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Abstract: This paper provides a modeling approach for average current control (ACC) operating
in open-loop configuration. The converters chosen are non-ideal boost and synchronous boost
converters operating in continuous conduction mode (CCM). Initially, these converters are mathe-
matically modeled considering all the non-idealities using volt-sec and amp-sec balance equations
and simulated using MATLAB and Simulink. The open-loop transfer function of the switch current
or inductor current (Gid) to the duty ratio is derived using the state space averaging (SSA) technique
and analyzed using MATLAB/Simulink. It is observed that the Gid of the converters is highly
stable in open loop. A larger magnitude resonance is observed in ideal boost and synchronous
boost converters than the non-ideal converters. However, the low frequency gain and the crossover
frequency remained the same. With the increase in the load resistance, higher resonance and lower
low frequency gain is observed in non-ideal boost and non-ideal boost synchronous boost converters.
The derived transfer function is validated against the standard switch model using LTSpice software.

Keywords: average current control; DC-DC converters; low frequency gain; MATLAB; non-ideal
converters; Simulink; stability

1. Introduction

ACC is one of the popular current control techniques employed in power factor
correction (PFC) circuits. In ACC, the transfer function of Gid is mathematically modeled
using various control techniques such as small signal analysis and state space averaging
(SSA), etc., and its features such as stability, cut-off frequency, etc., in open loop are analyzed.
Although ACC cannot provide quick control, it offers high noise immunity. Figure 1 shows
an open-loop ACC for a non-ideal DC-DC converter.
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1. Introduction 
ACC is one of the popular current control techniques employed in power factor cor-

rection (PFC) circuits. In ACC, the transfer function of Gid is mathematically modeled us-
ing various control techniques such as small signal analysis and state space averaging 
(SSA), etc., and its features such as stability, cut-off frequency, etc., in open loop are ana-
lyzed. Although ACC cannot provide quick control, it offers high noise immunity. Figure 
1 shows an open-loop ACC for a non-ideal DC-DC converter. 
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Figure 1. Open-loop ACC in a non-ideal converter.

In the past, several attempts were made to determine the Gid for different converters
operating in CCM and DCM operations. ACC for an ideal boost converter was determined
by selecting an appropriate controller, shown in [1], based on small signal modeling (SSM)
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approach for CCM. The non-idealities such as the switch resistance and equivalent series
resistances (ESR) of the inductor and capacitor were not considered during ACC modeling.

As the switching frequency (fs) increases, the overall converter size decreases. In [2],
ACC for a buck converter operating in CCM is presented for different frequencies, namely
wide frequency (WF), high frequency (HF), and low frequency considering a single loop as
shown in Figure 1. The transfer function was derived using the SSM approach. The pres-
ence of ESRs plays a vital role in the WF and LF ranges. From simulation and experimental
results, it was noted that the WF transfer function is of second order and has a zero. The
zero frequency was lesser than that of the complex poles. The HF transfer function was
first order due to a pole zero cancellation. These dynamics were studied for a non-ideal
buck converter in CCM.

In [3], a comparative analysis of various control techniques for achieving low total
harmonic distortion (THD) and high power factor (PF) is shown. Some of the techniques
for increasing the PF are peak current mode (PCM) control, average current control (ACC),
hysteresis control, borderline control, and fuzzy logic. It was concluded that to obtain
a high PF and low THD, fuzzy controllers are best-suited. The traditional PI controller
provided a PF of around 0.98, whereas the fuzzy controller provided a PF of 0.99. The
closed control was achieved for the boost converter topology operating in CCM. However,
the modeling of the converter under an open and closed loop for ideal and non-ideal
conditions was not discussed.

In [4,5], a new technique called circuit averaging is introduced to analyze Gvd (per-
turbed output voltage to duty cycle) without deriving the actual transfer function using
LTSpice software. This method provides a shorter computation time and lesser modeling
effort. The bode plots derived using SSA from MATLAB/Simulink and circuit averaging
from LTSpice software matched perfectly. However, the ACC for the converters was not
proposed using circuit averaging techniques.

In [6], ACC for boost converter operating in CCM using SSM is modeled and simulated
for two conditions of the load, namely resistive load and current sink. The zero frequency
decreased by a factor of two and the damping decreased to 14% in the case of a current
sink load. However, no comments on the low frequency gain were provided. The behavior
of the synchronous boost converter under such conditions was not studied.

ACC is mainly used for PFC in DC-DC converters in order to make the output voltage
from the rectifier in phase with the output current. To achieve this, the rectifier should
consider the DC-DC converter as a resistive load. An application of ACC using a boost
converter operating in CCM is presented in [7]. The power factor was greater than 0.9 for
120 V and 230 V. Though ACC was used, the modeling and comparative analyses of boost
and synchronous boost converters considering the non-idealities were not shown.

In [8], mathematical modeling for transformerless DC-DC converters is presented
and simulated using MATLAB/Simulink. The converters were modeled using ‘commonly
used blocks’ and analyzed by deriving the volt-sec and amp-sec balance equations. This
type of modeling provided both the transient and steady-state responses. The converters
that were modeled were buck, boost, buck-boost, and cuk operating in CCM under ideal
conditions. In [9], similar converters along with SEPIC operating in CCM are modeled;
however, ‘Mux’ and ‘fcn’ blocks were used instead of ‘commonly used blocks’. Along
with DC-DC converters, a controlled three-phase rectifier was modeled considering an
inductive load.

The modeling for isolated DC–DC converters such as ideal flyback and forward
converter was performed and simulated using MATLAB/Simulink [10]. The closed-loop
modeling of the converters was performed using PI controllers. It was concluded that
the flyback converter for the selected specifications was better-suited than the forward
converter considering the response time. The ideal flyback converter showed lesser (a) duty
ratio and (b) filter inductance and, hence, the conduction losses were reduced.

Modeling of DC-DC converters is extremely important to understand the dynamics
of the converter and design inductor and capacitor. The steady-state modeling of DC-
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DC converters was simulated using MATLAB/Simulink. Three different approaches for
modeling buck, boost and buck-boost converters were considered. In practice, the DC-DC
converters possess various parameters such as diode drop (Vd), MOSFET drop (Rsw), and
ESRs of inductor and capacitor (RL and Rc, respectively), which in turn cause a decrease
in the output voltage. The behavior of converters changes when modeled considering
non-idealities. Mathematical modeling considering the non-ideality (inductor ESR) for
these converters was investigated. The DC transfer functions for the converters were also
derived using the state space averaging approach [11].

In [12], the transfer functions for the constant voltage operation (Gvd) for ideal buck,
boost, and buck-boost converters operating in CCM are derived using various methods,
namely SSM, SSA, and circuit averaging techniques. It was shown that the ideal boost and
buck-boost converters were unstable in open-loop mode due to the presence of right-half-
plane (RHP) zeroes. In achieving closed-loop control in DC-DC converters, the design of
controllers plays an extremely critical role, especially during phase reversal. The various
steps to be taken while designing a controller are shown in [13].

The primary aim of this paper w to identify the optimal choice of DC-DC converters
between boost and synchronous boost for ACC in open loop. Since the converters designed
are for similar output voltage and current ratings, their performances were compared.
The Gid for ideal and non-ideal boost converters was derived using state space averaging
technique and was compared with that of synchronous boost converters. The behavior
in terms of low frequency gain, resonant frequency, and crossover frequency though the
modeling approach is studied in this paper. Increased low frequency gain is one of the
important features of using a non-ideal synchronous boost converter. This feature, in turn,
provides an improved steady state response compared to the non-ideal boost converter.

In Sections 2 and 3, mathematical models for the non-ideal converters assuming
CCM operation are derived using volt-sec and amp-sec balance equations and modeled
using MATLAB/Simulink software. Section 4 shows the derivation of Gid using the SSA
technique for the converters. The specifications of the converters are shown in Section 5.
Results and discussions of the analyses of Gid for the mentioned converters are provided
in Section 6.

2. Mathematical Model for Boost Converter

Figure 2 shows a schematic of an ideal boost converter operating in CCM. The various
drops across the switch S (MOSFET), diode D, and various ESRs are ignored. When the
switch S is closed, the inductor is charged as it is connected in series with the supply
voltage. The diode becomes reverse-biased and the capacitor becomes charged due to the
load current.
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When the switch S is opened, the charged inductor changes its polarity resulting in
the diode becoming forward-biased. Similarly, the previous charged capacitor becomes
discharged through the load resistor R.

The mathematical model for the converter is shown in [9].

VL = L
diL
dt

= Vg −V0(1− s) (1)
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ic = C
dV0

dt
= iL(1− s)− V0

R
(2)

The working of the non-ideal boost converter is similar to that of the ideal converter.
However, the drops associated with the switch, diode and the ESRs of inductor and
capacitor are considered in the non-ideal condition.

Figure 3 shows a schematic of a non-ideal boost converter operating in CCM.

Energies 2021, 14, x FOR PEER REVIEW 4 of 17 
 

 

Figure 2. Schematic of an ideal boost converter. 

When the switch S is opened, the charged inductor changes its polarity resulting in 
the diode becoming forward-biased. Similarly, the previous charged capacitor becomes 
discharged through the load resistor R. 

The mathematical model for the converter is shown in [9]. 

)1(0 sVV
dt
diLV g
L

L −−==  (1)

R
Vsi

dt
dVCi Lc

00 )1( −−==  (2)

The working of the non-ideal boost converter is similar to that of the ideal converter. 
However, the drops associated with the switch, diode and the ESRs of inductor and ca-
pacitor are considered in the non-ideal condition. 

Figure 3 shows a schematic of a non-ideal boost converter operating in CCM. 

 
Figure 3. Schematic of a boost converter. 

The operation of the converter involves two stages of the switch: (a) switch OFF and 
(b) switch ON 

When the switch MOSFET1 is closed, 

)( swLLgL RRiVV +−=  (3)

)/( ccc RRVi +−=  (4)

where VL is the voltage drop across the inductor (V), Vg is the supply voltage (V), iL is the 
current in the inductor (A), RL is the equivalent series resistance (ESR) of the inductor (Ω), 
Rsw is the switch resistance (Ω), ic is the capacitor current (A), Vc is the voltage across the 
capacitor (V), R is the load resistance (Ω), Rc is the capacitor ESR (Ω), and V0 is the output 
voltage (V). 

When the switch MOSFET1 is opened and MOSFET2 is closed, 

)/())/(( ccdccdLLgL RRRVVRRRRRRiVV +−−+++−=  (5)

)/()/( cccLc RRVRRRii +−+=  (6)

Where Vd is the diode drop (V) and Rd is dynamic resistance of the diode (Ω). 
The mathematical model for the converter can be obtained by combining (3) and (5) 

with (4) and (6). 

)/())/((((*)1(*))(( ccdccdLLgswLLg
L

L RRRVVRRRRRRiVssRRiV
dt
diV +−−+++−−++−==

 
(7)

where s is the instantaneous duty cycle. 

Figure 3. Schematic of a boost converter.

The operation of the converter involves two stages of the switch: (a) switch OFF and
(b) switch ON.

When the switch MOSFET1 is closed,

VL = Vg − iL(RL + Rsw) (3)

ic = −Vc/(R + Rc) (4)

where VL is the voltage drop across the inductor (V), Vg is the supply voltage (V), iL is the
current in the inductor (A), RL is the equivalent series resistance (ESR) of the inductor (Ω),
Rsw is the switch resistance (Ω), ic is the capacitor current (A), Vc is the voltage across the
capacitor (V), R is the load resistance (Ω), Rc is the capacitor ESR (Ω), and V0 is the output
voltage (V).

When the switch MOSFET1 is opened and MOSFET2 is closed,

VL = Vg − iL(RL + Rd + RRc/(R + Rc))−Vd − RVc/(R + Rc) (5)

ic = iLR/(R + Rc)−Vc/(R + Rc) (6)

where Vd is the diode drop (V) and Rd is dynamic resistance of the diode (Ω).
The mathematical model for the converter can be obtained by combining (3) and (5)

with (4) and (6).

VL =
diL
dt

= (Vg − iL(RL + Rsw)) ∗ s + (1− s) ∗ ((Vg − iL(RL + Rd + RRc/(R + Rc))−Vd − RVc/(R + Rc))) (7)

where s is the instantaneous duty cycle.

ic = C
dVc

dt
= (−Vc/(R + Rc))s + (1− s) ∗ ((iLR/(R + Rc)−Vc/(R + Rc))) (8)

Equations (7) and (8) were modeled using MATLAB/Simulink and the dynamics of iL
and Vc were captured.

3. Mathematical Model for Synchronous Boost Converter

Figure 4 shows an ideal synchronous boost converter operating in CCM. By comparing
Figures 1 and 3, it is noted that in Figure 3, diode D is replaced by the MOSFET S2. The drop
across MOSFET would be lesser than that of the diode. This provides a lower duty ratio to
achieve the specified output voltage. Such converters are referred to as point-of-load (POL)
converters and are used as power supplies for micro-controllers and processors.
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Figure 4. Schematic of ideal synchronous boost converter.

Initially, the switch S1 is closed and S2 is open. The inductor L is charged due to the
supply current. Similarly, the capacitor is also charged due to the load current. At this
point of time, switch S1 is opened and S2 is closed.

The charged inductor changes the polarity and the current iL flows in switch S2. The
charged capacitor is discharged to the resistive load R.

The mathematical model for the converter is shown below.

VL = L
diL
dt

= Vg −V0(1− s) (9)

ic = C
dV0

dt
= iL(1− s)− V0

R
(10)

It can be observed that the equations are similar to that of ideal boost converter.
However, in order to observe the difference between the converter, non-idealities have to
be considered, which is presented in this paper. Figure 5 shows a non-ideal synchronous
boost converter operating in CCM.
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Figure 5. Schematic of a synchronous boost converter.

When switch MOSFET 1 is closed,

VL = Vg − iL(RL + Rsw1) (11)

ic = −Vc/(R + Rc) (12)

When switch MOSFET 1 is opened and MOSFET 2 is closed,

VL = Vg − iL(RL + Rsw2 + RRc/(R + Rc))− RVc/(R + Rc) (13)

ic =
iLR

R + Rc
− Vc

R + Rc
(14)

The mathematical model for the converter can be obtained by combining (11) with
(13) and (12) with (14),
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VL = L
diL
dt

= (Vg − iL(RL + Rsw1))s + (1− s) ∗ (Vg − iL(RL + Rsw2 + RRc/(R + Rc))− RVc/(R + Rc)) (15)

ic = C
dVc

dt
= (−Vc/(R + Rc))s + (1− s) ∗ ((iLR/(R + Rc)−Vc/(R + Rc))) (16)

where Rsw1 and Rsw2 (Ω) are the resistances of MOSFET 1 and 2, respectively.

4. Average Current Modeling of Non-Ideal Boost Converter

As shown above, the operation of the converters can be described when the switch is
closed and later opened. The state variables were selected as iL, Vc, and the output as iL.
With respect to Figure 3, the output voltage V0 can be expressed as

V0 = Vc + icRc (17)

Substituting (11) in (12),
V0 = RVc/(R + Rc) (18)

Substituting (18) in (11),
ic = −Vc/(R + Rc) (19)

The state-space representation is defined as

0
X = AX + BU (20)

Y = CX + EU (21)

The state-space matrices were constructed and are shown below.[
diL/dt
dVc/dt

]
=

[
−(RL + Rsw)/L 0

0 −1/C(R + Rc)

][
iL
Vc

]
+

[
1/L 0

0 0

][
Vg
Vd

]
A1 B1

(22)

When the switch is closed,
V0 = Vc + icRc (23)

From the circuit,
ic = iL −V0/R (24)

Substituting (18) in (19),

V0 = R(Vc + iLRc)/(R + Rc) (25)

Hence,

VL = Vg − iL(RL + Rd + RRc/(R + Rc))−Vd − RVc/(R + Rc) (26)

ic = iL(1− Rc/(R + Rc))−Vc/(R + Rc) (27)

[
diL/dt
dVc/dt

]
=

[
−(Rd + RL)/L + RRc/(R + Rc))/L −R/L(R + Rc)

R/C(R + Rc) −1/C(R + Rc)

][
iL
Vc

]
+

[
1/L −1/L

0 0

][
Vg
Vd

]
A2 B2

(28)

Averaging the equations,
A = A1D + A2D′ (29)
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A =

[
a11 a22
a21 a22

]
a11 = −(DRsw + RL + RdD′ + D′RRc/(R + Rc))/L
a12 = −RD′/L(R + Rc)
a21 = −D′R/C(R + Rc)
a22 = −1/C(R + Rc)

îL/d̂ = C[sI − A]−1B

(30)

C = [1 0] (31)

where the input is

U =

[
Vg
Vd

]
X =

[
iL
Vc

]
(32)

îL

d̂
=

(1) + R2(1−D)IL

LC(R+Rc)
2

∆
(33)

where (1) is

(s + 1/C(R + Rc)) ∗ ((IL/L)(Rd − Rsw + RRc/(R + Rc)) + RVc/L(R + Rc) + Vd/L (34)

∆ = (1) + R2D′2/(LC ∗ (R + Rc)
2)

and (1) is

s + 1/C(R + Rc)) ∗ (s + (DRsw + RL + RdD′ + RRcD′/(R + Rc))/L

The state matrix E = 0 as it has no coefficient related to matrix U.

5. Average Current Modeling of Non-Ideal Synchronous Boost Converter

As shown for a non-ideal boost converter, the state space matrices A, B, C, and E were
derived and are shown below.

A1 =

[
−(RL + Rsw1)/L 0

0 −1/C(R + Rc)

]
(35)

A2 =

[
−(RL + Rsw2 + RRc/(R + Rc))/L −R/L(R + Rc)

R/C(R + Rc) −1/C(R + Rc)

]
(36)

A =

[
−(D′Rsw1 + D′Rsw2 + D′RRc/(R + Rc))/L −RD′/L(R + Rc)

RD′/C(R + Rc) −1/C(R + Rc)

]
(37)

îL

d̂
=

(1) ∗ (s + 1
C(R+Rc)

) + R2(1−D)IL

LC(R+Rc)
2

∆
(38)

where (1) is

((−IL/L)(Rsw1 − Rsw2 −
RRc

R + Rc
)) +

RVc

L(R + Rc)
(39)

∆ = (2) +
R2(1− D)2

(LC ∗ (R + Rc)
2)

(40)

where (2) is

(s + (RswD + Rsw2D′ + RRcD′/(R + Rc))/L) ∗ (s + 1/C(R + Rc)) (41)

6. Converter Specifications

Table 1 shows the specifications of the converters.
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Table 1. Specification of converters.

SL.NO Parameter Value

1 Input Voltage, Vg 5 V
2 Output Voltage, V0 12 V
3 Output Current, I0 1 A
4 Inductor, L 4.7 µH
5 Inductor ESR, RL 0.071 Ω
5 Switch Resistance, Rsw 0.024 Ω
6 Diode Drop, Vd 0.555 V
7 Capacitor, C 9.66 µF
8 Capacitor ESR, Rc 0.16 Ω
9 Duty Ratio, D 0.6285

10 Switching Frequency, fs 500 kHz

7. Results

Figures 6 and 7 show the variation in iL and Vc for non-ideal boost and synchronous
boost converters. As observed from Figure 6, the maximum values of V0 and iL were
around 16 V and 12.5 A, respectively. However, the steady-state values were 12 V and
2.6 A, respectively. Similar observations can be observed in Figure 7.
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Figure 8 shows the frequency response of Gid for ideal and non-ideal boost converters.
The ideal converter shows higher resonance than the non-ideal converter. However, no
major change in low frequency gain and the cut-off frequency is seen.

Figure 9 shows frequency response of Gid for ideal and non-ideal synchronous boost
converters. Higher resonance is observed in the non-ideal synchronous boost converter.
However, no change in the cut off frequency is observed.

Figure 10 shows frequency response of Gid for non-ideal boost and synchronous
converters. The non-ideal synchronous boost converter shows higher resonance than the
other converter. However, no change is seen in the crossover frequency.

Figure 11 shows the open loop poles and zeros of Gid for ideal and non-ideal boost
converters. It can be observed that the poles in the non-ideal converter are separated from
the right-hand side (RHS) of the s-plane due to which they possess more stability.
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In Figure 12, the root loci for the same converters were analyzed by making RC = 0. It
was observed that the zeros of the converters superposed.

The root loci of the Ideal and non-ideal synchronous boost converters were analyzed.
Figure 13 shows the placement of the poles and zeros of Gid. It was observed that the
non-ideal converter was more stable than the ideal converter. A similar observation was
made on the synchronous boost converters shown in Figure 14. Changes in Rc had a
negligible effect on the position of poles and zeros.
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Figure 10. Frequency response of Gid for non-ideal boost and synchronous converters.

Table 2 shows the features of the converters in terms of Gain Margin (GM), Phase
Margin (PM) and Cross Over frequency (fc)

Table 2. Features of Gid for various converters.

Type GM PM (Degrees) fc (kHz)

Ideal Boost Infinity 89.8 349
Non Ideal Boost Infinity 90.3 424

Ideal Synchronous Boost Infinity 89.8 407
non-ideal Synchronous Boost Infinity 90.3 425
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Figure 14. Placement of poles and zeros on the synchronous boost converters.

8. Validation

The derived transfer function was validated using the switch models provided in the
LTSpice software tool. Figure 15 shows the switch model used for non-ideal boost and
synchronous boost converters.

Figure 16 shows the Gid obtained from the switch model. It is noted that Figures 15 and 16
show a perfect match in terms of the low frequency gain, phase margin (PM), and crossover
frequency. The low frequency gain was 22 dB, PM was 424 kHz, and resonant frequency
was 9 kHz.
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Figure 16. Gid of a non-ideal boost converter from switch model.

In Figure 17, R varies from 12 to 36 Ω and the Gid can be observed for a non-ideal
boost converter. It is noted that the highest load resistance provided the lowest frequency
gain and the highest resonant frequency.

Figures 18 and 19 show the effect of Gid on varying L and C values. It is inferred that
as the value of L increases, the resonant frequency shifts toward the lower frequency range
and the resonant frequency gradually decreases. The lowest L provided the highest cut-off
frequency. However, when C increased, the cut-off frequency remained the same.

Figure 20 shows the Gid for a synchronous boost converter. By comparing Figures 10 and 20,
the low frequency gain, PM and the cut-off frequency perfectly match. The low frequency
gain was 22.1 dB, PM was 90.3◦, cut-off frequency was 415 kHz, and resonant frequency
was 9.38 kHz.

In Figures 21 and 22, R and L vary and the effect on Gid was studied on a non-ideal
synchronous boost converter. Similar observations to that of the non-ideal boost converter
were made.

Figure 23 shows the Gid for an ideal boost converter. The Gid shown in Figure 23
perfectly matches that of Figure 8 in terms of the low frequency gain, PM, crossover
frequency, and resonant frequency. The low frequency gain was 22.9 dB, PM was 90.3◦,
crossover frequency was 424 kHz, and resonant frequency was 9.12 kHz.
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9. Conclusions

The main aim of this work was to compare the differences between non-ideal boost and
non-ideal synchronous boost converters for ACC. In this regard, a study on non-ideal boost
and non-ideal synchronous boost converters operating in CCM was carried out. These
converters were modeled using volt-sec and amp-sec balance equations. A simulation was
performed using MATLAB/Simulink to observe the transients in the currents and voltages.
Using a ‘Mux’ and a ‘fcn’ block, simulation was performed using a fixed-type solver. Using
the SSA approach, Gid was derived for the converters. The dynamics of these converters
under various conditions were studied. It was found that the converters were highly
stable in open loop. The Gid for the non-ideal synchronous boost converter showed higher
resonance than that for the non-ideal boost converter. However, the crossover frequency
remained the same. The Gid of the ideal boost and synchronous boost converters remained
the same. With Rc = 0, the zeros of the ideal and non-ideal boost converters overlapped.
However, this effect was not observed in synchronous converters.
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