
energies

Article

Analytical Design of Sculpted Rotor Interior Permanent
Magnet Machines

Steven Hayslett 1,* and Elias Strangas 2

����������
�������

Citation: Hayslett, S.; Strangas, E.

Analytical Design of Sculpted Rotor

Interior Permanent Magnet Machines.

Energies 2021, 14, 5109. https://

doi.org/10.3390/en14165109

Academic Editor: Athanasios Karlis

Received: 30 June 2021

Accepted: 17 August 2021

Published: 19 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
2 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA;

strangas@egr.msu.edu
* Correspondence: hayslet4@egr.msu.edu

Abstract: A computationally efficient design of interior permanent magnet (IPM) motor rotor features
is investigated utilizing analytical methods. Over the broad operating range of IPM machines,
interactions of MMF sources, permeances, and currents result in torque harmonics. The placement
of traditional rotor features along with sculpt features are utilized to minimize torque ripple and
maximize average torque. We extend the winding function theory to include the IPM rotor’s primary
and secondary reluctance paths and the non-homogeneous airgap of the rotor sculpt features. A
new analytical winding function model of the single-V IPM machine is introduced, which considers
the sculpted rotor and how this model can be used in the design approach of machines. Results are
validated with finite elements. Rotor feature trends are established and utilized to increase design
intuition and reduce dependency upon the lengthy design of experiment optimization processes.

Keywords: electric motor; interior permanent magnet; reluctance; MMF-permeance; winding func-
tion; torque ripple

1. Introduction

The IPM motor is increasingly being utilized throughout industry as a primary source
of propulsion due to its good efficiency, torque and power density. Examples include
the development of battery electric vehicle traction motors [1,2], plugin hybrid electric
vehicles [3], and hybrid electric vehicles [4]. Ideally, the traction machine provides an
average torque produced from a sinusoidal distribution of the airgap flux density. In reality,
embedding the magnet within the salient structure of the rotor lamination and distributing
windings in discrete locations result in airgap flux density harmonics. These harmonics
result in increased torque ripple, radial forces, losses, and other unwanted phenomena.

In this paper, an approach to minimize torque ripple with rotor features is presented,
based upon analytically modeling the machine features. The analytical modeling approach
enables efficient use of computational resources, without the sacrifice of harmonic content,
prior to the use of more expensive finite element methods. The calculation of the IPM
machines’ spatially-dependent torque harmonics is performed through the extension of the
winding function method. New to the winding function framework is a method to model
the equipotential nature of the rotor’s salient features and rotor surface modifications. The
non-homogeneous airgap of rotor surface modifications is included in the model through
an additional MMF term. Unique to this analytical method, both the constituents and
aggregates of the torque harmonics are found. A detailed investigation into the rotor
geometry design space to minimize torque harmonics while managing average torque
design trade-off is presented.

Inherent to the design of IPM machines, torque ripple is a persistent problem. Design
choices to increase torque density or decrease manufacturing cost are often at odds with
minimizing the torque ripple [5]. Rotor features, including surface modifications or sculpt
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features, are utilized to minimize the torque harmonics. The ability to reduce ripple by
design must consider the speed, current, and control angle ranges of the IPM machine.

Analytical expressions for the airgap and torque harmonics are developed for the IPM
in [6,7]. The synchronous reluctance of torque harmonics presented in [8] is extended to the
IPM machine in [7]. The expressions are useful in setting the stator slot and rotor barrier
counts but do not model the machine.

Analytical models better relate the physical geometry of the machine to its airgap
and flux density harmonics. Directly solving the Laplacian–Poisson is difficult [9,10].
Subdomain models break the model into pieces in which the Laplacian–Poisson can be more
readily solved [11,12]. Magnetically Equivalent Circuits (MEC) divide the geometry into
smaller manageable pieces [13]. Methods depending on winding functions allow for the
geometry and harmonics to be described, but the second reluctance path can be difficult to
model. The airgap harmonics of the salient pole permanent magnet synchronous machine
are presented in [14] but does not address torque ripple or the secondary reluctance path of
the IPM machine. The rotor permeance path is approximated in [15] to determine the torque
ripple of the machine under study, but does not fully describe an IPM machine. The double
V shaped IPM is presented in [16], in which flux densities are calculated through an MEC
model and described with a Fourier series. The single V IPM presented in [17] considers
the pole cap effect but does not consider torque ripple harmonics. The single V, delta and
double V IPM rotor configurations are shown in Figure 1. Moreover, the airgap harmonics
in permanent magnet synchronous machines were calculated in [18,19], but the effect of
the second reluctance path on the airgap harmonics was not included in the calculations.

Recently, researchers have investigated rotor modifications to alter the airgap, modify
airgap flux, and improve torque harmonics. The first feature type is pole shaping, which
creates a small airgap near the d-axis and an increased airgap in the region of the q-axis.
The torque ripple was reduced for the single magnet flat magnet IPM and optimized with a
differential evolution algorithm and finite elements [20]. A surface-mount PM pole-shaped
machine was studied with an analytical solution to the field in [21]. The 2D solution was
confirmed both by finite element and testing. The pole-shaped single flat magnet IPM
was optimized with a response surface method within FE [22]. This included the use of
rotor core modifications as well; both FE and experimental results were presented. The
flat magnet IPM pole shape was optimized, along with the creation of design rules for
the ratio of q-axis and d-axis airgap length in [23]. The single V magnet-shape IPM was
improved with pole shaping using finite elements in [24]. Cogging torque and back emf
were measured. A third harmonic was added to the pole shape in [25], which studied
the machine in finite elements. A second feature type is in the rotor core, which creates
a small hole in the rotor core near the airgap in order to redirect flux. Holes in the rotor
core’s second reluctance path of the single magnet IPM were shown to decrease torque
ripple using finite elements in [26]. The double V magnet IPM machine with improved
torque ripple, due to holes in rotor iron core and rotor surface sculpt features, was shown
to improve torque ripple but lower average torque in [27]. The delta magnet IPM shape
included modified internal rotor features to improve for average torque and decrease iron
loss in [28].

Figure 1. IPM rotor types: single V (left), delta (center), double V (right).

The third and final feature type is sculpting the rotor surface at the airgap to redi-
rect flux. The single flat magnet IPM machine cogging torque was reduced in [29] and
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experimentally verified. A grid on/off optimization of the rotor surface was conducted
on the single flat magnet IPM using finite elements in [30,31], resulting in an asymmetric
rotor surface with reduction in torque ripple and maintaining average torque. The double
V-magnet IPM torque ripple was minimized with both rotor core and surface sculpted
features in [27]. The delta-magnet IPM machine torque ripple was minimized with rotor
surface sculpt features in [32]. Then, a general analytical expression for torque harmonics
was developed and utilized to optimize the solution with finite elements.

This paper presents a detailed analytical model of the sculpted rotor IPM machine.
The model allows for a break down of flux and torque into magnet, primary reluctance,
secondary reluctance, and sculpt features. Multiple sculpt features configurations are
demonstrated to achieve similar torque harmonic reductions. Results are validated with
finite elements and utilized to improve the torque harmonic characteristics of an existing
industrialized machine. This is because finite elements accurately predict experimental
results across a broad range of machines [33–36] and have been utilized to evaluate and
compare machine types [37–39] and validate analytical solutions [40–50]. Section 2 intro-
duces the topics relevant to the design of IPM motor construction and control. Section 3
provides details on how to model an IPM motor magneto motive force (MMF), permeance,
and linear current density in order to model the machine geometry, flux, and torque har-
monics. The model developed in Section 3 is applied to that of a well-known industrial
IPM machine in Section 4. Design features are explored in Section 5. Contributions of this
paper include a novel analytical winding function-based IPMSM model, the analytical
description of rotor sculpt features, and modeling of magnet and reluctance torque compo-
nent alignment due to asymmetric sculpt features. In addition, this paper demonstrates the
torque effects of reluctance path pole arc, sculpt feature type (symmetrical/asymmetrical),
sculpt feature location, and sculpt feature depth and sculpt feature width.

2. Flux Distribution and Control of IPM Machines

Performance, harmonics, and control are all dependent upon the distribution of flux
density within the machine. Permanent magnets provide a constant source of flux density,
which enable efficient torque production but can limit high speed operation. Reluctance
features provide a source of torque dependent upon armature current at high current
angles, useful for extending operation at high speeds. The ratio of magnet and reluctance
torque is balanced to enable the machine to stay within its operation constraints while
efficiently using the voltage and current available at the terminals. This section provides a
brief overview of the machine’s construction, design features, and flux paths. In addition,
the necessary framework for control is introduced.

2.1. Flux Distribution

Figure 2 shows a two-dimensional illustration of a four pole IPM machine. The IPM
motor is fundamentally constructed of a stator and a rotor. The stator is the mechanically
grounded part of the machine. It is constructed of slots, teeth, a yoke, and the three phase
windings. The stator teeth and yoke are constructed of a magnetically permeable iron
alloy. The teeth and yoke allow for easy flow of magnetic flux to and from the airgap of
the machine. The slots allow space for the copper windings. The windings are distributed
within the slots to produce a current dependant magneto motive force (MMF), which in
turn creates the radial magnetic flux density. The placement of the windings also creates
a current density along the bore of the stator, resulting in a tangential component of flux
density. When arranged and controlled properly, the currents in the windings produce a
rotating set of fields to produce torque.
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Figure 2. IPM flux paths: first reluctance path (solid blue), second reluctance path (dashed blue),
and magnet path (solid red).

The rotor, the mechanically rotating part, is constructed of iron ribs, air-filled barriers,
iron bridges, and permanent magnets. The iron core is constructed of ribs and bridges.
The ribs control the distribution of flux density while the bridges mechanically couple all
parts together. Barriers provide air pockets, which assist the ribs in directing flux, and also
contain embedded magnets. The permanent magnets are embedded within the rotor and
produce an MMF, which is independent of current.

From the perspective of the rotor, a direct axis (d-) and a quadrature axis (q-) of
the machine are electromagnetically aligned to the rotor characteristics. The d- axis is
the primary axis of which the permanent magnet flux density flows. The magnet flux
density flows through the magnet into the central rib of the magnet pole, into the airgap,
through the stator teeth and yoke and returns into the adjacent opposite magnet pole. This
permanent magnet flux density path is shown in Figure 2 as a red ellipse. The q- axis is the
axis in which the armature-induced flux flows through the rotor. This flux is produced from
the armature MMF and the reaction of the rotor/stator permeance. Two armature-induced
paths result; one through the primary reluctance path, and a second through the secondary
reluctance path. The primary reluctance path flux is shown as the solid blue ellipse, and
the second reluctance path flux is shown as the dashed blue ellipse in Figure 2.

2.2. Control of IPM Machine

Control must be considered in the design of the IPM motor. The steady state torque
and voltage equations are shown in Equations (1)–(3). These are the fundamental starting
points to develop the necessary analysis for the control of electric machines. The equations
are based upon d- and q- axis voltages, vd and vq, currents, id and iq, inductance λd and λq,
magnet flux linkage, λm, and phase resistance Rs. Magnet offset, δ, as shown in Figure 3, is
included to account for magnet alignment relative to the reluctance path, which may be
caused by rotor sculpting features [51,52]. Traditional IPM alignment would feature δ = 0◦,
with the d-axis aligned to the maximum of magnet flux linkage. For purposes of this paper,
the q-axis remains aligned to the minimum reluctance of the rotors first reluctance path.
By inspection, the resistance or loss terms do not have an effect on the torque and only
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affect the voltage and electrical power. It may be useful to assume the phase resistance
is negligible.

τ =
1
2

3
2

(
(ld − lq)idiq + λm

(
cos(δ)iq − sin(δ)id

))
(1)

vd = Rsid +−ωlqiq −ωλm sin(δ) (2)

vq = Rsiq + ωldid + ωλm cos(δ) (3)

Performance assessments require including an analysis of the phase current constraint, Imax,
and phase voltage Vmax. For a wye connected machine, Imax is equal to the phase current,
Iss, and is limited by the power devices of the inverter and the electric machines thermal
capability. The voltage limit is the maximum phase voltage that the inverter can apply,
limited by the specific pulse width modulation (PWM) technique used. The voltage limit
for space vector PWM is Vmax = Vdc ·MI√

2·
√

3
and six step PWM is Vmax = Vdc ·MI·√

2·π . The maximum
modulation index is set to MI = 0.95 to account for cable and device voltage drops.

Figure 3. Vector diagram of IPM rotor with unaligned magnet, with variables: φ rotor position, θ

rotor spatial coordinate, δ magnet alignment, ω rotor speed.

3. Analytical Model: MMF, Permeance, Flux, and Torque

This section develops the necessary analytical winding function model for the IPM
machine idealized to focus on the effects of the rotor geometry. Assumptions include closed
stator slots and no saturation leading to infinite permeability, leaving the permeability of
the airgap assumed to be that of free space µ◦ = 4π10−7 H

m . Stator conductors are modeled
by discrete current sheets along the stator bore inner diameter and phases are assumed to
be wye connected.

Focused on the MMF interaction with the second reluctance path, the analytical
model describes MMF and permeance functions. These winding function-based MMFs,
Fx(θ, φ), and permeance functions, Λ(θ, φ), express the harmonic content of stator and
rotor features as Fourier series. Relationships between the rotor spatial coordinate θ and
rotor position φ and current angle β are included. Flux densities are computed using
Equation (4), and contributions of the stator and rotor harmonic interactions to the torque
ripple are determined.

Br(θ, φ) = 2Λr(θ, φ)Fr(θ, φ) (4)
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3.1. Permeance Functions

The general form of the permeance functions Λx, shown in Figure 4, can be written as
Equation (5), where the amplitude Y and phase γ define the location of features relative to
the d-axis of the machine.

Λx(θ) =
∞

∑
n=0,2,4,6...

Yx(n) cos(nθ + γx(n)) (5)

Permeance functions, along with rotor and stator construction, are shown in Figure 4. The
salient features of the rotor begin with the definition of the primary reluctance path, which
assumes a small airgap lg, aligned with the minimum reluctance of the q-axis, and a large
airgap considering barrier and magnet dimensions, lm. Above the magnet, a secondary
reluctance path exists, which reacts as equipotential salient iron to the armatures MMF.
The permanent magnet permeance path describes the total amount of air the magnet must
push its flux through, including its thickness in the same region of the second reluctance
path. Coefficients of Equation (5) are derived from the local definition of the permeance
Equation (6).

Λ =
µ◦
g

(6)

The defining airgaps of the permeance functions are listed in Table 1.

Table 1. Permeance functions and related minimum and maximum airgaps.

Permeance Term Minimum Airgap Maximum Airgap

First Reluctance Path lg lg + lm
Second Reluctance Path lg ∞
Permanent Magnet Path lg + lm ∞

Figure 4. Conductor locations and permeability functions, (red) phase A conductor, (blue) phase B
conductor locations, (green) phase C conductor location, (gold) first reluctance path permeability func-
tion, (lavender) second reluctance path permeability functions, (purple) magnet path permeability
function, (gray) equivalent permanent magnet conductor locations.
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3.2. Magneto Motive Forces (MMF)

Equation (7) gives the general form of the winding function composed of the turns
function n(θ, φ) and its mean < n(φ, θ) >, where the turns function is a result of the closed
path integral of the conductor [53]. MMF functions, F(θ, φ), are comprised of the turns
function multiplied by a current.

N(θ, φ) = n(θ, φ)− < n(φ, θ) > (7)

< n(θ, φ) >=
1

2π

∫ 2π

0
n(θ, φ)dθ (8)

Expanded into a Fourier series, the winding takes the form as follows (9):

Nx(θ, φ) =
∞

∑
n=1,3,5,7...

Yw fx (n) cos(nθ + γw fx (n) + nφi + nφ) (9)

where Yw fx is the coefficient, γw fx (n) is the phase, mechanical order n, rotor position φ,
and initial rotor position φi.

3.2.1. Stator

Stator MMF is formed from the interaction of the phase currents (Ia, Ib, Ic) and the
phase winding functions (Na, Nb, Nc). The summation of the three phases creates a rotating
MMF, Fabc, which directly acts upon the primary reluctance path.

Fabc(θ, φ) = Na(θ, φ)Ia(φ, β) + Nb(θ, φ)Ib(φ, β) + Nc(θ, φ)Ic(φ, β) (10)

3.2.2. Magnet

The permanent magnet is represented as an equivalent current IPM, which is related
to the remnant flux Br, permeability of free space u◦, relative permeability µr, and magnet
thickness. Magnet MMF for the IPM machine interacts with the magnet path permeance,
where τm is the magnet’s salient iron pole pitch, and wm is the combined width of the
magnets for a single pole.

IPM =
Br

µ0µr
lm (11)

FPM(θ, φ) = NPM(θ)IPM
τm

wm
(12)

3.2.3. Second Reluctance Path Modification

The equipotential nature of the rotor’s second reluctance path reacts only to the
regional harmonics of the stator MMF. In this case, all looping flux that enters the second
reluctance path pole arc through the airgap must exit through the same airgap. Modification
to the armature MMF by removing its mean satisfies this condition and is made possible
through Equation (13). The symbols F<abc> and < Fabc(θ, φ)NPM(θ) > represent the
modified MMF, which interacts with the second reluctance path and the mean of the MMF
across this same boundary. As a matter of convenience, the permanent magnet winding
function NPM is also used to consider the stator MMF in the region of the second reluctance
path, invert it, remove the mean, and revert to the original polarity.

F<abc>(θ, φ) =
(

Fabc(θ, φ)NPM(θ)− < Fabc(θ, φ)NPM(θ) >
)

NPM(θ) (13)

< Fabc(θ, φ)NPM(θ) >=
1

2π

∫ 2π
0 Fabc(θ, φ)NPM(θ)dθ

1
2π

∫ 2π
0 | NPM(θ) | dθ

(14)
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3.3. Sculpt Feature Description: Equivalent Magnetizing Dipole Current

MMF-permeance methods allow for flux density for the IPM smooth rotor homo-
geneous airgap to be calculated. Rotor sculpting affects both magnet flux distribution
and reluctance flux distribution. This smooth rotor MMF-permeance theory does not
adequately describe stator slots and rotor sculpt features as it has been developed with a
constant airgap dimension [53]. In this section, an extension of winding function theory
is developed, which can be used in the description of both slots and sculpts based upon
equivalent magnetic currents (EMC) [54] and the equivalent magnetic dipole [55]. These
non-homogeneous airgap features are represented by additional MMF terms utilizing the
description of a magnetic dipole and its equivalent magnetic currents. The redistribution
of flux density and MMF is possible with the use of the equivalent dipole concept.

The magnetic dipole in free space is formed by a loop of radius b and current of I.
The solution at far fields, when R >> b, solved in spherical coordinates, using the magnetic
vector potential, A, is shown in Equation (15), where the magnetic dipole moment m is
written as m = az Iπb2 [55].

A =
µ0m× aR

4πR2 (15)

This dipole in free space can be used to explain the magnetism at the atomistic level, where
small circulating currents are formed by the process of magnetization. This magnetization
aligns the individual atomic dipoles and modifies the orbital spin of the electrons for
each atom.

The macroscopic volume density of magnetization, M, with units of A/m, is computed
through a sum of the individual microscopic dipoles. Shown in [55], the magnetization
vector M is equivalent to both a volume current density, Jm with units of A

m2 , and a surface
current density Jms with units of A

m .

Jm = ∇×M (16)

Jms = M × an (17)

Given M, the flux density B can be found by computing both Jm and Jms. These values
are used to determine the magnetic vector potential A. Uniform M within a magnetic
material will result in no volume current density and only a surface current density Jms on
its borders. If space variations of M exist within a material, a net volume current density
will exist. Hence, a magnetic dipole inside a material with constant magnetization M can
be represented by a current loop in the air, formed at the exterior boundary material.

Figure 5 illustrates the process of analyzing the rotor sculpt feature effects. Rather
than account for the changing flux density over the sculpt feature, the assumption of
homogeneous flux density holds when breaking the geometry into smaller discrete dipoles
(i) of fixed width. For purposes of this analysis, it is assumed the sculpt features have a
constant depth lms. A sufficient number of points (i) must be defined in order to hold the
assumption of homogeneous flux density. For each point (i) contained within the sculpt
feature, the first current Ims1(i) is applied based upon prior analysis of the magnetic dipole.

Ims(i) =
lms(i) ∗ Bms(i)

µ◦
(18)

A second dipole counter current in the adjacent point Ims2(i + 1) = −Ims1(i). The net
effective dipole current for each point, Ims3(i) is formed through summation dipole currents
Ims3(i) = Ims1(i) + Ims2(i). A third dipole current Ims3, or summed current, becomes the
current-turns function for the sculpted feature, in which an equivalent MMF for the rotor
surface features can be determined through the use of a winding function. It should
be noted that the sculpt features analyzed with this process do not create flux but only
distribute flux away from the sculpt feature.
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Figure 5. Sculpted Rotor Reluctance Counter Dipole Current.

3.4. Flux Density

Total airgap flux density, Btot, is a result of the flux creating sources and flux dis-
tributing features. Primary reluctance path, secondary reluctance path, and the permanent
magnets create and distribute flux. The sculpt and slotting features serve to redistribute
flux, with the assumption of small features. Flux densities can be computed for each
individual component or in summation.

Btot = 2ΛR1Fabc + 2ΛR2F<abc> + 2ΛPMFPM + 2ΛsculptFsculpt + 2ΛslotFslot (19)

3.5. Torque

The Maxwell stress tensor, Equation (20), allows for torque computation given the
radial flux density and the conductor’s linear current density. Torque due to individual
components of flux density can be separated or combined for the net effects.

T =
∫ 2π

θ=0
r2l · Btot(θ)K(θ)dθ (20)

3.6. Rotation and Convolution

In this section, a computationally efficient method to evaluate the phenomenon of
rotation and the ensuing interaction of the time and space domain harmonics is reviewed.
To simplify analysis of the magnetic fields, the rotor is left frozen while the stator rotates
in the counter direction. The Fourier spatial coefficients of the permeance and winding
functions are determined at the initial position of the rotor through use of the Fast Fourier
Transform (FFT). For each rotor position, φ(i), a complex rotation, Equation (21), is used to
form a rotation vector, Equation (22). The complex rotation vector is used to transform the
FFT coefficients of permeance and winding functions at each position.

ε = (cos(φ) + i sin(φ)) (21)

φ =
[
ε0 ε1 ε2 . . . ε

n
2−1 ε0 ε1 ε2 . . . ε

n
2−1
]>

(22)

In place of the convolution of the Fourier coefficients to determine flux density, the perme-
ance and winding function is reconstructed with the inverse fast Fourier transform.

3.7. Comparative Analysis to Recent Analytical Methods

This section will compare the analytical methods developed in this paper to three
recent methods [45,49,50].

The analytical MEC model is used to design a reduced magnet cost single V consequent
pole (CP) machine with the same average torque as single V IPM in [45]. The models are
developed based on zones and regions, allowing for an assumption of the open circuit
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flux density distribution. Two flux sources (magnets) and six reluctance network paths are
used to create the open circuit single V IPM model. Open circuit flux density is assumed
to take a trapezoidal waveform where the flux density is determined spatially from the
fluxes in the MEC reluctance network. Similarly, the single V CP IPM network consists
of one magnet flux source and five reluctance paths. In both cases, the rotors reluctance
path reaction to the armature loading is not computed. The open circuit flux densities are
used to quickly determine an equivalent single V CP IPM fundamental to that of the single
V IPM fundamental. In order to guide design, the method is used to find an equivalent
consequent pole open circuit flux density fundamental to the traditional IPM flux density.
Finite elements are relied on to complete the study of the torque performance.

Multi-barrier synchronous reluctance and Permanent Magnet Assisted Synchronous
Reluctance Machines (PMSynRM) are modeled using conformal mapping and magnetic
equivalent circuits in [50]. Hyperbolic shaped flux barriers are assumed. Conformal
transformations are employed to the rotors flux barrier geometry to compute the magnetic
reluctance. The reluctance values calculated from conformal mapping are subsequently
used in the reluctance network values of the MEC model. The MEC model considers MMF
sources of both the armature and magnet. Loaded and open circuit flux densities, average
torque, and torque ripple are compared to finite elements with reasonable accuracy.

The slotless U-type IPM machine open circuit flux density is analytically modeled
with a subdomain method solving Laplace’s and Poisson’s equations in [49]. Analytical
equations are derived and presented for each subdomain. Results are validated against
finite elements. The model is divided into four regions, which consist of the airgap and
magnets. The governing system of partial differential equations is developed, along with
simplifications, interface and boundary conditions. A separation of variables is used to
develop the general solutions of the PDEs, and they are written as a Fourier series. The
system of equations is solved and compared to FE. Strong agreement of the radial and
tangential flux density is shown between the FE and the subdomain methods.

The analytical models discussed were developed for multiple purposes. The MEC
method is used in [45] to quickly estimate the open circuit flux density fundamental of
the single-V IPM and single-V CP IPM machines. The armature reaction of the reluctance
features is not considered by the model, and finite elements are used to finish the de-
signs. Conformal mapping is used in [50] to determine the reluctances of a multi-barrier
PMSynRM and further evaluated using a MEC network. Both open circuit and loaded
conditions are evaluated for airgap flux densities and torque performance and compared to
finite elements. The analysis is not extended to the design. The subdomain methodology is
employed in [49] for the analysis of the U-shape IPM machine open circuit conditions. Both
tangential and radial flux densities are shown to match finite element results. The model
requires further extension to consider the torque performance due to a loaded armature.
The single-V sculpted rotor IPM winding function model developed in this paper considers
both open circuit and loaded conditions. The model is constructed such that computational
efficiency is possible without the sacrifice of spatially dependent harmonic content to
drive the design. The choice of which analytical model to develop is dependent upon the
application, computational resources, and intended purpose. In this case, the new winding
factor IPM model was developed.

4. Application of Analytical Model to Example Machine

The method developed in Section 3 is validated with a well-known industrialized IPM
machine. Details of the 2004 Toyota Prius traction motor are included in Table 2, and the
geometry is modeled analytically within Matlab and finite elements within Ansys Maxwell.
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Table 2. Example motor parameters.

Parameter Value Unit

Pole Pairs 4
Stator Slots 48

Number of Phases 3
Stack Length 83 mm

Rotor Diameter 161.15 mm
Airgap Length 0.75 mm

Magnet Pole Arc % of Pole Pitch 63.8 %
Barrier Type Single V

Magnet Thickness 6.48 mm
Magnet Width 16 × 2 mm

Permanent Magnet Remnant 1.19 T
Permeability of Iron ∞ H/m

Permeability of Bridge Features 4π · 10−7 H/m

Focusing on the effects of rotor, the stator geometry has been idealized with no
slots. Both sinusoidally distributed stator windings and the production configuration of
discretely placed windings are modeled. Only the stator winding harmonics interactions
with rotor geometry harmonics are considered. With the assumption of infinite permeability,
the bridge features are omitted. Airgap fringing in the region of the magnet barrier is
not considered.

Design parameters are studied within this section using the analytical winding func-
tion model previously validated. Rotor sculpt features are included along with their
additional MMF term developed in Section 3.

4.1. Sculpting Geometry

The sculpted rotor IPM machine geometry design space to be explored is shown on a
single pole of the example machine in Figure 6. Rotor primary and secondary reluctance
paths are shown in green with no bridge features. The stator, shown in gray, continues
to have omitted its slot features, and distributed windings, orange, are placed within
the airgap.

Figure 6. Rotor sculpt features.

The primary design parameters are centered on the rotor effects, which include the
ratio of primary and secondary reluctance path and sculpt features. The magnet pole arc
width is varied. Up to two sets of symmetrically placed sculpt features are placed on
the second reluctance path. The symmetrical feature span locations τ1 and τ2 define the
symmetrical location of the feature in terms of its percentage of the magnet pole arc span.
Single asymmetrical features are described with a similar parameter but with only one
sculpt feature on the pole. In this single asymmetrical case, the feature location, τ, is set to
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be positive for right hand side placement and negative for the left hand side placement.
The depths D1 and D2 are measured from the outer surface of the rotor to the root of the
sculpt feature. The widths W1 and W2 are measured in terms of a single feature percentage
of the pole span.

A Fourier analysis of design feature effects on torque harmonic analysis is presented.
The phase of the torque harmonics is set with respect to the negative zero crossing of phase
A back EMF, i.e., the north pole of the machine. Torque components are separated in terms
of total, primary reluctance, secondary reluctance and magnet torque with both the torque
amplitude and its corresponding phase.

4.2. Model Implementation

Implemented in Matlab, the analytical model in Section 3 has been utilized to ex-
plore the design space. Rotor permeances of primary reluctance, secondary reluctance,
and magnet and the permanent magnet winding function are modeled spatially as the
rectangular waves. Stator phase winding functions and linear turn densities are spatially
modeled, and the spatial harmonic coefficients are determined with the FFT. For each rotor
position, the complex rotation vector is created and applied to the stator winding and
linear turn functions. With the current applied, the modified secondary reluctance path
is determined from Equation (13). Radial flux density is now determined for the primary
reluctance, second reluctance, and magnet paths. A broad range of phase current, control
angle, and rotor sculpting features are studied. Maxwell’s stress tensor in conjunction with
Equation (19) provides the ability to separate components of torque.

The analytical model is implemented utilizing both the FFT and the inverse FFT
algorithms to efficiently move between frequency and spatial domains. Rotation is best
performed within the frequency domain, Equation (22), and convolution is performed
within the spatial domain. This provides the most efficient use of resources by a factor of
five times. Results are computed over an entire electrical cycle with a sufficient number
of points to provide a smooth torque waveform. The analytical model is executed within
Matlab in 6.7 s, and the finite element results are executed in 20 min. Ansys Maxwell was
also used to perform the finite element analysis.

4.3. Model Validation: Radial Flux Density

This section compares the radial flux density results of the analytical model and finite
elements while varying: (1) winding type, (2) current, (3) control angle, and (4) rotor sculpt
features. Figures 7–10 plot the flux density along the rotors spatial coordinate, θ, over a
single pole pair. Both sinusoidal and distributed windings are compared. The q-axis, which
is aligned to the rotor minimum reluctance, occurs at θelec = 90◦ and θelec = 270◦. The
d-axis is aligned, which is aligned to the smooth rotors permanent magnet maximum flux
linkage, occurs at θelec = 0◦, θelec = 180◦, and θelec = 360◦. In all results, the finite element
and the analytical model result in comparable flux densities.

Flux densities shown for sinusoidal windings, Figure 7, illustrate the changing airgap
flux density harmonics with current and control angle. When the phase current is set to zero,
only the permanent magnet field is present. As current and current angle increases, the flux
density becomes more jagged, with the case of a fully negative d-axis current displaying the
most harmonic content. It is clear that as the negative d-axis current becomes dominant, so
do the reluctance path harmonics. Harmonic effects of the discretely distributed windings
are shown in Figure 8. As current increases, so do the airgap reluctance harmonics. In all
cases, the analytical model and finite element results agree with reasonable accuracy.
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Figure 7. Radial flux densities with sinusoidally distributed windings (N = 200) at various currents
and control angles.
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Figure 8. Radial flux densities with distributed windings (2 SPP) at various currents and control angles.

The effects of rotor sculpt features on the second reluctance path are shown in
Figures 9 and 10. A symmetrical pair of sculpt features are shown with distributed wind-
ings in Figure 9. The flux densities of the smooth rotor and sculpted rotor are plotted.
Reduced flux density in the region of the sculpt features is observed, and sculpt features
are located approximately at θelec = 30◦, 150◦, 210◦, 270◦. This flux density from the sculpt
features is conserved and redistributed across the regions of the second reluctance path.
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Figure 9. Radial flux densities with single symmetrical sculpt feature located at τ1 = 50%, W1 = 10%,
and D1 = 1.2 mm.

The reluctance flux density single sculpt feature is plotted in Figure 10. Similar to the
symmetrical sculpt features, the flux density is reduced in the region of the sculpt feature.
In all cases, the analytical model and finite element results agree with reasonable accuracy.
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Figure 10. Radial flux densities (reluctance only) with single asymmetrical sculpt feature located at
τ = 50%, W = 20%, and D = 1.2 mm.

4.4. Model Validation: Torque Ripple

Torque ripple of the smooth rotor IPM, Table 2, is compared between finite element
and the analytical model in Figure 11. Good agreement between the finite element and
analytical models is observed. The torque ripple effects of two symmetrical rotor sculpt
features are demonstrated in Figure 12, directly calculated by the analytical model, whereas
the finite element model requires two runs, once with and once without sculpt features,
to determine the sculpt feature effects.

Good correlation between the model and finite elements is demonstrated and shown.

0 90 180 270 360

elec
 [deg]

0

10

20

30

40

50

60

70

80

90

100

T
o

rq
u

e
 [

N
m

]

Torque Ripple Iss=400 =130
°

FE

Model

Figure 11. Smooth rotor IPM torque ripple.
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Figure 12. Sculpt feature torque ripple.
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4.5. Torque Ripple Components

In this section, the torque ripple results of the analytical model are studied while
varying current and control angle. Figure 13 plots the torque ripple for a complete electrical
cycle of the example machine. The torque components for the first reluctance path, second
reluctance path, total reluctance torque, magnet torque, and total machine torque are
plotted. Magnet torque and its harmonics are dominant at lower currents, but the reluctance
paths cannot be ignored. As current is increased, the reluctance torque increases relative to
the magnet torque. The stronger field weakening currents cause the contribution of the
reluctance features torque to increase. The dominant torque harmonic orders are the 6th
and 12th electrical orders. In the design, both the torque harmonic amplitudes and phases
of each of the components need to be considered as the sculpt feature design will provide
the counter torque at the counter phase.
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Figure 13. Analytical model torque ripple components at various control angles.

5. Investigation of Design Features

In this section, the effects of design features are demonstrated to influence both
torque harmonic amplitudes and phases. Carefully applied, these effects are used to
design counter torque harmonics. Second reluctance path pole arc, sculpt feature type
(symmetrical/asymmetrical), sculpt feature location, sculpt feature depth, and sculpt
feature width can all be used to design an appropriate counter torque to reduce the
machine’s torque harmonics. While mildly affecting average torque, the second reluctance
path pole arc, τp, strongly affects the phase of the 12th electrical order torque harmonic.
A single pair of symmetrical sculpt features placed upon the second reluctance path pole
arc reduce the average torque. Feature position provides 12th electrical order torque
harmonic phasing, and the feature width and depth directly affect the torque harmonics
amplitude. The single asymmetrical feature is shown to increase average torque when
placed on a specific side of the second reluctance path pole arc. The asymmetrical feature
placement can also be used to modify the phase of both 6th and 12th electrical order
torque harmonics. Finally, feature phasor summation is shown to be effective in combining
the effects of multiple design features, further providing the ability to design both the
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amplitude and phase of these minimizing torque harmonics. These relationships provide
the necessary intuition to reduce computationally intensive design steps.

5.1. Magnet Pole Arc

Magnet pole arc span, τm, effects upon the torque harmonics, without rotor sculpt
features, are explored. Figure 14 shows the average, 6th, and 12th harmonics of torque
as a function of τm. For this case, magnet torque is dominant. Although not always
the case, it is just as important to follow the trends of individual torque components.
Total, first reluctance, and magnet average machine torque are reduced as the pole arc is
increased, and only the second reluctance torque increases the average torque. The 12th
order torque harmonic is dominant, with primary contributions from the magnet and
the second reluctance path, whereas the 6th order torque harmonic is mostly contributed
to by the primary reluctance and magnet. Rotor geometry has a strong influence on the
phase of the 12th order torque harmonics, whereas the 6th harmonic is less affected by
rotor geometry.
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Figure 14. Effects of magnet pole arc τp loaded at Iss = 200 and β = 135◦.

5.2. Single Pair Symmetrical Rotor Sculpt Feature

A single symmetrical rotor sculpt feature torque is studied in Figures 15–17. Only the
effects of the sculpt feature torque are plotted. In Figures 15 and 16, a single sculpt feature
position is varied, with fixed width, W1, and fixed depth, D1, along the magnet pole arc.
Rotor sculpt features have a negative effect upon average torque, as the phase is 180◦ out
of phase with the smooth rotor average torque. Figure 15 compares the analytical model
to finite elements and shows precise agreement with the phase and matching trends for
torque amplitude. Using a wider feature width, D1, Figure 16 translates amplitude and
phase plots to a phasor representation. The 12th harmonic is clearly the dominant torque
in both amplitudes and choice of phase.
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Figure 15. Symmetrical sculpt feature effects compared to finite elements: D1 = 1.2 mm, W1 = 5%.
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Figure 16. Symmetrical sculpt feature effects with phasor diagram: D1 = 1.2 mm, W1 = 9%.

Figure 17 includes the sculpt features width and depth effects. Increasing sculpt
feature width, W1, and/or the sculpt features depth, D1, increases the amplitude of the
sculpt features torque harmonic. The primary influence on the torque harmonic amplitude
is the width of the sculpt feature. Sculpt feature width and depth have no effect on the
torque harmonics phase.

5.3. Single Asymmetrical Rotor Sculpt Feature

A single sculpt feature resulting in asymmetrical placement upon the rotor surface is
studied in this section. Similar parameters D1, W1, and τ1 are used to describe the features
width, depth, and location. In the asymmetrical case, the location, τ1, is described with
the same location parameter, where in this case, a positive τ1 results on the right side
of Figure 6 and a negative τ1 results in sculpt feature placement on the left hand side.
Figure 18 compares the model to finite element and shows precise agreement with phase
and matching trends for torque amplitude. In the asymmetric sculpt feature case, a torque
improvement is possible due to the aligned axis effect from τ1 > 0. The placement of the
sculpt feature allows for placement of the torque harmonic phase angle across a broad
range of phases. Negative values of τ1 result in the largest amplitudes of the 12th electrical
torque harmonic.
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Figure 18. Single asymmetrical sculpt feature effects with phasor diagram: D1 = 1.2 mm, W1 = 5%.

5.4. Two Symmetrical Rotor Sculpt Features

More than one symmetrical rotor sculpt feature can be used. In this section, it is shown
that the components of a first symmetrical feature can be combined with that of the second
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symmetrical rotor sculpt feature. The MMF-permeance model is validated by comparing
to finite element results in Figure 12.

To illustrate this concept, the parameters of the two sculpt feature sets of Figure 6 are
shown in Table 3. Through vector summation, the two vectors were used to create a 12th
order counter torque with a phase of −116◦.

Table 3. Two sculpt feature parameters.

Feature Value Unit

τ1 82 % of magnet pole arc
τ2 46.5 % of magnet pole arc span
W1 5.5 % of pole span
W2 5.5 % of pole span
D1 1.2 mm
D2 1.2 mm

Figure 19 illustrates the first (red) and second 12th order electrical torque (green)
phasors. The two phasors combine to create the effective total phasor (blue). This phasor
summation is plotted along with the torque complex mapping of the previous single feature
design sweep. These symmetrical rotor sculpt features are designed to mitigate the 12th
order electrical torque harmonics to near zero. A single feature or multiple features can be
designed to minimize the torque ripple. The sculpt features are not without consequence,
as the average torque is negatively affected.
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Figure 19. Two sculpt features of 12th order electrical torque phasor plot.

6. Conclusions

This paper has presented an analytical modeling and design approach to reduce
torque ripple with rotor sculpt features. By carefully placing rotor sculpt features and rotor
barrier features, average torque can be maintained while minimizing torque harmonics.
Contributions of this paper include:

• A new analytical winding factor modeling approach for the single V IPM machine re-
lating the rotor’s first reluctance feature, second reluctance feature, permanent magnet
features, sculpt features, and stator windings to the resulting torque harmonics;

• An analytical modeling approach accounting for both symmetrical and torque aligning
asymmetrical rotor sculpt features;

• Results from the analytical model providing valuable insights for identifying rotor
feature design improvements;
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• Design approach for placement of rotor sculpt features to minimize torque ripple
while maintaining average torque;

• Demonstration of close agreement of radial flux density and torque harmonics results
between the analytical model and that of finite element results.

These results enable better design insight and an efficient design process through use
of an analytical model.
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