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Abstract: In this paper, a chance-constrained (CC) framework is developed to manage the voltage
control problem of medium-voltage (MV) distribution systems subject to model uncertainty. Such
epistemic uncertainties are inherent in distribution system analyses given that an exact model of
the network components is not available. In this context, relying on the simplified deterministic
models can lead to insufficient control decisions. The CC-based voltage control framework is
proposed to tackle this issue while being able to control the desired protection level against model
uncertainties. The voltage control task disregarding the model uncertainties is firstly formulated as
a linear optimization problem. Then, model uncertainty impacts on the above linear optimization
problem are evaluated. This analysis defines that the voltage control problem subject to model
uncertainties should be modelled with a joint CC formulation. The latter is accordingly relaxed to
individual CC optimizations using the proposed methods. The performance of proposed CC voltage
control methods is finally tested in comparison with that of the robust optimization. Simulation
results confirm the accuracy of confidence level expected from the proposed CC voltage control
formulations. The proposed technique allows the system operators to tune the confidence level
parameter such that a tradeoff between operation costs and conservatism level is attained.

Keywords: voltage control; distribution systems; model uncertainty; chance-constrained
optimization

1. Introduction

Distribution networks have been traditionally designed to meet the maximum load
demand while respecting the imposed reliability and cost-effectiveness objectives. They are
not prepared to host the distributed generation (DG) units, which boost the short-circuit
power, create bidirectional power flows, and induce voltage rise issues [1].

In order to manage voltage constraints of modern distribution systems (also known as
active distribution networks), various approaches have been investigated in the literature.
The most common voltage control methods are based on using the on-load tap changer
mechanism of the substation transformer [2–5] as well as the control of DG active and
reactive powers [2–10]. Application of other control measures such as energy storage
devices has been also investigated [11]. It is generally known that each of the above
voltage control methods has its own advantages and drawbacks, and there is no perfect
(single) voltage regulation method. In this regard, the focus has been directed towards
coordinated voltage control algorithms based on centralized [2–10], decentralized [11–13],
and distributed techniques, e.g., [14].

Despite differences of the existing voltage control methods in the literature, they have
one common feature as they assume that a perfect and up-to-date network model is avail-
able. Distribution network models (and parameters) are, however, subject to inaccuracies
and uncertainties arisen from the lack of sufficient measurements and presence of complex
interdependencies among the network components. The model uncertainty thus is inher-
ent in the distribution system analyses. The model uncertainty, however, differs from the

Energies 2021, 14, 5161. https://doi.org/10.3390/en14165161 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-4072-5933
https://orcid.org/0000-0001-9853-2694
https://orcid.org/0000-0002-2409-2128
https://doi.org/10.3390/en14165161
https://doi.org/10.3390/en14165161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14165161
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14165161?type=check_update&version=2


Energies 2021, 14, 5161 2 of 15

uncertainty in the network working point originating from the intermittent DG powers.
Although voltage control studies in the presence of the latter category (uncertainty linked to
intermittent renewable generations) are quite rich in the literature, e.g., [15–18], the research
on the voltage control in distribution systems subject to model uncertainty is scarce.

The model uncertainty is usually neglected in the voltage control process by assuming
that the load demands are independent of the voltage, e.g., [1,3–11], by supposing that
the system lines can be modelled with the series impedances, e.g., [1,2,8,9,11,12], that
would remain unchanged over the time [1–21], by disregarding the internal resistance of
the substation transformer, e.g., [1,2,8–11], etc. In reality, power consumption of loads
depends on the voltage, shunt admittances of lines must be taken into consideration,
line resistances vary in function of the conductor temperature, and internal resistance of
substation transformer has important impact on the node voltages [19].

Relying on the simplified deterministic network models can mislead the calculations
and leads to solutions which do not completely remove the voltage violations, as shown
in [19]. In order to address this issue, attempts have been made to develop voltage control
methods that consider more exact models, for instance by incorporating the voltage depen-
dency of loads [20] or shunt admittances of lines [21]. This strategy would not be effective
since those models (and their parameters) are still subject to inaccuracies and uncertainties
given that the exact parameters of the network model are not quantifiable, while the latter
strategy, e.g., [20,21], increases the formulation complexity and computational burden of
the developed control tools.

In addition, to deal with the model uncertainties, voltage control techniques based
on the robust optimization have been developed in [22,23]. However, the solution of the
robust optimization is known to be conservative. Alternatively, a data-driven voltage
control method based on deep reinforcement learning has been proposed in [24,25] to cope
with the uncertainties related to both network model and network working point, but the
obtained solutions generally contain the same level of conservatism.

In order to cover the above gap in managing the uncertainties while avoiding insuf-
ficient or conservative solutions, in the current paper, a novel chance-constrained based
voltage control framework is developed to deal with the model uncertainties inherent in the
voltage control process. The salient feature of the proposed CC voltage control technique
is that it defines a control decision which remains immunized against the uncertainty
realization according to a predefined confidence level (or risk factor). This brings us an
opportunity to tune the desired confidence level such that a compromise between the
voltage management costs and conservatism degree can be achieved.

In view of the above discussion, the main contribution of this paper lies in the pro-
posed formulation of the CC optimization for the voltage control task, which has the
following features.

• It preserves the linearity of the original voltage control problem.
• It effectively addresses the complex coupling uncertainties present in the voltage

control problem.
• It leads to accurate voltage corrections as expected from the imposed confidence level,

which allows us to efficiently cope with the considered uncertainty sources.

The remainder of this paper is structured as follows. Section 2 formulates the voltage
control task as a linear optimization problem, and studies impacts of model uncertainties on
that problem. Section 3 introduces the concept of CC optimization, and Section 4 describes
the proposed CC voltage control framework to deal with the model uncertainty. The
studied test distribution system and considered sources of model uncertainty are presented
in Section 5. Numerical simulations are conducted in Section 6 in order to evaluate the
performance of proposed CC voltage control framework in comparison with the response
obtained from the robust optimization formulation. Section 7 discusses further the obtained
simulation results, and the paper conclusions are finally given in the Section 8.
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2. Voltage Control Problem in MV Distribution System
2.1. A Linear Deterministic Formulation

Let consider the generic linear optimization formulation below where the decision
variables x are defined such that the objective function (1) is minimized subject to the
problem constraints (2) to (4). CT is the transpose vector of coefficients of linear objective
function, Aeq and A denote the linear equality and inequality matrices, respectively. The
equality and inequality constraints are limited to beq and b vectors, respectively. The upper
and lower bounds on the control variables are defined by ub and lb, respectively.

Min : CTx (1)

Ax ≤ b (2)

Aeqx = beq (3)

lb ≤ x ≤ ub (4)

The voltage control problem aims to remove the voltage violations in the studied
system through an optimal exploitation of the available control measures. The voltage
control task can be formulated as a linear optimization problem relying on the sensitivity
analysis, e.g., [1,2,4,5,7,8,26,27]. The latter provides us with the impacts of control variable
changes on the controlled parameters (i.e., the node voltages). Having this information
from the sensitivity analysis allows us to neglect the AC power flow balance equations and
eventually keeps the optimization problem linear. The sensitivity-based voltage control
formulation can be seen as a linearized equivalent of the optimal power flow problem
(e.g., [3,6]) that can be solved in almost real time. It constitutes a convex optimization
problem (having linear objective function and constraints) that will guarantee the optimality
of solutions obtained by the implemented voltage control algorithm. The linear sensitivity-
based voltage control problem can be modelled as the following optimization formulation
where the active and reactive powers of DGs as well as the transformer tap position act as
the employed voltage control methods:

Min : OF =
|G|

∑
x=1

(
CQ∆QDGx + CP∆PDGx

)
+ CTR∆TapTR (5)

|G|

∑
x=1

(
∂Vu

∂QDGx
∆QDGx +

∂Vu

∂PDGx
∆PDGx

)
+

∂Vu

∂VTap
∆TapTR ≤ ∆Vreq

u ∀u, u ∈ U (6)

0 ≤ ∆PDGx ≤ |PDGx| ∀x, x ∈ G (7)

∆Qmin
DGx ≤ ∆QDGx ≤ ∆Qmax

DGx ∀x, x ∈ G (8)

∆Tapmin
TR ≤ ∆TapTR ≤ ∆Tapmax

TR (9)

where ∆PDGx and ∆QDGx are the active and reactive power changes of DG x. CP and CQ
give the weighting coefficients for the active and reactive power changes of DGs. ∆TapTR
and CTR denote the transformer tap changes and its corresponding weighting coefficient,
respectively. G and U are the sets including DG units and the buses with voltage violations,
respectively. ∂Vu

∂QDGx
, ∂Vu

∂PDGx
, and ∂Vu

∂VTap
are voltage sensitivity coefficients of bus u with respect

to the control variables.
The objective function (OF) of the voltage control task is given by (5), where the

weighting coefficient of each voltage control measure defines the priority of its exploitation.
These coefficients can represent the activation cost of each control measure. The inequality
constraint (6) considers that the decision variable changes should return the violated
voltages within the predefined voltage limits. Therefore, the right-hand side (RHS) of
(6) gives the required voltage variations at the nodes with the voltage violations in order
to manage the voltage constraints. The physical upper and lower limits on the control
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variable changes are taken into account using (7)–(9). Accordingly, PDGx gives the available
active power of DG x to be curtailed. Also, ∆Qmax

DGx and ∆Qmin
DGx stand for maximum and

minimum possible reactive power changes of DG x while respecting its capability curve.
Finally, ∆Tapmax

TR and ∆Tapmin
TR define the possible upward and downward movements of

the transformer tap changer, respectively. The voltage sensitivity data needed in (6) are
obtained as follows.

• The voltage sensitivity with respect to nodal power changes: it is extracted from the
inverse Jacobian matrix in the Newton-Raphson load flow (NRLF) study as explained
in [19].

• The voltage sensitivity with respect to (substation) transformer tap changes: it is ob-
tained using the perturb-and-observe method. In the latter, two consecutive load flow
studies are performed, subject to one step change in the transformer tap position [2].
The voltage variation at the observed node subject to the step change applied to the
perturbation node (the transformer tap position) is evaluated to derive the sensitivity
of voltage at the observed node with respect to the transformer tap changer action.

2.2. Model Uncertainty Impacts

Model uncertainty is inherent in the voltage control task since an exact and up-to-
date model of the distribution system is not generally at our disposal. In practice, the
characteristics of network components (i.e., lines, loads and transformers) are subject to
complex and dynamic dependencies, which are difficult to model. Therefore, inaccuracies
and uncertainties arise from the assumptions and simplifications adopted during the
network component modeling process. For instance, the distribution network analyses
are generally carried out considering a fixed value of line resistances obtained at a given
conductor temperature (e.g., 20 ◦C) while in reality, the line resistances vary with the
conductor temperature changes [22,23]. Similarly, other types of model uncertainties are
neglected in the network analysis when the loads are considered as voltage-independent,
the resistance of substation transformer is disregarded, power factors of loads are assumed
at a predefined value, etc. These sources of uncertainties have all impacts on the node
voltages with various degrees, as studied in [19].

Concerning the linear voltage control formulation presented in (5)–(9), the model
uncertainties will affect both left-hand side (LHS) and RHS of inequality constraint (6).
Indeed, the model uncertainties will change the voltage sensitivity coefficients as well as
the node voltages that respectively define the LHS and RHS of (6). The inequality constraint
(6) incorporating model uncertainties is thus reformulated as:

|G|

∑
x=1

(
∂̃Vu

∂QDGx
∆QDGx +

∂̃Vu

∂PDGx
∆PDGx

)
+

∂̃Vu

∂VTap
∆TapTR ≤ ∆̃V

req
u ∀u, u ∈ U (10)

where ỹ indicates that y is a random variable.

3. Chance-Constrained Optimization

Within the topic of optimization under uncertainty, the chance-constrained formula-
tion proposes to immunize the constraints subject to uncertainty with a confidence level
(probability), which allows us to manage the desired robustness level in regard to uncer-
tainty. In other words, the obtained solution of the CC optimization satisfies the constraints
subject to uncertainty with at least a given level of probability for all possible realizations
of the uncertain parameters present in the respective constraints. Mathematically, the CC
counterpart of (2), which is now subject to uncertainty, is expressed as [28,29]:

P

(
n

∑
j=1

ãijxj ≤ b̃i

)
≥ 1− εi i = 1, 2, . . . , m (11)



Energies 2021, 14, 5161 5 of 15

where P means probability and 1− εi gives the confidence level defined for the constraint i
(εi is the risk factor associated with constraint i). The constraint (11) constitutes a particular
form of the CC optimization called in the literature the individual CC. In contrast, when all
the constraints in (11), i.e., i = 1, 2, . . . , m, are required to be simultaneously satisfied with
a unique confidence level (i.e., when the RHS of (11) equals to 1− ε), we have another sort
of CC optimization, known as the joint CC [28,29]. Generally, the joint CC problems are
more complex to formulate and solve due to the presence of more uncertain parameters
and the existing coupling among them. In specific cases of the CC optimization, namely,
when we deal with the additive uncertainty in the LHS [30,31] or when we have individual
CC with RHS uncertainty, the linearity of initial deterministic constraint can be preserved.
However, when the uncertainty in the LHS is proportional [30–32] or in case with the joint
uncertainty, the CC formulation will constitute a nonlinear optimization. In the former
case with the proportional uncertainty, the nonlinear problem can be recast as a second-
order conic optimization that guarantees the optimality of the solution if we assume a
Gaussian distribution of the uncertainty. In the latter case having joint CC, data-driven
approaches have been proposed in the literature to deal with the complex coupling of
uncertainties [28,29]. Reference [33] also proposes to relax and decompose the joint CC
problem to the simplified individual CC.

4. Proposed Chance-Constrained Based Voltage Control Framework

In this section, the CC counterpart of the linear voltage control problem (5)–(9) is
derived. To this end, some initial simplifications and assumptions are adopted. The
impact of these assumptions will be evaluated through the numerical analyses carried
out in Section 6. The proposed CC voltage control framework consists of three parts as
described below.

4.1. Preprocessing Stage (Uncertainty Quantification)

In the generic CC formulation, a random variable representing the considered un-
certainty is defined according to a distribution function. In our voltage control problem,
the uncertainty sources reside in the load, line, and substation transformer models (as
explained in Section 5.2). These mentioned uncertainties have impacts on the LHS and
RHS of (6), i.e., the voltage sensitivity coefficients and the required voltage modifications,
respectively. However, their impacts are not a priory known. To quantify the uncertainty
impacts on (6), we need a preprocessing step that first generates N1 scenarios for uncertain
parameters of network component models, and then evaluates those scenarios with load
flow calculations. Doing so allows us to establish the CC voltage control formulation.
Figure 1 presents the proposed framework to perform the CC voltage control task, and to
validate the obtained results.
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4.2. Formulating the Chance-Constrained Voltage Control Task

As mentioned before, model uncertainties have impacts on the RHS and LHS of
(6). However, it is expected that these impacts are significantly higher on the RHS of (6)
compared to the LHS. Indeed, the LHS of (6) includes the voltage sensitivity coefficients
that give a linearized relationship between small changes in control variables and node
voltages. Contrarily, the RHS of (6) is calculated based on the final node voltages according
to a given network working point considering whole amounts of nodal load and generation
powers. For the sake of simplicity and aiming at preserving the linearity of the original
voltage control problem, we assume that the impact of model uncertainty on the LHS
of (6) is negligible. It should be noted that we neglect the model uncertainty impacts
on the voltage sensitivity coefficients for a given network operating point. If the latter
changes, the voltage sensitivity coefficients are accordingly updated in the preprocessing
stage of the proposed CC voltage control framework, while they are again considered to
be independent of the model uncertainties, in the rest of voltage control procedure. The
relevance of this approximation is evaluated in Section 6.

Disregarding the LHS uncertainties of (6) reduces the final CC voltage control problem
to a category having uncertainty only in the RHS, which is mathematically more straight-
forward to formulate. The CC voltage control problem subject to the RHS uncertainty
can be still of the individual or joint type. The respective formulation of mentioned CC
categories is detailed below.

In case of the individual CC with the RHS uncertainty, constraint (11) can be
simplified as:

P

(
n

∑
j=1

aijxj ≤ b̃i

)
≥ 1− εi i = 1, 2, . . . , m (12)

The above constraint indicates that the random parameter b̃i must attain a value greater

than or equal to
n
∑

j=1
aijxj with a probability at least equal to 1− εi for i = 1, 2, . . . , m.

Mathematically, this is equivalent to impose that the survival function of random variable
evaluated at the LHS must be greater than or equal to the confidence level. The survival
function is the complement of the cumulative distribution function (CDF) denoted Φ. In
other words, the survival function is equivalent to 1−Φ. Constraint (12) can be accordingly
rewritten as follows [28].

1−Φb̃i

(
n

∑
j=1

aijxj ≤ b̃i

)
≥ 1− εi i = 1, 2, . . . , m (13)

The above constraint can be simplified to [28]:

n

∑
j=1

aijxj ≤ Φ−1
b̃i

(εi) i = 1, 2, . . . , m (14)

where Φ−1 stands for the inverse CDF or the quantile function. The constraint (14) is
applied to the presented voltage control problem in Section 2.1. The resulting CC equivalent
of constraint (6) (in the deterministic voltage control problem) is given below.

|G|

∑
x=1

(
∂Vu

∂QDGx
∆QDGx +

∂Vu

∂PDGx
∆PDGx

)
+

∂Vu

∂VTap
∆TapTR ≤ Φ−1

∆̃Vu
(εu) ∀u, u ∈ U (15)

The RHS of (15) is known from the analysis carried out in the preprocessing stage.
Φ−1

∆̃Vu
(εu) gives us the required voltage modification to remove the voltage violation at

bus u corresponding to the εth quantile of the vector of uncertain voltages at bus u. The
constraint (15) leads to a joint CC formulation when it is aimed to immunize all the nodes
having voltage violations (∀u, u ∈ U) with a unique risk value ε. Given the complex
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coupling of uncertainties in the joint CC voltage control problem, the individual CC
formulation is preferred that can guarantee the linearity of the voltage control problem.
In this regard, to convert the joint CC voltage control problem to an individual type, two
methods are suggested as follows.

• CC-Method I: It considers only the bus with the biggest voltage violation in the system
as the CC. In this case, we are interested in finding a solution, which is immunized
with a probability at least equal to 1− ε against Φ−1

∆V(ε) at the bus with the biggest
voltage violation.

• CC-Method II: It replaces the unique risk factor of joint CC (εJCC) with a more conser-
vative bound given below according to Bonferroni’s inequality [28,29]. As a result, the
initial joint CC can be converted to an approximated individual CC with a reduced
risk factor equal to εICC

i .

εJCC ≤∑ εICC
i , i = 1, 2, . . . , m (16)

In the CC-Method II, we assume that (16) is applied to the bus with the biggest voltage
violation at each feeder of the system (to limit the number of individual CC). We evaluate
the performance of the abovementioned methods in the context of the voltage control
problem subject to model uncertainty in Section 6.

Overall, the CC voltage control tool has the same objective function and bounds on
the control variables as those of the deterministic voltage control approach given by (5)
and (7)–(9). The difference of deterministic and CC voltage control methods resides in their
voltage constraints. While in the former, the model uncertainty is neglected in (6), the latter
considers it via (15). In other words, the resultant individual CC of the (initial joint CC)
voltage control problem derived according to CC-Method I and CC-Method II replaces (6)
to construct the proposed CC voltage control tool.

4.3. Postprocessing Stage (Result Validation)

The abovementioned CC-based voltage control formulation determines the new set-
points of control variables such that the desired level of robustness against model uncer-
tainty can be achieved. In order to verify the latter, complementary analyses are conducted
on the obtained set-points of control variables. To this end, Monte Carlo (MC) simulations
are performed to generate N2 scenarios for uncertain parameters of the network component
models. Load flow studies are then carried out on each of the N2 scenarios considering
the new set-points of control variables obtained by the CC-based voltage control and other
network data. The obtained nodal voltages in N2 scenarios will be finally analyzed to
validate the robustness level of the CC solution in N2 realizations of uncertainties associated
with the network component models.

In the preprocessing stage (prior to formulating the CC voltage control problem),
when selecting the needed number of scenarios (i.e., N1) for capturing uncertainties and
defining their impacts, the requirement regarding the execution time of the voltage control
task must be considered. Such a limit does not exist when N2 scenarios are generated to
verify the CC results since the corrective decisions have been already taken. Thus, N2 can be
much bigger than N1 so that the CC voltage control results can be tested for complementary
scenarios that are not necessarily included among N1 scenarios of the preprocessing stage.
It should be noted that the defined variation ranges for uncertain parameters of network
component models are identical in both preprocessing and postprocessing stages.

5. Studied Distribution System
5.1. Original Studied Distribution System Having Deterministic Models and Parameters

The performance of the proposed CC voltage control framework is evaluated on the
so-called “HVUG” test case of the United Kingdom generic distribution system (UKGDS)
shown in Figure 2. It is an 11 kV distribution network with underground cables, which
includes 77 buses and 8 radial feeders. It feeds 75 load buses (starting from node 3 to
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node 77) and hosts 22 DG units. The nominal active and reactive powers of loads equal
24.27 MW and 4.85 Mvar, respectively. The DG units are identical, having the rated
powers of 3.5 MW. Node 1 is the slack bus connected to the primary side of the substation
transformer. Node 2 is connected to the secondary side of the transformer where the
transformer tap changer is installed. The substation transformer is represented by a pure
reactance equal to 12.5% pu in the transformer base power (80 MVA). The DG capability
curves are extracted from [1]. The system loads are voltage independent, distribution lines
(cables) are represented by their series longitude impedances, and active powers of DGs
are modelled with a negative load.
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Figure 2. The 77-bus, 11 kV United Kingdom generic distribution system.

5.2. Adapted Network Model to Incorporate Considered Sources of Uncertainties

In the original 77-bus UKGDS shown in Figure 2, network components are represented
with their simplified deterministic models. Particularly, the system loads are supposed
to be voltage-independent, power factors of loads are assumed to be precisely known,
internal resistance of substation transformer is disregarded, shunt admittances of cable
lines are neglected, and cable resistances are not expected to be affected by the conductor
temperature variations. However, these assumptions do not necessarily hold in reality.

Given that the exact and up-to-date (values of) parameters of network component
models are not quantifiable, we represent them as random variables that can vary within the
predefined intervals according to a defined normal distribution function (more information
can be found in [19]).

In this study, our random variables to incorporate the model uncertainty impacts
into the voltage control problem are line resistances, shunt admittances of lines, load
voltage dependency exponents (see [34]), load power factors, and internal resistance of
substation transformer.

6. Simulation Results

The proposed CC voltage control framework presented in Section 4 is implemented
in the MATLAB environment. The performance of the CC voltage control tool is tested
on the UKGDS shown in Figure 2 considering an operating point leading to the voltage
rise issues. In the studied working point, it is assumed that the load demands are low
(=10% of their nominal values) while the DG active powers are at 90% of their rated values.
The selected network operating point constitutes the most difficult voltage management
task having the highest possible voltage violations. By validating the performance of the
proposed voltage control algorithm on the selected working point, it can be expected that
the proposed algorithm would be able to manage other network operating points, having
naturally smaller voltage violations.
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In order to comply with the constraint regarding the calculation time of the voltage
control task, in the preprocessing stage (prior to forming the CC optimization), 500 in-
sample scenarios (N1 = 500) are generated by the MC simulations. However, to validate
the decisions taken by the CC voltage control tool, the number of out-of-sample scenarios
is increased to 5000 (N2 = 5000).

In the voltage control procedure, it is supposed that the transformer tap changer action
has the smallest weighting coefficient compared to other control variables that is equal to 1
(CTR = 1) while DG reactive power changes are weighted by a factor which is 50% bigger
than the tap changer one (i.e., CQ = 1.5). Also, active power curtailment of DGs is assigned
to a coefficient, which is 100% bigger than that of the tap changer (i.e., CP = 2). The (upper)
permitted voltage limit is set to 1.03 pu.

6.1. Model Uncertainty Impacts on Node Voltages

In the first step of our analysis, we are interested to quantify and visualize the impacts
of considered sources of model uncertainty on the nodal voltages. To this end, we illustrate
in Figure 3, the boxplots of nodal voltages obtained in the preprocessing stage of the CC
framework (presented in Figure 1) considering N1 generated scenarios. Besides, to evaluate
the possible nodal voltage variations due to model uncertainty impacts with respect to the
case neglecting those effects, we present on the same graph in Figure 3 the node voltages
obtained by the deterministic (simplified) network model (which disregards the model
uncertainties) with the solid blue line.
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As it can be seen in Figure 3, due to model uncertainty impacts, node voltages can
have considerable deviations from their own initial values obtained by the deterministic
simplified models (shown with the solid blue line). Precisely, these deviations can reach
up to 0.01 pu at bus 26, which contains the biggest voltage violation of the studied system.
Clearly, the voltage control algorithm relying on the deterministic simplified models
(neglecting the model uncertainty impacts) cannot manage the voltages found within
the presented boxplots. This motivates the utilization of the voltage control tool that
incorporates the model uncertainty impacts while taking the control decisions.

6.2. Performance Analysis of the Chance-Constrained Voltage Control Framework

In the second part of this section, we evaluate here the performance of the proposed
CC formulation to manage the initial voltages subject to uncertainty (as shown in Figure 3).
Both proposed methods leading to the individual CC formulation (namely, (i) relying on
the biggest voltage violation of the system and (ii) based on (16)) are tested here. In the
former case, the voltage at bus 26 having the biggest initial voltage violation of the system
is modeled as CC. In the latter case, buses 26 and 62 having the biggest voltage violations
of their own feeders are considered with CC. Figure 4 shows the boxplots of nodal voltages
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obtained in the postprocessing stage of the CC voltage control framework. The desired
confidence level is set to 90% (i.e., ε = 0.1).
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Figure 4. Voltage results obtained by the CC voltage control framework: (a) CC-Method I; (b) CC-Method II.

In Figure 4a, one can observe that boxplots of voltages corresponding to buses located
at the end of feeder 4 (i.e., buses 62 and 63) are placed outside the permitted voltage
range. This means that for every possible realization of uncertainty, there will be a voltage
violation at those buses, which is not desirable. It is explained by the fact that in Figure 4a
(corresponding to CC-Method I), the bus with the biggest violation is only considered with
CC (i.e., bus 26). Thus, the possible voltage violations in other feeders are not taken into
account. Such a problem does not exist in Figure 4b, where the biggest voltage violation
of each feeder is incorporated into the CC voltage control problem according to (16). In
order to have a more exact evaluation, Figure 5 presents the CDF of corrected voltages
corresponding to the boxplots shown in Figure 4 for buses 26 and 62.
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In Figure 5a, it is seen that the 90th quantile of the voltage at bus 26 (corresponding to
the node represented with CC) is exactly equal to 1.03 (i.e., the permitted voltage limit). It
reveals that the imposed in-sample CC condition to have the confidence level equal to at
least 90% at bus 26 is satisfied with a very high accuracy in the out-of-sample evaluation of
voltage at bus 26 in the N2 scenarios of postprocessing stage. This finding also validates
the adopted assumption regarding the fact that the impact of model uncertainty on the
LHS of (6) is negligible. Indeed, the implemented CC optimization does not consider the
uncertainty in the LHS of (6) and its results are quite accurate.

In Figure 5b, showing the results of CC-Method II where buses 26 and 62 are modelled
with CC, it is found that the confidence level of 90% imposed by the CC formulation is
respected at those buses, too, but with slightly reduced accuracy at bus 26 compared to the
former CC formulation (i.e., Method I).

Table 1 presents the demanded contributions of DG powers and necessary transformer
tap movements to manage voltage violations using both above CC methods. In Table 1 and
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hereafter, NA indicates that a specific control action is not applied. In addition, DGs with
the power changes are only indicated in the table and for the rest of DGs (which are not
mentioned), power changes are zero.

Table 1. Control decisions taken by the proposed CC voltage control framework with ε = 0.1.

CC-Method I CC-Method II

∆QDGx (Mvar)
∆QDG5 = 2.31 ∆QDG5 = 2.215

∆QDG4 = 0.0744 ∆QDG18 = 0.998

∆PDGx (Mvar) NA NA

∆TapTR −4 −4

OF 7.576 8.819

In Table 1, we can see that within both studied CC methods, the tap changer of the
substation transformer needs to move (decrease) its position by 4 steps since it has the
smallest weighting coefficient (cost). In CC-Method I, the reactive powers of DGs connected
to feeder 1 are also changed since the voltage violation at bus 26 is only considered and those
DGs have the highest impacts on the voltage at bus 26. In contrast, using CC-Method II,
DGs located in feeders 1 and 4 are both employed to manage the CC voltage of buses 26
and 62. It is clearly observed that the CC-Method II requires more control efforts to manage
the voltage control problem as it considers the voltage of bus 62, as well. In addition,
the approximation and conservatism inherent in (16) can contribute to the increase in
objective function of the CC-Method II with respect to that of the CC-Method I. The latter
contribution (linked to (16)) is, however, of less importance than the former (relating to
considering extra nodes in the CC voltage control problem).

6.3. Comparative Analysis of Chance-Constrained and Robust Voltage Control Approaches

In the last part of this section, we compare the performance of the proposed CC
voltage control with that of the robust voltage algorithm (RVCA) developed in [23] in terms
of the conservatism degree of their solutions. Similarly to the proposed CC voltage control
framework of this work, the RVCA of [23] relies on the preprocessing stage for uncertainty
quantification, and it employs the sensitivity analysis to linearize the relationships between
control variables and node voltages. For the sake of comparison of results, the considered
network, models and parameters, initial working point, sensitivity analysis methods,
bounds on random parameters, initial conditions, etc., are assumed identical in both CC
voltage control tool and RVCA. Table 2 presents the control variable changes defined by
the presented CC voltage control methods for the risk factors equal to 0.2 and 0.05 as well
as the RVCA results, which are immunized against the worst realization of uncertainty. In
addition, Table 2 gives the corrective control decisions taken when the model uncertainty
impacts are neglected by the so-called deterministic voltage control algorithm (DVCA)
presented in (5)–(9).

Table 2. Control decisions taken by the proposed CC framework and the RVCA.

DVCA CC-Method I
ε = 0.2

CC-Method II
ε = 0.2

CC-Method I
ε = 0.05

CC-Method II
ε = 0.05 RVCA

∆QDGx (Mvar) ∆QDG5 = 1.363 ∆QDG5 = 2.301 ∆QDG5 = 2.165 ∆QDG5 = 2.31 ∆QDG5 = 2.241 ∆QDG5 = 2.31
∆QDG18 = 0.942 ∆QDG4 = 0.098 ∆QDG18 = 1.034 ∆QDG18 = 1.194

∆PDGx (Mvar) NA NA NA NA NA NA

∆TapTR −4 −4 −4 −4 −4 −4

OF 6.044 7.451 8.661 7.612 8.913 9.361
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In Table 2, one can observe that the smallest objective function corresponds to the
DVCA (=6.044) that disregards the model uncertainty impacts by considering the nominal
parameters of network component models. From the voltage results shown in Figure 3,
it is, however, known that the response of such a voltage control strategy would not be
sufficient to completely remove the voltage violations subject to model uncertainty.

Considering the results obtained by the proposed CC formulations, in Table 2, it is
seen that the CC-Method I (only modeling the node with the worst voltage violation as
the CC) leads to smaller objective functions compared to those of the CC-Method II. This
finding is in line with the results given in the Table 1. Indeed, in order to provide the
protection against voltage violations in other nodes (feeders) of the system according to (16),
the CC-Method II requires more control resources that result in a higher objective function.
In addition, in Table 2, it is noticed that by decreasing the risk factor (ε), the objective
function of the CC voltage control tool increases to provide the required protection against
the uncertainty realization. For instance, using the CC-Method II, the risk factors of 0.2,
0.1, and 0.05 respectively lead to the objective functions equal to 8.661, 8.819, and 8.913. In
order to verify the accuracy of corrected voltage results by the proposed CC voltage control
techniques, Table 3 gives the out-of-sample (corrected) voltage values corresponding to the
imposed confidence level at buses 26 and 62. The latter buses contain the biggest voltage
violations of feeders 1 and 4, respectively.

Table 3. Out-of-sample analysis of node voltages corresponding to the imposed confidence level
obtained by the proposed CC methods.

CC-Method I
ε = 0.2

CC-Method II
ε = 0.2

CC-Method I
ε = 0.05

CC-Method II
ε = 0.05

Φ−1
V26

(ε) (pu) 1.0299 1.02942 1.02993 1.02927

Φ−1
V62

(ε) (pu) 1.03594 1.02994 1.03679 1.02996

In Table 3, we can observe that using the CC-Method I, the imposed confidence level
relating to the voltage magnitude at bus 26 (i.e., the bus with the biggest voltage violation
of the system) is satisfied with a high accuracy. Indeed, the corrected voltage magnitude
at bus 26 corresponding to the imposed confidence level (Φ−1

V26
(ε)) is quite close to the

permitted voltage limit (=1.03 pu). However, it is seen that the control actions taken by the
CC-Method I cannot manage the voltage rise at bus 62 since the latter bus is not integrated
into this CC voltage control formulation. In contrast, the CC-Method II provides the voltage
results that are slightly more conservative (arisen from approximation inherent in (16))
but it can handle the voltage violations of both buses 26 and 62 located in feeders 1 and 4,
respectively, as can be seen in Table 3. It should be noted that in Table 3, the closer the
out-of-sample (corrected) voltage results are to the permitted 1.03 pu voltage limit, the
more exact the employed CC formulation is.

Finally, by taking into account the RVCA results given in Table 2 (having the objective
function equal to 9.361), it is revealed that the proposed CC voltage control formulations
allow us to adjust the robustness level of the voltage control problem through modifying
the risk factor (ε).

7. Discussion

The simulations carried out in the previous section confirm that the proposed CC
voltage control framework can effectively deal with the model uncertainty inherent in
the distribution systems. It enables us to adjust the desired confidence level according to
which we aim to immunize the voltage control solution subject to uncertainty realizations.
While the solution of the voltage control method relying on deterministic simplified models
might be insufficient to completely manage the voltage constraints, and on the other hand,
the solution of the robust voltage control technique could appear too conservative, the
proposed CC framework allows us to find a compromise between the voltage management
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costs and the conservatism degree. It should be noted that the desired conservatism degree
depends not only on the costs of control decisions, but also on the costs associated with
the voltage violations. In other words, the optimal risk factor should be determined in
accordance with, on the one hand, the costs of corrective control actions, and on the other
hand, the voltage violation costs. The more crucial the voltage violation management is,
the more justified the price of robustness to pay will be.

The simulation results reveal that the CC-Method I in which the voltage of the bus
with the biggest voltage violation is constrained to a confidence level can accurately satisfy
the imposed probability condition at that bus, but it cannot address the voltage violations
of buses in other feeders of the system. Consequently, the latter method is rather suited
for the MV distribution systems with a single feeder. In contrast, the CC-Method II is less
accurate (and more conservative), being based on a reduced risk factor (obtained according
to (16)), but it can effectively be applied to the distribution systems with multiple feeders.

In this paper, it is also shown that impacts of considered model uncertainty sources
on the LHS of voltage constraint (6) (i.e., the voltage sensitivity coefficients) are negligible.
Our numerical tests confirm that while being subject to considered model uncertainty
sources of this paper, the standard deviation of all sensitivity coefficients in the LHS
of (6) does not exceed 0.001 of its respective expected value, which indicates the minor
impact of model uncertainties on the voltage sensitivity coefficients. On the contrary, it
is demonstrated in Figure 3 that the model uncertainty can cause considerable deviations
in node voltages, and consequently, can change the RHS of (6) with respect to the values
obtained by the deterministic network model. These two findings lay the foundation of
another important conclusion of this paper, that when the network model is integrated
into a voltage control tool to evaluate the initial system state (initial voltages), the model
uncertainty can noticeably mislead the voltage control problem analyses, resulting in
infeasible or inefficient control decisions. Such a problem inherently applies to a wide range
of voltage control techniques developed in the literature [1,3–13,15–24]. Contrarily, when a
voltage control tool receives the initial voltages based on the real voltage measurements
(and not from a state estimation interface or a load flow study relying on the simplified
network model), the model uncertainty impacts on the voltage control problem would be
of a minor importance since the uncertainty in initial node voltages (or uncertainty in the
RHS of (6)) is removed thanks to the voltage measurements. In the literature, examples of
such a voltage control scheme relying on real measurements, like [2], are scarce.

8. Conclusions

A chance-constrained (CC) framework is developed in this paper to deal with the
model uncertainty impacts inherent in the voltage control problem of MV distribution
systems. Relying on the linearized formulation of the voltage control problem with the
voltage sensitivity analysis, its CC counterpart is derived by incorporating uncertainty
impacts into the former formulation. The voltage control problem under model uncer-
tainty, consequently, is formulated as a joint CC optimization with right-hand side (RHS)
uncertainty. Aiming at preserving the linearity of the original formulation, two methods
are proposed to decompose the complex joint couplings of the RHS uncertainties. The
developed CC formulations are finally tested on the 77-bus, 11 kV radial distribution
system. The simulation results confirm the accuracy of the confidence level expected from
both CC formulations. Furthermore, comparative analysis of the CC-based voltage control
framework having different risk factors and the voltage control method based on the robust
optimization reveals that the proposed CC framework allows us to adjust the robustness
level of solutions to find a compromise between the voltage management costs and the
desired conservatism level.

Another main finding of this paper relates to the fact that the model uncertainty
impacts are of a great importance when calculating the initial system state (initial voltages),
while they have minor effects on the voltage sensitivity coefficients. Consequently, the
model uncertainty effects can be neglected if a voltage control scheme works based on the
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real voltage measurements. Otherwise, defining the system state (initial voltages) based on
the simplified deterministic models would mislead the voltage control decisions.
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