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Abstract: This paper addresses the leader tracking problem for a platoon of heterogeneous au-
tonomous connected fully electric vehicles where the selection of the inter-vehicle distance between
adjacent vehicles plays a crucial role in energy consumption reduction. In this framework, we
focused on the design of a cooperative driving control strategy able to let electric vehicles move as a
convoy while keeping a variable energy-oriented inter-vehicle distance between adjacent vehicles
which, depending on the driving situation, was reduced as much as possible to guarantee air-drag
reduction, energy saving and collision avoidance. To this aim, by exploiting a distance-dependent
air drag coefficient formulation, we propose a novel distributed nonlinear model predictive control
(DNMPC) where the cost function was designed to ensure leader tracking performances, as well as
to optimise the inter-vehicle distance with the aim of reducing energy consumption. Extensive simu-
lation analyses, involving a comparative analysis with respect to the classical constant time headway
(CTH) spacing policy, were performed to confirm the capability of the DNMPC in guaranteeing
energy saving.

Keywords: electric vehicles (EVs); e-platoon; distributed nonlinear model predictive control; energy
consumption; air drag coefficient

1. Introduction

Nowadays, electrification is an effective approach towards low-carbon future trans-
portation [1]. Indeed, since the transportation sector accounts for approximately 25% of
global energy consumption and 26% of energy-related carbon dioxide emissions, the wide
spread of electric vehicles (EVs) has been proven to be the most suitable environmental-
friendly choice with respect to conventional vehicles, thus achieving crucial acceptance
in today’s market [1,2]. Several works have highlighted the main benefits of EVs as fol-
lows (see [3,4] and references therein): (i) greenhouse gas emission reduction compared
to traditional internal combustion engine vehicles (ICEVs); (ii) noise reduction, which
represents a benefit for individual users, non-users (e.g., cyclists or pedestrians) and more
generally, for the whole urban environment since it is considered as a new pollutant agent;
(iii) improved performances with respect to ICEVs in terms of accelerations and energy
efficiency due to instant torque and comfortable driving; (iv) economic saving both from
an individual and a social point of view; (v) a positive coordination with renewable energy
sources (RESs) within an electric grid by adjusting the load variation while offsetting
the negative impact of RESs on the grid due to their intermittent nature. For all these
reasons, related technologies are constantly developing with the aim to improve, as much
as possible, both safety and energy saving capabilities of EVs. For instance, in the aim of
regulating in real time the vehicle slip ratio toward its optimal value for the maximisation
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of the tire adhesive force, ref. [5] proposed a novel hybrid controller, called acceleration
slip regulation (ASR). A robust control strategy for an in wheel motor-drive EV has been
suggested in [6] to enhance vehicle lateral stability in the presence of time delays, while [7]
proposed a fault-tolerant controller which, by driving the steering angle sensor of an EV,
ensures the trajectory tracking.

In addition to the usage of EVs, another energy-efficient solution for transport is to
operate along the road platoons of connected autonomous distributed electric vehicles
(CADEVs) since they could bring many benefits in terms of driving safety and comfort,
as well as traffic congestion [8]. It is well known that, when in a platoon, vehicles move
in a fleet tracking a desired velocity profile (provided by the leading vehicle or by an
external infrastructure, compatible with legal road constraints) while maintaining a small
inter-vehicle distance so as to reduce air resistance and energy consumption [9–11]. Due
to the aforementioned advantages, the platooning control problem for ICEVs has become
a hot topic during recent decades in automotive and intelligent transportation research
fields [12,13]. For instance, recent control solutions have been suggested in [14–17]. Specifi-
cally, a proportional–derivative controller has been suggested in [14] to address the problem
of cooperative adaptive cruise control (CACC) for a connected autonomous vehicles (CAVs)
platoon under a dynamic information flow topology that allows to consider communication
failures, while denial-of-service (DoS) attack phenomena have also been tackled in [15]
via a sampled-data diffusive control law whose exponential stability analysis is proven by
exploiting time-delay system theory. Instead, the coexistence of CAVs and human-driven
vehicles (HDVs) on the road has been considered in [16,17], where a new model for the
mimicking of the mixed platoon has been introduced by leveraging multi-agent systems
(MASs) theory and car-following model, while consensus controllers have been used to
stabilise the overall mixed vehicular network. The problem of heterogeneous vehicle
platoons affected by model uncertainties and external disturbances was addressed in [18],
where authors developed a tube-based MPC aiming to guarantee leader-tracking purposes
in the presence of spatial-geometry constraints.

Although the deployment of CADEVs will play a crucial role in eco-intelligent trans-
portation systems, only few works explored the energy-saving benefit of an EVs platoon
consisting of more than two vehicles [19–21].

In addition to considering a platoon of CADEVs with a comprehensive dynamical
model to represent all the required internal components, another crucial issue to be tackled
in the platooning application for energy-saving purposes is related to the choice of the inter-
vehicle spacing policy to be imposed between adjacent vehicles. The two most commonly
used spacing policies are constant spacing (CS) and the constant time headway (CTH)
ones [22]. More specifically, the former sets the inter-vehicle gap as a constant value, thus
reducing the platoon length and improving road throughput, while the latter defines the
gap distances as a linear function of the vehicle speed, thus better miming the human
drivers’ behaviour [22]. Nevertheless, for complex traffic scenarios, e.g., in the presence of
the sudden acceleration/deceleration of the preceding vehicle, both CS and CTH policies
do not perform well [23]. To overcome this issue and to provide more flexibility with
respect to the aforementioned spacing strategies, the variable time headway (VTH) policy,
where the headway time is time-variant, have been introduced.

Based on these facts, we can observe that both the selection of the platoon control pro-
tocol and the selection of the spacing policy are pertinent with the aerodynamic interactions
among the vehicles belonging to the platoon [24]. At steady-state operation, the aerody-
namic drag coefficient depends on the specific position of each vehicle within the platoon
and it is usually assumed to be known and constant. Conversely, during the transient
phase associated with different manoeuvres (e.g., acceleration or braking), the aerody-
namic effects result in significant variations of the air drag coefficient that should be taken
into account [24]. Indeed, for each vehicle belonging to the platoon, the coefficient of
the air-drag force varies as a function of the distance to the predecessor vehicle and this
distance-dependent formulation should be considered from the control design phase so as
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to explicitly consider the impact of the spacing policy on aerodynamic forces, especially
from an energy-saving point of view [24–26]. As such, ref. [24] addresses the longitudinal
platoon control problem with a more precise modelling of the effects of the air-drag force
via twoH∞ controllers able to guarantee the string stability and the achievement of smaller
spacing errors without aggressive manoeuvres, respectively. The same distance-dependent
air-drag formulation has been used in [25] for a heavy-duty fuel vehicle platoon with the
aim of safely and fuel-efficiently coordinating its motion. Also considering the same air
drag formulation, ref. [26] introduces a stochastic optimisation procedure aiming to find
both controller parameters and an optimal CHT spacing policy by taking into account
disturbances and transmission time delays.

From the literature overview on the platooning control, it is clear that the choice of the
spacing policy plays a crucial role for guaranteeing energy-saving requirements, especially
in electric vehicle platooning where the battery management strongly affects the vehicle
life cycle. Therefore, avoiding energy waste is very crucial for prolonging the life-cycle of
the battery [27]. Within this context, in this paper, by embedding a distance-dependent
air drag formulation into the vehicle prediction model, we designed an energy-saving
oriented distributed nonlinear model predictive control (DNMPC) for a heterogeneous
platoon of CADEVs in order to guarantee a three-fold control objective: (i) to ensure that
each vehicle tracks the leader speed profile, assumed to already be optimised in terms of
energy consumption and directly or indirectly known by each vehicle within the platoon;
(ii) to compute, for each time instant, the optimal variable inter-vehicle distance from the
vehicle ahead by taking into account safety and road capacity constraints, as well as the
electric power saving requirement and distance-dependent air-drag formulation; (iii) to
guarantee the minimisation of the required battery power, thus achieving energy saving
objective. Note that the proposed energy-oriented architecture computes a variable spacing
policy that has a direct impact on the air drag coefficient. In so doing, based on the typical
minimum and maximum values of time headway [28], inter-vehicle distance constraints
are defined in order to guarantee a trade-off between smaller inter-vehicular distances,
which increase the rear-end collisions risk, and larger spacing that, instead, reduces the
road capacity. An extensive numerical analysis involving a comparative analysis of a
typical CTH spacing policy with a discussion about the computational load confirms the
benefits of the proposed control approach in ensuring energy saving.

Finally, the paper is organised as follows. Some mathematical facts are given in
Section 2, while both the problem statement and the EVs modelling, along with a power-
based energy consumption estimation model, are provided in Section 3. In Section 4, the
control approach is presented, while numerical results are disclosed in Section 5, where
a comparison with respect to a control architecture embedding a CTH is also performed.
Conclusions are drawn in Section 6.

2. Math Preliminaries

Leveraging the MAS framework, a set of connected vehicles can be modelled as
a directed graph GN = {VN , EN}, with VN = 1, 2, . . . , N the set of vehicles belonging
to the network, while EN = VN × VN is the edges set used to mimic direct and active
communication links. The properties of the graph GN can be described by three matrices,
i.e., the degree matrixD, the adjacency matrixA and the Laplacian matrix L. The adjacency
matrix A = [aij] ∈ RN×N is such that aij = 1 if vehicle j sends information to vehicle i,
otherwise aij = 0. The matrix D, instead, is defined as D = diag{d1, d2, . . . , dN}, with
di = ∑N

j=1 aij being the number of communication links entering in i. Given A and D,
the Laplacian matrix is defined as L = D −A. Moreover, we introduce the neighbouring
set Ni for the i-th EV as the set Ni = {j|aij = 1}: this means that vehicle i can receive
information from any j ∈ Ni. In a similar way, we denote with Oi = {j|aji = 1} the set
of agents receiving the information from node i. Throughout the paper, we consider N
EVs together with an additional one acting as a leader agent in providing the reference
behaviour and indexed with 0. Therefore, an augmented directed graph GN+1 is used to
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model the emerging communication network topology. To mimic the connection between
each EV i and the leader, we introduce the Pinning matrix P ∈ RN×N . It is defined as
P = diag{p1, p2, . . . , pN} with pi = 1 if the leading vehicle is directly connected to the
i-th EV, otherwise pi = 0. If pi = 1, the vehicle i is called pinned node. It follows that
different connected communication topologies may arise which are connected, although not
completely connected. In so doing, by indicating a directed path from node i1 to node ik
as a sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik), with (ij−1, ij) ∈ EN , ∀j = {2, . . . , k}, it
is also possible to introduce the definition of spanning tree as a tree connecting all nodes
of the graph GN via a directed path [29]. Throughout this work, we assume that the
communication graph GN+1 is such that the following assumption holds:

Assumption 1 ([30]). GN+1 contains a directed spanning tree with the leader as the root.

This assumption allows to guarantee that each EV follower can directly or indirectly
obtain leader information, thus ensuring the internal stability of the platoon. Leveraging
this framework, several communication network topologies may arise, and the most
common for platooning are shown in Figure 1, i.e., predecessor–following (P-F), leader–
predecessor–following (L-P-F), bidirectional–leader (B-D-L), all-to-all (broadcast, BR).

(a)

(b)

(c)

(d)

01 2 N N-1 N-2 

(e)

Figure 1. Exemplar communication topologies for a platoon of autonomous connected vehicles [13]:
(a) predecessor–following (P-F), (b): leader–predecessor–following (L-P-F); (c): bidirectional–leader
(B-D-L); (d): all-to-all (Broadcast, BR); and (e): platoon of N vehicles plus a leader.

3. E-Platoon Modelling and Control Objectives

Consider a heterogeneous e-platoon consisting of N vehicles plus an additional one,
labelled as 0, acting as a leader in providing the reference behaviour to the whole vehicular
network. The platoon is arranged as a convoy, with vehicles travelling along a straight
road and able to share their position, speed and acceleration information via V2V wireless
communication networks (based on IEEE 802.11p communication standard or 5G com-
munication) [31,32]. In our technological scenario, each EV is equipped with an on-board
inertial sensor and a GPS receiver for measuring its state information, as well as with
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transmitting devices enabling the connectivity among vehicles within the e-platoon [33].
The aim was to guarantee that each EV tracks the leader behaviour while maintaining
a safe and energy-saving oriented inter-vehicle distance with respect to the predecessor
vehicle ahead. Indeed, the desired optimal gap distance is properly computed in order
to reduce the energy consumption of each i-th vehicle within the platoon by acting on
air-drag coefficient reduction, which varies as a function of inter-vehicle distance.

In what follows, we provide a detailed model of the EV by describing its nonlinear lon-
gitudinal dynamics and the battery pack model. Then, we introduce the power-based energy
consumption estimation model to compute its required power for a specific drive cycle.

3.1. Nonlinear Longitudinal EV Model

The longitudinal behaviour of each EV i (∀i = 1, · · ·N) can be depicted by the follow-
ing nonlinear dynamics [34–36]:

ṗi(t) = vi(t)

v̇i(t) =
ηi

Rimi
ui(t)− gsin(θi(t))− gcos(θi(t))

Cr

1000
(c1v(t) + c2)

− ρ

2mi(t)
CDi (di,i−1(t))A fi

v2
i (t),

(1)

where pi(t) [m] ∈ R and vi(t) (m/s)∈ R are the position and the speed of vehicle i;
ui(t) (N m) is the control input representing the vehicle propulsion torque; mi (kg) is the
mass of vehicle; ηi is the drive-train efficiency; Ri (m) is the radius of vehicle wheel; the
parameters Cr, c1 and c2 are related to the rolling resistance force and vary on basis of the
road surface condition and the type of the vehicle tire; ρ (kg/m3) is the air density; A fi

(m2)
is the frontal area of vehicle i; g (m/s2 ) is the gravity acceleration, while θi(t)and (rad) is
the road-track slope. Furthermore, CDi (di,i−1(t)) is the vehicle drag coefficient of vehicle i,
which varies on the basis of the distance with respect to the ahead (i− 1) vehicle as [26]:

CDi (di,i−1(t)) = Ca

(
1− Cb

Cc + di,i−1(t)

)
, (2)

where Ca is the i-th vehicle air-drag coefficient in the absence of any slipstream, i.e., it repre-
sents the leading vehicle air-drag coefficient, while Cb and Cc are positive constants whose
values have been experimentally found in [37]. Note that drag coefficient formulation as in
(2) takes into account the fact that the air-drag force is strictly related to both the vehicle
shape and air flow around it. Indeed, the aerodynamic resistance depends on how quickly
and uniformly the air cut by the vehicle rejoins the vehicle downstream, i.e., the turbulence
level and wake shape. This implies that when the shape of a vehicle is streamlined or
a vehicle follows another one at a closer spacing, the aerodynamic resistance is lower
(see [38] and references therein). Moreover, some experimental works on the aerodynamic
interactions among the vehicles in convoys are presented in the technical literature about
automated highway systems [39,40] and the air-drag coefficients are founded based upon
them. By exploiting state space formalism and by introducing the state vector for the
vehicle i as xi(t) = [pi(t), vi(t)] ∈ R2×1, the nonlinear system in (1) ∀i ∈ {1, . . . , N} can be
re-written in a more compact notation as [35]

ẋi(t) =
[

vi(t)
ϕi(vi(t))

]
+

[
0
bi

]
ui(t), (3)
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where bi = ηi/(miRi), while ϕi(vi(t)) ∈ R is nonlinear vector field, assumed to be bounded,
continuous and differentiable. On the other hand, the leader dynamics acting as a reference
for the whole vehicular network is described by the following autonomous nonlinear system:

ẋ0(t) =
[

v0(t)
ϕ0(v0(t))

]
(4)

where x0(t) = [p0(t), v0(t)] ∈ R2×1 are the leader state vector, with p0(t) (m) and v0(t)
(m/s) its position and speed, respectively.

3.2. Battery Pack Model

To model the battery pack of each vehicle i within the platoon, according to [1], we
consider an equivalent simplified electric circuit consisting of a voltage supply Eoc,i, 2 ideal
diodes, and 2 internal resistances R+

in,i and R−in,i, representing the charging and discharging
inner battery pack resistances, whose values depend on the battery state of charge (SOC)
actual value. By defining the voltage at the terminal of the battery as

Vt,i = Eoc,i − RIbatt,i =

{
Eoc,i − R+

in,i Ibatt,i i f discharging
Eoc,i − R−in,i Ibatt,i i f charging,

(5)

where Preq,i is the related required power, the corresponding current Ibatt,i(t) can be hence
formulated as

Ibatt,i(t) =


Eoc,i−

√
E2

oc,i−
4R−in,i Preq,i

nb,i

2R−in,i
i f discharging

Eoc,i−

√
E2

oc,i−
4R−in,i Preq,i

nb,i

2R+
in,i

i f charging,

(6)

where nb,i is the number of cells constituting the battery. In so doing, we can derive the
SOCi(t) as

SOCi(t) =

−
1

Cbatt,i

∫ t
0 Ibatt,i(τ)dτ i f discharging

− ηbatt,i
Cbatt,i

∫ t
0 Ibatt,i(τ)dτ i f charging,

(7)

where Cbatt,i is the battery capacity, while ηbatt,i is the recharging efficiency of the battery.

3.3. Power-Based Energy Consumption Estimation Model

In order to deal with the estimation of the energy consumption of the i-th vehicle
(ECi, (kW h/km)), we compute the power at the electric motor Pem,i(t) according to the
comprehensive power-based EV energy consumption model (CPEM) [41] as

Pem,i(t) =
(

miai(t)− ϕi(vi(t))
) 1

ηiηem
, (8)

where ai(t) (m/s2) and ηem = 0.91 are the acceleration of vehicle i and its electric motor
efficiency, respectively, while mi, ϕi(vi(t)) and ηi were already defined in Section 3.1. Since
the appraised electric vehicle is also equipped with a regenerative braking system, the ef-
fective electric power Peme f f ,i (t) can be computed by taking into account the regenerative
braking efficiency ηrbi

(t) as follows:

Peme f f ,i (t) =

{
Pem,i(t) if Pem,i(t) ≥ 0 ,

Pem,i(t) · ηrbi
(t) if Pem,i(t) < 0 .

(9)
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Given the power consumed by the auxiliary systems of the vehicle [41], i.e., Paux, the electric
power Preq,i(t) required by vehicle i is given as

Preq,i(t) = Peme f f ,i (t) + Paux. (10)

Finally, from Equations (8)–(10), the EC of the vehicle i is finally computed as

ECi =
1

3600000

∫ t

0
Preq,i(τ) dτ × 1

Di
, (11)

where Di (km) is the travelled distance by the i-th vehicle.

4. Design of Distributed Distance-Based Nonlinear Model Predictive Control

The aim of e-platoon control is to guarantee that each EV i (∀i = 1, . . . , N), in a
distributed fashion, tracks the leading vehicle’s dynamics, which provides an optimal
reference behaviour guaranteeing the safety and the energy saving requirements by explic-
itly taking into account air-drag reduction due to the presence of distance-dependent air
drag coefficient CDi (di,i−1(t)). More specifically, our objective was to design a distributed
controller ui(t) in (3) for each vehicle i such that ∀i ∈ {1, . . . , N}:

lim
t→∞
‖vi(t)− v0(t)‖ = 0;

lim
t→∞
‖pi(t)− p0(t)− d̃i,0(t)‖ = 0;

ui = arg
(

min
ui

Preq,i(ui(t), d̃i,i−1(t))
)

,

(12)

where d̃i,0(t) is the desired spacing policy between vehicle i and vehicle 0 while and d̃i,i−1(t)
is the desired one between vehicle i and its predecessor i− 1. Note that these desired safe
distances are properly computed by taking into account safety constraints and without
assuming a fixed time-headway value.

To fulfil the (12), we designed the energy-optimal control input ui(t) via a DNMPC
strategy as the solution of the following constrained multiple optimisation problem.

Problem Fi: Let Assumption 1 hold. Given the optimal reference trajectory to be
tracked, i.e., x0(t), and the information sent by the neighbouring vehicles Ni, for each
vehicle i, we find ui(t) such that, at each time instant t:

min
ui
Ji =

∫ t+T

t
Li(xp

i (τ, t), xa
i (τ, t), x0(τ, t), xa

j (τ, t), d̃i,i−1(τ, t), up
i (τ, t))dτ

subject to

ẋi = fi(xi, ui)

xp
i (τ, t) = xi(t)

up
i (τ, t) = hi(v

p
i (t))

vi,min ≤ vi(τ, t) ≤ vi,max

ai,min ≤ ai(τ, t) ≤ ai,max

ui,min ≤ ui(τ, t) ≤ ui,max

dmin
i,i−1(t) ≤ d̃i,i−1(τ, t) ≤ dmax

i,i−1(t)

(13)

where ui and up
i denote the unknown control input to be optimised and its prediction,

respectively; xp
i (τ, t) and xa

i (τ, t) are the predicted and the assumed state of the EV i,
respectively; xa

j (τ, t) is the assumed state of the communicating EV j (∀j ∈ Ni); hi(v
p
i (t)) =

Ri
ηi

ϕi(v
p
i (t)) is used to counterbalance the external forces [42]; (·)max and (·)min stand for

the maximum and the minimum bounds for the related variable (·). More specifically,
dmax

i,i−1(t) and dmin
i,i−1(t) are related to the maximum and minimum allowed inter-vehicle
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distances between vehicle i and its predecessor. In order to ensure emergency braking
manoeuvres, as well as air drag reduction, they can be computed considering the minimum
and maximum value of vehicle time-headway as [43]

dmin
i,i−1 = dst + hminvi(t), dmax

i,i−1 = dst + hmaxvi(t), (14)

where dst (m) is the standstill distance, while hmin (s) and hmax (s) are the lower and upper
time-headway, commonly selected as hmin = 0.4 (s) and hmax = 1 (s) [28].

The integral part of the cost function Ji in (15), i.e., Li, is here designed as

Li = ω1Li,1 + ω2Li,2 + ω3Li,3 + ω4Li,4 + ω5Li,5 + ω6Li,6 + ω7Li,7, (15)

where ω1, ω2, ω3, ω4, ω5, ω6, ω7 are the positive weights to be properly selected and

Li,1 =
(

pp
i (t)− p0(t)− d̃i,0(t)

)2
(16a)

Li,2 =
(

vp
i (t)− v0(t)

)2
(16b)

Li,3 = ∑
j∈Ni

(
pp

i (t)− pa
j (t)− d̃i,j(t)

)2
(16c)

Li,4 = ∑
j∈Ni

(
vp

i (t)− va
j (t)

)2
(16d)

Li,5 =
(

xp
i (t)− xa

i (t)
)2

(16e)

Li,6 =
(

up
i (t)− hi(vi(t))

)2
, (16f)

Li,7 = Preq,i(t, ui(t), d̃i,i−1(t)) + Paux. (16g)

Note that Li,1 and Li,2 in (16a) and (16b) guarantee that the i-th EV tracks the leader
behaviour, with Li,1 6= 0 and Li,2 6= 0 if and only if pi = 1, where pi is the pinning
matrix element defined in Section 2; conversely if pi = 0, then the i-th EV was unable to
directly know the leader behaviour so that Li,1 = Li,2 = 0. Li,3 and Li,4 in (16c) and (16d)
ensure that the i-th EV tries to reach a coordination with the assumed trajectory of the j-th
communicating EV, and hence, Li,3 6= 0 and Li,4 6= 0 for all j ∈ Ni, where Ni is the set of
neighbours of the i-th EV as defined in Section 2. Term Li,5 in (16e) weights the deviations
of the i-th EV state trajectories with respect to the corresponding assumed state, which
is its shifted last-step optimal state and sent to the EVs belonging to the set Oi; Li,6 (16f)
counterbalances the deviations of the input error from the equilibrium, according to [42].
Finally, Li,7 in (16g) ensures the minimisation of the instantaneous power consumption.

We highlight that the DNMPC allows emulating the typical attitude of a driver by pre-
estimating the trajectory that each EV has to maintain for a defined horizon [44]. In addition
to the advantages of this kind of controller, it is fundamental to choose a proper plant model
in order to ensure coherence between reality and simulations, hence obtaining correct and
effective results. However, more detailed vehicle models describing, for instance, both
longitudinal and lateral dynamics, as well as the interaction forces [45,46] require more
computational resources and efforts. In this case, the requirement of high-performances
architectures arises to deal with this kind of problem (see, e.g., [44]).

Note that, since we do not fix an expression to spacing policy, this procedure allows us
to embed within our architecture an energy-oriented variable spacing policy which, unlike
the classical CTH (with a typical value of h = 0.8 (s) [43]), guarantees the minimisation of
the inter-vehicle distance between two adjacent EVs while satisfying safety requirements.
This results in an air drag reduction and hence, in energy consumption improvement.
Indeed, in so doing, for each time instant, the inter-vehicle gap distance between the i-th
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and its i− 1-th predecessor is found according to constraints in (14), while ensuring the
power optimisation as well as the air drag reduction.

To better disclose the advantages of exploiting this kind of energy-oriented spacing
policy within our control design, we compare in Figure 2 the classical CTH spacing policy
for the i-th EV with the proposed one. Herein, pi(t−) and pi−1(t−) are the positions of the
i-th and i− 1 EVs at time instant t−, while p̃i(t+) and p̃i−1(t+) are the position of i-th and
i− 1 EVs at time instant t+ by embedding them with our DNMPC. Instead, p̄i−1(t+) is
the ideal position of the EV i− 1 at time t+ under the CTH spacing policy with h = 0.8
(s). Hence, two inter-vehicle distances can be considered: d̃i,i−1 and d̄i,i−1, consisting of a
common part, i.e., dst, plus an additional term that depends on the time-headway value. As
it is possible to observe, the suggested energy-oriented strategy permits to select, whenever
it is possible, a value for time-headway that is lower than the one commonly pre-fixed with
a typical CTH spacing policy. Of course, this reduction strongly affects the energy saving
through the distance-dependent air drag coefficient formulation.

Figure 2. Energy-oriented optimal spacing policy for the EV i.

5. Case Study

To show the effectiveness of our DNMPC in (13), we consider an exemplar heteroge-
neous e-platoon consisting of N = 5 EVs plus a leader moving along a flat road highway
segment and connected via a LPF topology (see Figure 1). According to Section 2, the
communication topology is described by leveraging graph theory, thus obtaining a static
graph whose characteristic matrices are:

P =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, L =


0 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

. (17)

To disclose the benefits of our architecture, we consider two simulation scenarios:
(i) basic scenario, where the DNMPC embeds a CTH spacing policy, i.e., d̄i,i−1 = dst +
hvi(t), with a constant time-headway h = 0.8 (s); (ii) energy-oriented scenario, where the
inter-vehicle distance d̃i,i−1(t) is online computed, for each vehicle i via the solution of
the optimisation problem in (13) which explicitly takes into account the energy-saving
requirement, leader tracking control objectives, as well as the safety constraints (14). The
aim was to evaluate how the proposed architecture, by embedding the distance safety
constraints in (14), as well as distance-dependent air drag formulation as in (2), can further
reduce the energy consumption with respect to the case where the pre-fixed time-headway
value h = 0.8 (s) is considered.

Note that, the time-headway values for cooperative platoon systems have to be chosen
as to avoid vehicles’ collisions during emergency situations [47].



Energies 2021, 14, 5122 10 of 17

The numerical analysis was performed via the Matlab/Simulink simulation platform
while the EVs’ parameters are listed in Table 1. Note that the vehicle dynamics parameters
are the one of a typical passenger car and they are selected according to [48]. The battery
pack parameters, as well as the electric motor efficiency are related to a Nissan leaf-type
electric vehicle and they are chosen according to [1]. The leader initial state is set to
p0(0) = 2000 (m), while its energy-optimal speed profile, which has to be imposed to
the whole vehicular network, is assumed to be known and it is highlighted in Figure 3a.
Moreover, in both scenarios, the prediction horizon in Problem Fi, ∀i is set to Np = 20,
while the control horizon is Nc = 2. The corresponding weights ωz, z ∈ {1, . . . , 7} in the
cost functional in (15) are tuned, according to the trail and error procedure [49,50], as:
ω1 = 10; ω2 = 10; ω3 = 20; ω4 = 20; ω5 = 0.1; ω6 = 0.1; ω7 = 10.

Table 1. Heterogeneous nonlinear vehicles parameters.

Vehicle
ID

mi
(kg)

ηi
(−)

Ri
(m)

Ca
(−)

A f ,i
(m2)

amax
(m/s2)

amin
(m/s2)

Cbatt,i
(Ah)

nb,i
(−)

ηbatt,i
(−)

0 1545 0.89 0.3060 0.28 2.3315 2.5 −6.0 65 96 0.97
1 1015 0.89 0.2830 0.30 2.1900 2.5 −6.0 65 96 0.97
2 1375 0.89 0.2880 0.24 2.4000 2.5 −6.0 65 96 0.97
3 1430 0.89 0.3284 0.28 2.4600 2.5 −6.0 65 96 0.97
4 1067 0.89 0.2653 0.29 2.1400 2.5 −6.0 65 96 0.97
5 1155 0.89 0.2880 0.33 2.0400 2.5 −6.0 65 96 0.97

Note that this choice of selecting the same weighting factors for both the appraised
scenario guarantees the fairness of the comparison analysis. Indeed, in so doing, we restrict
our attention on the effect that the different spacing policy can have on energy-saving
requirements. Results in Figure 3b,c show the behaviour of the e-platoon in the basic
scenario, in terms of speed and acceleration profiles, respectively, while the inter-vehicle
distance of each vehicle within the platoon with respect to its predecessor is reported in
Figure 3d.

(a) (b)

Figure 3. Cont.
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Figure 3. Basic scenario-tracking performances. Time history of: (a) energy-optimal leader speed profile; (b) vehicles speed
vi(t), i = 0, . . . , 5; (c) vehicles acceleration ai(t), i = 0, . . . , 5; and (d) inter-vehicle distances d̄i,i−1(t), i = 1, . . . , 5

For the same energy-optimal leader speed profile as in Figure 3a, Figure 4 discloses
the results of an energy-oriented scenario, where the inter-vehicle distances between two
adjacent vehicles, properly computed by our DNMPC, is shown in Figure 4d. Good
tracking performances in terms of speed and acceleration can also be appreciated in this
scenario (Figure 4b,c), while the time history of the longitudinal position of EVs is also
shown in Figure 4a. To disclose the benefits of the proposed DNMPC, we compare the inter-
vehicular distance obtained with our approach with respect to the basic scenario. From
this perspective, Figure 4e shows the comparison between the two spacing gap distances
in these two simulation scenarios, i.e., d̄i,i−1(t) and d̃i,i−1(t) in basic and energy-oriented
scenarios, respectively. As it is possible to observe herein, a smaller inter-vehicle gap can be
achieved under the proposed energy-oriented strategy with distance-dependent air drag
formulation, thus achieving better performances in terms of energy consumption. Indeed,
one can find that the minimum and maximum spacing for energy-oriented scenarios are
6.4 (m) and 16.3 (m), respectively, while in the basic scenario these thresholds are 7.6 (m)
and 21.5 (m), respectively. To further illustrate the benefits of the proposed energy-oriented
architecture in terms of energy savings, we compute the percentage variation of energy
consumption in (kWh/km) by exploiting the relation in (11). The results reported in Table 2
confirm how the proposed DNMPC guarantees an average energy reduction of 2.2% for
the entire e-platoon.

(a)

0 200 400 600 800 1000
0

5

10

15

20

(b)

Figure 4. Cont.



Energies 2021, 14, 5122 12 of 17

0 200 400 600 800 1000

-3

-2

-1

0

1

2

3

(c)

0 200 400 600 800 1000

6

8

10

12

14

16

18

(d)

(e)

Figure 4. Energy-oriented scenario-tracking performances. Time history of: (a) vehicles longitudinal position pi(t) i = 0, . . . , 5;
(b) vehicles speed vi(t), i = 0, . . . , 5; (c) vehicles acceleration ai(t), i = 0, . . . , 5; (d) inter-vehicle distances d̃i,i−1(t), i =
1, . . . , 5; (e) comparison between inter-vehicle distances d̄i,i−1(t) and d̃i,i−1, i = 1, . . . , 5 in basic and energy-oriented scenarios.

Table 2. Percentage of energy saving in (kWh/km) under energy-oriented architecture with respect
to the basic scenario.

Configuration Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Mean

Energy-oriented strategy −2.1220 −2.1971 −2.2549 −2.2686 −2.2150 −2.2115

DNMPC vs. Pure Diffusive Controller

In order to highlight the benefits of our DNMPC in guaranteeing leader-tracking
performances while ensuring energy saving requirements, here we also compare its per-
formance with the one achievable via the following more classic distributed diffusive
linear controller:

ui(t) = −KP

N

∑
j=0

aij(pi(t)− pj(t)− dij(t))− KV

N

∑
j=0

aij(vi(t)− vj(t)), (18)

where the control gains are selected as KP = 250 and KV = 220 according to [35]; dij(t) is
the inter-vehicle distance between the i-th and j-th EV, properly selected exploiting the
CTH spacing policy with h = 0.8 (s).
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Our aim was to disclose that, despite the higher computational load required by
the proposed control action (13), the online computation of d̃i,i−1(t) allows guaranteeing
improved energy-saving and leader tracking performances, while complying with safety
constraints. As the driving scenario, we consider the one presented in Figure 3a, while the
Simulink Profiler Tool was exploited to compare the two control approaches in terms of
computational load.

To this aim, we leveraged an Intel Core i5-8300H processor, while the GPU is the
Nvidia GeForce GTX.

The Pie-charts in Figure 5 summarise the simulation profile reports for the strategies in
comparison, while the required total computational times are 572.9731 (s) and 24.057 (s) for
the DNMPC approach and for (18), respectively. Specifically, for both cases, based on these
total times, we disclose in Figure 5 the time percentage required by each distributed control
action ui(t), ∀i ∈ {1, . . . , N}, while the label Other represents the residual computational
load requested by the other software parts of the simulation scheme. This analysis clearly
reveals the high computational burden required by the DNMPC with respect to a more
classical consensus-based controllers as in (18). However, even if these latter ask for
a less computational cost, they suffer from the problem of managing multiple variable
constraints [44], such as the energy-saving ones appraised in this work.

Indeed, although (18) ensures good tracking leader performances (see Figure 6a),
the inter-vehicle distance di,i−1(t) and the diffusive controller that the vehicles maintain
is greater than d̃i,i−1(t), ensured by the DNMPC (see Figure 6b,c). This implies that the
proposed energy-oriented strategy with a distance-dependent drag coefficient allows to
achieve improved performances in terms of energy consumption, with an average energy
reduction of 3.1204% for the entire e-platoon (see Table 3). Finally, we highlight that the
higher computational load required by the DNMPC does not preclude its real-time imple-
mentation. Indeed, there exists an extensive research line devoted to this crucial aspect and
different effective solutions have been found (see, e.g., [51] and references therein).

Table 3. Percentage of energy saving in (kWh/km) under energy-oriented architecture with respect
to the basic scenario with the proportional controller.

Configuration Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Mean

Energy-oriented strategy −3.6553 −3.3454 −3.0981 −2.8665 −2.6365 −3.1204

DNMPC

51%

11%

11%

11%

11%

6%

Distibuted fully diffusive controller

< 1%4%

95%

u
1
(t)

u
2
(t)

u
3
(t)

u
4
(t)

u
5
(t)

Other

Figure 5. Computational load in energy-oriented scenario and basic-scenario with controller (18).
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Figure 6. Tracking performances with the more classic distributed diffusive control in (18). Time history of: (a) vehicles
speed vi(t), i = 0, . . . , 5; i = 0, . . . , 5; (b) inter-vehicle distances di,i−1(t), i = 1, . . . , 5; (c) comparison between inter-vehicle
distances di,i−1(t), i = 1, . . . , 5 and d̃i,i−1(t), i = 1, . . . , 5 in basic and energy-oriented scenarios.

6. Conclusions

In this paper, the energy-saving and leader-tracking control problem for an heteroge-
neous platoon of CADEVs with nonlinear dynamics was explored and solved through a
distributed nonlinear model predictive control, where the cost function for each vehicle
was properly chosen according to both leader-tracking and power minimisation control
objectives. Specifically, the energy consumption reduction was ensured via the integration
of a distance-dependent air drag formulation, which, for each vehicle, varied in function
of the distance from the ahead vehicle. The suggested energy-oriented control architec-
ture allowed embedding an optimised variable spacing policy that considered distance
constraints aiming to avoid both smaller and larger inter-vehicle gaps that could lead to
rear-end collision risk and to road capacity reduction, respectively. Finally, numerical anal-
yses have highlighted the effectiveness and the capability of the DNMPC in guaranteeing
an improvement of energy performance for the EVs platoon with respect to a basic scenario,
where the traditional CTH spacing policy is used, with an average energy saving of ap-
proximately 2.2%. Future works could include: (i) an extensive validation of the DNMPC
approach via a virtual testing co-simulation, i.e., the coordinated simulation of heteroge-
neous sub-models independently developed (interested readers may refer to [52–54] for
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further details), where not only a more detailed EV dynamic model (including low-level
controllers, an electric motor model and inverter devices) is considered, but SUMO can
also be exploited for reproducing the road network and realistic traffic conditions; and (ii)
the experimental validation of the DNMPC via self-driving cars and leveraging real-time
control architectures similar to the ones proposed in [32,55].
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