discrete-time
controller Hc(z) of (6) can be found from the formulas in (12). The gain kc is calculated
from kc = k/kp.

The resulting values of THD and k as functions of ∆A are depicted in Figure 6.
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(a) (b)

Figure 6. Dependence of (a) THD and (b) loop gain k from the gain margin ∆A for various sampling
frequencies fs. High frequencies fs enable big values of k leading to small values of THD.

One should notice that very small values of the gain margin ∆A ' 1.1 that give
minimum value of THD would not be acceptable for an ordinary control system. However
in the VSI the loss of stability can only result from the change of the DC bus voltage VDC.
The variability of VDC can be compensated by an additional gain ka = Vnom

DC /VDC in the
controller realization defined in Equations (7)–(9). Otherwise, when the variability of VDC
is small and we do not wish to adapt to its changes, a greater gain margin can be chosen by
selecting the gain ka < 1.

In Figure 7, the output signal vout(t) along with load current are displayed for three
sampling frequencies and the optimally tuned PID controllers under assumption of the
gain margin ∆A = 1.1 More detailed information can be obtained from Figure 8 where the
distortion function ψ(t) defined in (22) and THD defined in (23) obtained from both the
PWM and QCT models are shown for the uncontrolled and optimally controlled inverter
at three sampling rates. The excellent match of the results of both models is noticeable.
The control signal u(t) along with a function χ(t) determining the deviation of u(t) from a
no-load sine wave, defined as

χ(t) =
u(t)− B1 sin(ωt + φ1)

B1
, (26)

where B1 is the amplitude of the first harmonic of u(t), is presented in Figure 9. The PWM
simulation model reveals some asymmetric “ringing” of the controller with average values
represented by the results of the QCT simulation model. Dependence of the THD and the
loop gain k on the assumed value of the gain margin ∆A is presented in Figure 6. From
Figure 10, it can be seen that close to the stability border obtained from the QCT model, and
outside of it, the QCT model gives results different than the PWM one returning perfectly
stable results. This means that the results presented in Figure 6 are conservative, and the
controllers can be experimentally fine tuned in the real inverter by increasing the value of
ka in (7). Certain measures of control performance, i.e., amplitude A1 of the first harmonic,
THD, and minimum and maximum value of distortion of actual output from the first
harmonic are collected in Table 1. Except for fs = 12.8 kHz, almost ideal A1 stabilization is
to be noticed due to the presence of integration in the controller transfer function.
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Figure 7. Output voltages vout(t) and load currents i(t) under rectifier load for three sampling rates.
Top row: uncontrolled system; bottom row: optimally tuned PID controlled systems with ∆A = 1.1.
Blue lines: output from PWM simulation, green lines: output from QCT simulation.

Figure 8. The distortion function ψ and THD values obtained from QCT and PWM simulation
models. Top row: uncontrolled system, bottom row: PID controlled system. Green lines: QCT
simulation, blue lines: PWM simulation.

Table 1. Amplitude A1, THD, and the extremum values of the distortion function ψ(t).

fs (kHz) A1 (V) THD (%) ψmin (%) ψmax (%)

Open Loop

25.6 19.6964 3.78 −5.986 6.212

Closed Loop

12.8 19.921 2.20 −4.366 3.794
25.6 20.002 0.712 −2.060 1.496
51.2 20.005 0.182 −0.790 0.268
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Figure 9. Control signal u(t) and deviation function χ(t) obtained from the QCT simulation and
PWM simulation.

Figure 10. Distortion function ψ(t) on the QCT stability boarder ∆A = 1.0 vs ψ(t) delivered by the
PWM simulation model. The PWM system remains stable—the QCT stability criterion is conservative.

4. Theoretical Analysis of the Control System

The aim of this section is to explain the phenomena observed during simulation and to
discuss, based on the analysis of closed-loop characteristics, the influence of delays caused
by digital data processing. This is performed using the QCT approach.

An important feature of the inverter with the rectifier RC load is that it has a variable
structure depending on the current state of the Graetz rectifier bridge. Two periods can be
distinguished: the no-load idle period when the diodes of the Graetz bridge do not conduct
and the load period when the diodes do conduct and current is drawn from the inverter.
Therefore, unlike virtually every bibliography source where the load current is treated as
an independent variable, we analyze the system as a variable structure one.

4.1. QCT Controller Model

For the convenience of analytic considerations, the controller model should be de-
scribed by a rational transfer function We assume that the controller does not saturate
during VSI operation and that the QCT model of the power module given in (13)–(15) is
absorbed by the equation of the QCT controller.

C(s) = kPkc
(s + c1)(s + c2)

s(s + 2
h )

×
1− s h

2

1 + s h
2

× (1− s
h
2
) (27)

= k
(s + c1)(s + c2)

2
h s

×
(1− s h

2 )
2

(1 + s h
2 )

2
(28)

with k = kPkc being the loop gain. Equation (27) can be reordered as follows:

C(s) = C∗(s)×
(

1− s h
2

1 + s h
2

)2

(29)

with an ideal no-delay continuous-time PID

C∗(s) = k
h
2
(s + c1)(s + c2)

s
. (30)
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4.2. Open Loop System

The dynamics of the inverter can be represented by transfer functions related to
particular modes of operation. Let ZL(s) denote the impedance of the load in each of them.
Then the LC filter has the transfer function:

K(s) =
1

LFCFs2 + [ LF
ZL(s)

+ RFCF]s + 1 + RF
ZL(s)

(31)

In the no-load mode there is ZL(s) = ∞. In the resistive load mode ZL(s) = RL, while
in the non-linear RC mode

ZL(s) =
RLs + RL + RLsRLCLs

1 + RLCLs
(32)

As a result, for the idle period there is

K(s) =
1

LFCFs2 + RFCFs + 1
(33)

for the resistive load

K(s) =
1

LFCFs2 + [ LF
RL

+ RFCF]s + 1 + RF
RL

(34)

and for the conducting rectifier mode

K(s) =
b1s + b0

a3s3 + a2s2 + a1s + a0
(35)

with a3 = RLsRLCLLFCF, a2 = RLsCF(LF + RFRLCL) + RLLF(CF +CL), a1 = RLs(RFCF +
RLCL) + RLRF(CF + CL) + LF, a0 = RLs + RL + RF, b1 = RLsRLCL, b0 = RLs + RL. The
characteristics of these transfer functions are presented in Figure 11.

4.3. Closed Loop System

For the analysis of control systems with controllers optimized in the previous section
for the non-linear LC load, four types of their characteristics are applied: root loci, Nyquist
plots, Bode diagrams, sensitivity S(jω), and complementary sensitivity T(jω) functions.
These characteristics are considered for both modes: the load mode and the no-load one. It
is clear from the performed simulations that the no-load period is characterized by weakly
damped high-frequency oscillations, which are prone to instability. The transients in the
load period are much less oscillatory.

In this section, the properties of both modes will be examined separately, as if the
system was running in one of them all the time.

4.3.1. No-Load Mode

This mode is particularly sensitive to system delays and, as such it limits the values of
controller gains that determine the control quality. In Figure 12, root loci of the no-load
system C(s)K(s) with controllers tuned in the previous section are plotted at three different
sampling frequencies. The circles on the positive axis represent pairs of zeros at 2/h
introduced due to sampling. They attract loci as the controller gain increases. Circles in the
left hand plane denote controller zeros, while crosses denote the open loop poles: the one
in the origin is due to controller integration part, the complex conjugate pair is due to LC
filter poles.There are also crosses on the left real axis at −2/h denoting double poles due to
sampling. The resulting closed-loop poles are denoted by stars. It is clear that except for
fs = 12.8 kHz the complex pair with relatively high imaginary part dominates over the
remaining real roots. This pair is responsible for fast oscillations observed in Figures 8–10.
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Figure 11. Poles and zero, step responses, Bode and Nyquist plots of the open loop system in two
modes. (a) no-load, (b) RC load, (c) resistive load RL = 50 Ω. Notice small differences between
characteristics of the no-load and the resistive load system, and a large discrepancy between the
no-load and RC load system.

(a) (b) (c)

Figure 12. Root loci for the no-load system. Crosses—open loop poles, circles—zeros, dots—closed
loop poles under assumption ∆A = 1.1. The gains are as follows: fs = 12.8 kHz: k = 9, fs = 25.6 kHz:
k = 35; fs = 51.2 kHz: k = 144 (a) general view (b) dominant poles (zoom), (c) system with no-delay
controller C∗(s) (zoom). Notice a large impact of delays on the position of roots.

Bode diagrams of the no-load systems are depicted in Figure 13. The left plot displays
magnitudes while the right phases. Dotted lines denote the phase characteristics for a
hypothetical system without any delays, i.e., for hypothetical controller C∗(s). It is clearly
seen that the phase characteristics for the actual controller C(s) with a double phase shifting
element strongly deviate from the no-delay ones. The vertical lines mark the frequencies
where |C(jω)K(jω)| = 1. It is interesting to notice that the optimal values of controller
phases are then close to 0, and after that they become negative. The resulting open loop
phases are −180 deg + ∆φ, where the phase margin ∆φ is a small positive number. Another
representation of frequency response characteristics are the Nyquist plots presented in
Figure 14. They provide more insight into the phase and gain margin. In particular, for the
gain margin ∆A = 1.1 the phase margin is around 4 deg for the actual system and around
80 deg for the hypothetical no-delay one.
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(a) (b)

Figure 13. Bode plots (a) magnitudes for the LC filter with PID controllers, (b) phases of the LC
filter with PID controllers. Solid lines are for C(s), dotted lines—for C∗(s), Vertical lines mark the
frequencies, such that |C(jω)K(jω)| = 1. It is seen that there is only a small phase margin ∆φ at
these frequencies, and a quite large for the fictitious system C∗(s)K(s) without any delays caused by
discrete-time data processing.

Figure 14. Solid lines: Nyquist plots for the systems depicted in Figure 13 with ∆A = 1.1:
fs = 12.8 kHz: k = 9, ∆φ = 4.48 deg, f1 = 1473 Hz, fπ = 1566 Hz; fs = 25.6 kHz: k = 35,
∆φ = 3.86 deg, f1 = 2447 Hz, fπ = 2665 Hz; fs = 51.2 kHz: k = 144, ∆φ = 3.75 deg,
f1 = 4721 Hz, fπ = 5142 Hz; Dotted lines: for the system with the hypothetical no-delay controller
C∗(s): fs = 12.8 kHz: ∆φ = 84 deg, fs = 25.6 kHz: ∆φ = 70.7 deg, fs = 51.2 kHz: ∆φ = 68.4 deg.

Finally, the closed loop characteristics given by the sensitivity S(ω) and complemen-
tary sensitivity T(ω) functions, where

S(ω) =

∣∣∣∣ 1
1 + C(s)K(s)

∣∣∣∣
s=jω

, T(ω) =

∣∣∣∣ C(s)K(s)
1 + C(s)K(s)

∣∣∣∣
s=jω

(36)

are presented in Figure 15. As a result of small values of ∆A and ∆φ both S(ω) and T(ω)
feature high resonant peaks. The hypothetical systems with no-delay controllers do not
have such extrema.

Characteristic frequencies and closed-loop roots determining the properties of the
system in the no-load mode are collected in Table 2, where σ0, φ0 and θ characterize a pair
of complex roots as follows

s1,2 = −σ0 ± jω0 = −σ0(1± jθ), where θ =
ω0

σ0
, and ω0 = 2π f0. (37)

Close proximity of f0 to the resonance frequency fr, and sandwiching of fr between f1
and fπ is to be noticed. High values of the degree of oscillability θ indicate large numbers of
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slowly decreasing oscillations. High values of the degree of stability σ0 indicates relatively
fast extinguishing of their envelope.

Table 2. Characteristic frequencies and closed-loop roots in the no-load mode.

fs (kHz) f1 (Hz) fr (Hz) f0 (Hz) fπ (Hz) −σ0 ± jω0 θ

12.8 1473 1508 1509 1566 −289 ± j9480 33
25.6 2447 2514 2516 2665 −664 ± j1581 24
51.2 4721 4842 4847 5141 −1296 ± j30,453 23

It should be noticed that, due to high values of θ, neither the very small values of
the gain margin ∆A and phase margin ∆φ nor high peaks in the closed-loop frequency
characteristics of Figure 15 would be accepted in an ordinary control system. However,
it is no problem for the VSI since the frequency of the reference signal is several orders
of magnitude lower than the resonance frequencies of the closed loop system so that the
reference itself does not trigger fast oscillations. They are, however, triggered by initial
conditions resulting from the previous load period.

(a) (b)

Figure 15. (a) Complementary sensitivity T(ω) and (b) sensitivity S(ω) of the closed-loop no-load
systems; fs = 12.8 kHz: fr = 1508 Hz; fs = 25.6 kHz: fr = 2514 Hz; fs = 51.2 kHz: fr = 4842 Hz.

Unfortunately, the optimal gain for the case fs = 12.8 kHz is so small that the root
−286 on the real axis does not sufficiently depart from the origin on the s-plane so that it
can affect the transients to the same extent as a pair −289± j9480 closest to the imaginary
axis. As a result the output signal is not able to follow the reference properly, which can
be seen from Figure 15, where f = 50 Hz is marked. Moreover from Figures 7 and 8 the
optimal control is quite poor and the values of THD do not differ greatly from those of the
uncontrolled system. In Figures 13–19, it is seen that the case fs = 12.8 kHz deviates greatly
from those for fs = 25.6 kHz and fs = 51.2 kHz. One can conclude that fs = 12.8 kHz is
too small a frequency for the system considered.

It is interesting to compare the roots of a hypothetical no-delay system with the controller
C∗(s) whose root loci close to imaginary axis are plotted in Figure 12b with the actual ones plot-
ted in Figure 12c. For the ascending order of fs they are as follows−286,−289± j9480; (−278),
−664± j15, 808; (−3764± j5657) and −1296± j30, 453; (−5230), where the numbers in
parentheses are for no-delay system. Except for fs = 12.8 kHz the remaining roots have
larger values of σ and much smaller of θ. As a result, the transients are much less oscillatory
and fade away faster. A comparison of the results obtained by a hypothetical no-delay
controllers C∗(s) and the actual ones are presented in Figure 16. It is clear that the quality
of the disturbance suppression depends mainly on the controller gain, the value of which
is limited due to oscillations resulting from the delays in the loop.
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Figure 16. Effect of sampling on control performance. The black lines represent responses with the
fictitious controller C∗(s) without any delay, and colored lines with the real controller C(s) optimized
for THD. The higher the gain the lower the values of ψ(t) during the load period constituting the
main contribution to THD. However, the still possible gain increase is restricted by oscillations of
ψ(t) due to data processing delay important in the no-load period.

4.3.2. Load Mode

Current draining from the VSI in the load period is the fundamental cause of the
distortion of the output voltage Vout. Once finished, it triggers oscillations in the no-load
period. Root loci, Bode diagrams, and Nyquist plots for C(jω)K(jω) in the load period are
displayed in Figures 17 and 18 for three sampling frequencies. Root loci show that there
are two groups of oscillatory roots—the faster and the slower ones collected in Table 2.
From Figure 17 and Table 2 it is clear that the influence of delays on the roots closes to the
imaginary axis in the no-load mode is much smaller than in the load mode. The character of
responses depends on the slow roots whose imaginary parts, depending of fs in increasing
order, equal to 193 Hz, 589 Hz, and 1200 Hz. They are marked on Figure 19, along with
frequencies 2214, 3743, 6235 Hz of faster roots to show how they reflect in the extrema
of S(ω) and T(ω). The case fs = 12.8 kHz differs from the remaining ones through the
relatively slow real root −305. This root is responsible for the qualitative deviation of both
frequency response and time response characteristics of the system at fs = 12.8 kHz. In
particular, from Figure 18, it is clear that the control system is not able to follow the 50 Hz
sinusoid exactly enough. When comparing the remaining no-load mode roots with the
load mode ones, the latter have much greater σ values and much lower θ values. This
means that the transients in the load mode are much less oscillatory and vanish faster.
High values of both stability margins, i.e., gain margin, ∆A, and phase margin, ∆φ seen
in Figure 18 and meagre extrema seen in Figure 19 confirm this in the frequency domain.
As a result, sampling has a negligible effect on transients in this mode. This is clearly seen
from Figure 16 where the no-delay responses and the delay ones practically overlap and
explained by Table 3 showing very low influence of fs on the slow roots.
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(a) (b) (c)

Figure 17. Root loci for the load mode. (a) general view, (b) dominating poles with C(s) (zoom),
(c) dominating poles with no-delay C∗(s) (zoom). Crosses—open loop poles, circles—zeros, dots—
closed loop poles. Controller optimized under assumption of ∆A = 1.1 for the no-load mode. Note
that, unlike the other roots, the roots for fs = 12.8 kHz do not depart significantly from the open
loop poles. As a result, the real root close to zero dominates the closed-loop dynamics Note the weak
effect of delays on the poles positions.

Table 3. Roots in the load mode First row: with C(s), second row with C∗(s).

fs (kHz)
Fast Roots Slow Roots

−σ ± jω θ f0 (Hz) −σ, −σ ± jω θ f0 (Hz)

12.8 −8791 ± j13,909 1.58 2214 −305, −1194 ± j1216 1 193
−27,803 0 0 −296, −1154 ± j1180 1.02 188

25.6 −10,660 ± j23,519 2.21 3743 −1029 ± j3696 3.59 588
−33,511 0 0 −1180 ± j3417 2.9 544

51.2 −12,879 ± j39,175 3.04 6235 −4143 ± j4575 1.1 728
−41,600 0 0 −3780 ± j4307 1.14 686

Figure 18. Bode and Nyquist plots for the load mode. Large stability margins ∆A and ∆φ are to be
noticed. fs = 12.8 kHz: ∆φ = 122 deg, f1 = 106 Hz, ∆A = 3.79, fπ = 2658 Hz; fs = 25.6 kHz:
∆φ = 45 deg, f1 = 727 Hz, ∆A = 2.44, fπ = 4440 Hz; fs = 51.2 kHz: ∆φ = 54 deg, f1 = 3379 Hz,
∆A = 1.82, fπ = 7512 Hz.
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(a) (b)

Figure 19. (a) Complementary sensitivity T(ω) and (b) S(ω) of the closed-loop for the load mode.

5. Remarks on Abruptly Changing Resistive Load

If the controller settings are optimized for the RC rectifier load they can be far from
the optimum for another loads. Application of the controllers obtained in previous sections
to the resistive load of Figure 2 give results presented in Figures 20–22 with the results
summarized in Table 4. The controller can be tuned to provide the smallest value of THD
(or of max ψ(t) also for this type of load using our optimization methodology. Then, in
turn, the settings will not be optimal for RC rectifier load. It is also possible to formulate a
weighted performance index to find a compromise solution.

Figure 20. Output voltages vout(t) and load currents i(t) under abruptly changing resistive load for
three sampling rates. Top row: uncontrolled system; bottom row: PID control tuned to the rectifier
load with ∆A = 1.1 Blue lines: PWM simulation, Green lines: QCT simulation.

Table 4. Amplitude A1, THD, and the extreme values of distortion ψ(t) for the abruptly changing
resistive load.

fs (kHz) A1 (V) THD (%) ψmin (%) ψmax (%)

Open Loop

25.6 19.8883 3.02 −4.6683 8.1171

Closed Loop

12.8 19.991 2.32 −4.2378 6.0307
25.6 20.002 1.39 −4.3515 4.0724
51.2 20.005 0.321 −1.5179 1.9826
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Figure 21. Values of the ψ(t) and THD functions obtained from QCT and PWM simulation models.
Upper row: uncontrolled system, lower row: PID controlled system. Green lines: QCT simulation,
blue lines: PWM simulation.

Figure 22. Effect of sampling on control performance. The black lines represent responses with the
fictitious no-delay controller C∗(s), and the colored lines with the real controller C(s). The higher
the gain the lower the values of ψ(t) during the no-load period with with the fictitious no-delay
controller C∗(s).

6. Remarks on Raising the Sampling Rate

Figures 16 and 22 show how destructive the data processing delays are for the control
performance.

From the frequency plots in Figures 13 and 14 it can be seen that the no-load system
with the no-delay controller C∗(s) is stable for all positive gains. Similar conclusion apply to
the load system whose frequency plots are depicted in Figures 18 and 19. This is reinforced
by root loci for systems with relative order equal to 1, which both no-load and load systems
belong to. They have the property that branches starting at k = 0 in open system poles
tend to zeros as k→ ∞ except for one branch travelling along real axis to −∞. As a result,
increasing the sampling rate to infinity, fs → ∞, would result in possibility of raising
the controller gain to infinity, kc → ∞ making the discrepancy function ψ(t) → 0 and
THD→ 0.

Therefore, the pursuit of extremely good control suggests the use of high sampling
rates or the realization of the controller algorithm as a continuous-time based on opera-
tional amplifiers.
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7. Note on THD Computation

The aim of this note is the determination of the minimum number of harmonics H
necessary to find the value of THD. To this end we calculated the function THDH defined
in (23) for both the open and the closed loop system with both rectifier and abruptly
changing resistive loads. The results presented in Figure 23 show that for the open-loop
system H = 30 is sufficient regardless of the type of load, while for closed-loop system
H = 200 is necessary. This is due to the resonance frequencies depicted in Figures 11 and 15,
which are the highest harmonics affecting the value of the THD. In the paper H = 500
was used.

Figure 23. THDH as a function of H. Top row—rectifier load, bottom row—abruptly changing
resistive load.Vertical colored dashed lines indicate resonant frequencies fr for no-load closed-loop
systems from Table 2 depicted in Figure 15, and black line for fr = 702.81 Hz for the open-loop
system depicted in Figure 11.

8. Comparison with Other Results

A series of various experiments and simulations were performed and reported
in [14,15] for the experimental VSI considered in this paper. The Authors put much atten-
tion to the modulation index M = Vm/VDC. They reported using M = 0.3 in simulations
and M = 0.8 in the experimental system, but without commenting on its impact on the
result. No simulation schema or VDC value was provided, and no comparison was made be-
tween simulation and experiment. Therefore, our results can only cautiously be compared
with the outcomes of these papers. In [14], a comparison of three control systems working
at sampling rate of 25.6 kHz is presented. It appears that there is little to choose between
the THD values when using PID, coefficient diagram method (CDM), and passivity based
control (PBC). The results were THD30 = 1.78% for PID, 1.88% for CDM, and 1.33% for
PBC, and 4.17% for the open loop (OL) case. These results are, however, much worse than
our simulation result of 0.71% that uses the controller

Hc(z−1) = 13.0
0.5678− 0.9908z−1 + 0.4413z−2

1− z−1 (38)

with the THD value 3.78% in OL. The main reason of this discrepancy is a smaller value
∆A = 1.1 used in this paper compared with ∆A = 1.5 used in [6]. Moreover, no optimiza-
tion procedure was applied to PID tuning in [6].
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An important conclusion is that a properly tuned PID control outperforms more
sophisticated CDM and PBC algorithms. A radically better result with THD = 0.18% is
obtained when increasing the sampling frequency to 51.2 kHz.

We have also checked the possible influence of M on control performance raised in [14].
Although the value of M affects the instantaneous values of diL

dt within the sampling period,
we have established that it does not affect the performance of output voltage control. The
simulation results confirming this finding for 0.3 ≤ M ≤ 0.8 are displayed in Figure 24.
Thus we have shown that as far as control is concerned, not M affects its properties, but
VDC which determines the gain kP of the power module in (15). As a result, changing Vm
changes M but does not affect the closed loop dynamics, while changing VDC changes
both M and the dynamics of the closed loop. The latter can be counteracted by the gain
correction specified in (10).

(a) (b) (c)

Figure 24. Comparison of simulated control results at various values of the modulation index M.
(a) QCT simulation, VDC = 40 V, different values of Vm; (b) PWM simulation, data the same as
in (a); (c) PWM simulation, Vm = 20 V, various values of VDC with the gain adjusted. Notice that
the distortion function ψ(t) is practically the same in all cases, hence the quality of control does not
depend on M.

In order to show possible discrepancies between the model and the physical reality
a comparison of an experimental result obtained on real inverter of Figure 1 with the
simulation result obtained using the simulation model of Figure 3 is presented in Figure 25.
The results of experiment and simulation for the PID controlled system of [14] are presented,
and the values of THD500 are computed. They are slightly greater than THD30 quoted
in [14,15]. The main difference between the simulation result and the experiment is presence
of the ripple visible in functions ψ(t) and χ(t) which influences to certain extent both u(t)
and vout. Nevertheless, the simulated results match very well the experimental ones. This
proves the validity of our models in predicting the behavior of a real inverter.

Unfortunately, for a switching frequency of fs = 51.2 kHz, the computational capa-
bilities of the controller were not sufficient to execute necessary operations within the
sampling period.
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Figure 25. Experiment (EXP) vs simulation (SIM). Notice residual ripple in χ(t) and ψ(t). The
experiment was carried out before installing the output filter to the separation amplifier. Despite of
these imperfections, a close proximity of theoretical and experimental results can be observed. This
proves the validity of our models in predicting the behavior of a real inverter.

9. Conclusions

The effects pertinent to discrete-time data processing and PWM signal modulation
were analyzed using the quasi-continuous-time (QCT) approach which approximates a
discrete-time system by a continuous-time one. This enabled rapid simulations of the
disturbed system and extensive analysis of system characteristics, including root loci and
frequency plots.

The variable dynamic structure of the inverter with a rectifier load was used for both
model building and controller tuning. To this end, two simulation models were presented:
the PWM model and the QCT model. QCT approach has proven to be an effective PID
controller tuning tool that minimizes the value of THD for the UPS inverter with the
rectifier load.

Comparison of simulation results of the PWM controlled system and the approximat-
ing continuous-time one showed that there was almost no difference between them in the
terms of the shape of the response and resulting THD. Comparison of the actual inverter
experiment with the simulation confirmed validity of the method. A comparison with
other results obtained in [14] for this VSI showed that a properly tuned PID controller out-
performed the more sophisticated passivity based (PBC) and coefficient diagram method
(CDM) controllers.

The most important conclusion is that the sampling rate is the major factor determining
the VSI control performance. Therefore, from the control performance point of view, either
possibly highest frequency of digital control system should be applied, perhaps using
dedicated hardware solutions proposed in [18], or an analog solution for control algorithm
could be considered.
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