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Abstract: This paper presents a vibration analysis method and an example of its application to
evaluate the influence of mass parameters on torsional vibration frequencies in the steering system of
a motorcycle. The purpose of this paper is to analyze to what extent vibration frequencies can change
during their daily operation. These changes are largely due to the ratio of vehicle weight to driver
and load. The complex dynamics make it very difficult to conduct research using simple models. It
is difficult to observe the influence of individual parameters because they are strongly interrelated.
This paper provides a description of the vibration analysis method, and the results are presented in
the form of Bode diagrams and tables. On this basis, it was found that the driver, deciding on the
way of using the vehicle and introducing modifications in it, influences the resonant frequencies of
the steering system. Typical exploitation factors, on the other hand, do not cause significant changes,
although they may contribute to increasing the sensitivity of the system to vibrations. The conducted
analysis also showed some nonlinear changes in the dynamics of the system with linear changes of
the parameter values.

Keywords: motorcycle dynamics; steering system; vibrations; wobble; shimmy; Bode plot; LabVIEW

1. Introduction

Motorcyclists worldwide are 23% of all road traffic participants [1], and collisions with
passenger cars are counted among common road accidents [2]. In the example of Poland, it
can be said that the number of accidents of both cars and motorcycles is 1‰ of the number
of registered cars and motorcycles. However, significant in the case of motorcycles is the
fact that the average annual time of use of a motorcycle per year is much lower than that
of a car. Based on [3,4], it can be concluded that motorcycles account for about 5% of the
registered motor vehicles in Poland, and in 2019 alone, motorcyclists were involved in
8.6% of accidents, resulting in 8.6% of injuries and 14.2% of fatalities. Although the overall
number of road accidents decreased by more than 30% between 2007 and 2019, the number
of accidents involving motorcycles is still at the same level [3,4]. In contrast, the number of
motorcyclist fatalities has increased.

The described state of affairs is largely due to the fact that motorcyclists belong to a
group of vulnerable road users. Available elements of motorcyclist’s clothing that affect
the increase of passive safety—apart from the helmet—are not commonly used. On the one
hand, it is affected by the comfort of riding (the weight of individual elements, the lack of
freedom of movement, the time needed for the motorcyclist to get ready, poor ventilation in
hot weather), on the other hand by the price of all these elements. Moreover, active systems
have limited potential to improve safety, as one of the key parameters of a motorcycle
affecting comfort is its mass and location of its center of mass. However, legal regulations
have forced the use of the CBS/LBS system, which is the equivalent of the car ABS system.
Currently, it is the only mandatory active system introduced in 2017 on newly registered
motorcycles.

Steady-state motion disturbances causing vibration are not uncommon. Motorcycle
drivers themselves often contribute to their occurrence. Occasionally the rider may lose
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control of the vehicle due to uneven pavement generating strong impulses to the wheel
and causing severe vibration (wobble, kick-back). Long-lasting, although small, vibrations
may also be produced that contribute to reduced safety, which may result in temporary
perceptual disturbances and negative well-being as a result of their impact [5].

The vibrations that occur in motorcycles are characterized by different frequencies
that result from natural vibrations, as well as from external excitations. The structure of
a motorcycle has different natural frequencies, and it may happen that the frequencies
resulting from external excitation cause resonance [6,7]. The effect of vibrations on humans
in the frequency range from 0.1 to 100 Hz can cause particularly adverse effects due to the
characteristic natural frequencies for organs and body parts (Figure 1). Numbness in the
limbs and diminished sensation can be felt even during a ride of several hours and may
persist for several days. The frequency values were taken from [6].
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In order to reduce the effects of vibration on humans, it is critical to study the source
of vibration, look for methods to reduce it, and evaluate the effects on the body. The
permissible values and the exposure time are defined in the relevant standard [8], but it is
more important to limit the possibility of vibration generation. Nevertheless, the evaluation
of the effects of vibrations on humans is the subject of numerous studies and they also
concern vibrations produced in the structure of a motorcycle. As an example, [9] measured
the effects of vibration on a motorcyclist on seven different surfaces, using four motorcycles
that differed in mass and geometric parameters. The placement of acceleration sensors
is crucial. Unfortunately, it is not clear from the article how it was concluded that the
vibrations are transmitted from the road and not the drivetrain. This is important because
the only sensors that were mounted are on the sprung masses. Additionally, filtration
and possible methods to isolate significant frequencies from the road surface were not
discussed. However, it has been shown that the vibrations transmitted to the driver are of
such magnitude that even with short exposure times, they can cause adverse effects on the
human body.

In order to validate the analyses based on mathematical modeling and computer
simulation, motorcycle motion and vibration tests are conducted using special test stands.
Unfortunately, this type of research is relatively rarely described in scientific publications.
Therefore, attention was drawn to [10], which describes experiments with a separate
steering system of a motorcycle whose tire-wheel rotates on a sliding belt. On the other
hand, in [11,12], bench tests are conducted using a partially immobilized motorcycle,
whose front wheel cooperates with a rotating drum reflecting the road surface. The
analyses presented in the following section are conducted based on the mathematical
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model described in [13], where its verification is described. Data for verification were
recorded on a test rig, the operation of which can be seen at [14].

With the development of computer methods, mathematical models have become
widely used. The motorcycle model described in [15] allowed the determination of the
forms of vibrations that occur for the case of driving a motorcycle without using hands,
named by the author as capsize, weave, and wobble. This already shows that with relatively
simple models, it is possible to analyze the dynamics of a motorcycle [16]. Subsequently,
research was extended to include mainframe susceptibility by both Sharp, as described
in [16,17], and Kane [18]. It was thus shown that the stability of the motorcycle, and thus
the weave vibration, is significantly affected by the stiffness of the mainframe, while it has
no effect on the other two.

Unfortunately, very few models have been developed for frequency analysis of mo-
torcycle steering vibrations. In particular, [19], which is a comprehensive book on the
dynamics of a motorcycle, should be mentioned here. The influence of various structural
parameters of a motorcycle on vibration damping at different speeds was analyzed in detail.
It was concluded that the moment of inertia of the steering system could be important for
the stability of a motorcycle, which is included in the expression derived from the single
mass model. However, this model neglects many other steering parameters whose specific
values may also contribute to vibration. Other works include [10,20–22], in which there
is a determination of the natural frequency of the steering system. On the other hand,
in [23], a single-mass model of the steering system dynamics with sharp nonlinearities is
presented and applied to test numerical procedures, which is particularly important in
solving differential equations by iterative methods.

Among the methods used to study the vibrations and their graphical presentation,
we can mention [19,24–26], in which the graphs of the real part describing the vibrations
as a function of driving speed are presented. The curves created in this way illustrate
the dynamic properties of the motorcycle in a wide range of speeds and its tendency to
unstable behavior well. The root locus plot was also used in [19,24], which allows one to
observe changes in the damping of particular types of vibrations as a function of speed.
On the other hand, in [27], the possibility of analyzing steering system vibrations by means
of phase plane was presented, which can also be useful in vibration analysis.

During daily use, the mass of a motorcycle can change significantly. While the weight
of the rider will be taken into account at the design stage, the presence of a passenger will
change the weight distribution and front -heel loading; also, the fuel tank itself, when
fully filled, will be an additional factor. Some improvement in motorcycle stability can
be achieved by fitting a torsional vibration damper to the steering system. However,
whether or not it is included in the steering system, every motorcycle should have a natural
tendency to handle steadily. For this reason, it is important to look for parameters that have
a key influence on steering dynamics and how they affect vibration frequency. Therefore, a
method of analysis will be presented that will allow a complex description of the system to
extract relevant information to assist in the design of a motorcycle.

2. Method and Tools Used

When modeling vibrations that are occurring in mechanical systems, certain simplify-
ing assumptions are introduced—most often to replace the nonlinear model with a linear
model. This approach to modeling results from the fact that the methods of analysis of
linear systems are well developed and effective. In addition, nonlinear systems are often
stable in some limited neighborhood of the equilibrium point only, while linear systems,
if stable, are globally and, moreover, asymptotically stable [28]. The basic forms of de-
scription of the dynamics of linear dynamical systems (apart from differential equations)
include the operator transmittance G(s) and the spectral transmittance G(jω). These such
forms of description will be used later in this paper.
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The physical model (Figure 2) directly corresponds to the motorcycle steering system
mounted in a special drum test rig presented in [13]. It was also validated on the basis of
the results of measurements made on this test stand.
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This model considers the key features of a motorcycle steering system. It has five
degrees of freedom, which are the rotational motion of the wheel about the wheel axis,
the angular motion of the handlebars and wheel about the steering axis of the head tube,
and the vertical motion of the wheel and body. Thus, the longitudinal operation of the
suspension and its torsional compliance is taken into account. A simplified model of
wheel-road interaction was adopted, neglecting the phenomenon of tire relaxation length,
with a simplified description of the stabilizing moment based on [29–31]. Despite the
simplifying assumptions made, it represents the steering dynamics well and is sufficient
to demonstrate the analysis method presented in this paper. However, if necessary, any
other model can be used, as the procedure will not change. This method is particularly
useful at the initial stage of a motorcycle or other vehicle because it allows the selection of
parameters of the real system and to study the vibrations that arise. However, in the final
stage of design and modeling of individual parts, the finite element method can be used,
as presented in [32], on the design of an elastic component for a motorcycle.

List of designations appearing in Figure 2 and in the equations described, along with
values that are taken as references:

A system of nonlinear differential equations (initial model) was obtained using La-
grange’s equations of the second-order, and the most important formulas are presented
below.

d
dt

(
∂L
∂qi

)
− ∂L

∂qi
+ ∂D

∂qi
= Qqi ,

gdzie : L = T −U i qi = ϕ1, ψ1, z1, z2, ψ2

(1)

The potential and kinetic energy are written by Equations (2) and (3), and the energy
dissipation is written by Equation (4).

T =
1
2 ∑2
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i +
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i +
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+

1
2 ∑2
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iz − 2·
(
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, (2)
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U = 1
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+ 1

2 ·ca

( .
ψ2

)2
.

(4)

Relevant to the driving wheel dynamics is the stabilizing torque, which is written as
follows:

Msk = a1
(

Fy·cos(χ) + Fx·cos(χ)− Fz·sin(χ)
)
, where : χ = ϕ2 sin(ψ1). (5)

The parameter a1 in Equation (5) is the actual overtaking distance and, taking into
account the steering angle, its value can be calculated as follows:

a1 = rd
cos(ψ1)·sin(ϕ2)√

1− (sin(ψ1)·sin(ϕ2))
2
− lk. (6)

The other components of generalized forces are:

Mnk = Fx·z1 + Fz·ex. (7)

and Mor, which has a negative value, and the gravity forces G1 = g·m1, G2 = g·m2. The
model also assumes the wheel slip is small, so the equation for the lateral force is expressed
as follows:

Fy = Kα·αz. (8)

and for the longitudinal force:
Fx = K∗x ·Sx. (9)

In the case under consideration, due to zero longitudinal slip, there will be no longitu-
dinal force. For this reason, in the previously written equations also, some components
related to the longitudinal force will be zero, but they are written for the sake of order since
their absence could cause misunderstanding of the relations described.

Due to the adopted structure of the physical model, the obtained system of equations
has a complex form. Therefore, symbolic transformation software (e.g., Maple, Octave) was
used for their derivation as well as further transformations. This allowed the individual
transmittances describing the ratio of the input signal to the output signal to be obtained
and, most importantly, in the general form.

Ten different transmittances can be written for such a system, but four of them are im-
portant, namely: transmittance for vertical displacement of masses m1 and m2 at vertical ex-
citation (G1(s) =

Z1(s)
FZ(s)

, G2(s) =
Z2(s)
Fz(s)

) and the transmittance for the angular displacements

of masses m1 and m2 under torsional moment excitation (G3(s) =
Ψ1(s)
Ms(s)

, G4(s) =
Ψ2(s)
Ms(s)

).
The process leading to the mentioned transmittances can be divided into different

steps, which in order will be as follows:

1. Development of the mathematical model;
2. Linearization of the equations describing the system dynamics;
3. Writing the equations in the operator form and determining the transmittance;
4. Perform stability analysis of the system;
5. Breaking down of transmittance into summation form;
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6. Frequency analysis of each of the members of transmittance.

On the other hand, analyses based on the transmittances obtained in this way were
performed using the LabVIEW software and an application created for this purpose
(Figures 3 and 4).
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It is worth noting that the obtained strictly proper transmittances are of a higher order
than is the case for the analyzed dual-mass models by other authors. However, it should
be noted that, unlike the aforementioned models, the one presented here has a feature that
has a key influence on its dynamics—the angle of inclination of the head of the frame.

As already mentioned, LabVIEW software was used to develop a suitable tool for
breaking the higher-order transmittance down into two lower-order transmittances and
analyzing the resulting Bode diagrams.

While breaking the transmittances down into simple fractions is relatively straight-
forward in this case, doing it automatically is not. The first problem one may encounter is
finding zero places of the characteristic polynomial. In LabVIEW, the appropriate Partial
Fraction Expansion (PFE) function is available, but in special cases, it does not return the
correct result; and this case is one of them. The incorrect result, in some cases, results
directly from the way the function is implemented. The PFE function uses the Heaviside
function to calculate the residues and poles, which is not applicable when the roots of the
polynomial in the denominator are either double or complex, so only single real roots will
give the correct results. For this reason, it was not possible to use the appropriate VI from
the palette.

This difficulty can be overcome by using a MathScript Node and a suitably written
script. In this case, the script for finding the roots of the denominator polynomial is limited
to two lines, where the first is an array of the coefficients of the polynomial and the second
is the roots command. In this way, four composite roots are obtained. The final form, which
is interesting from the perspective of further analysis, is obtained as follows. Having the
denominator of the transmittance of the form:

G(s) =
a1s + a0

b4s4 + b3s3 + b2s2 + b1s + b0
(10)

and taking the expected form:

G(s) =
As + B

(as2 + bs + c)
+

Cs + D
(ds2 + es + f )

(11)

then, after writing the appropriate system of equations, one obtains the sought values
of the coefficients a, b, c, d, e, f. Of course, a general form has been implemented in the
program so that they are recalculated as the selected parameter changes (Figure 5).

The second problem is the determination of the numerator factors. To obtain them in
an analytical way, it is enough to take any real number as s and solve a system of equations.
In this case, it cannot be done because in LabVIEW, the operator s does not appear directly
in the equation, but only the coefficients of the polynomial. Therefore, it is necessary
to use an additional tool for symbolic transformations and determine specific values of
parameters by solving a typical equation in search of numerator factors.

The third problem that can be encountered is the implementation of the calculated
numerator factors—solving a system of equations depending on the transmittance yields
extremely large equations that take up dozens of A4 pages (between 40 and 80 pages). The
problem that arises, in this case, is that too many lines of text are needed to be placed in
the MathScript Node. This structure only holds about 20 pages of equations. If there are
too many characters, they will not be processed by this structure, and an additional file
corruption and LabVIEW critical error may occur. In some cases, using the Formula Node
structure is sufficient. The final form of the code that allows the breaking down of the
fourth-degree transmittance into two second-degree transmittances is shown in Figure 5.
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The Formula Node structure takes three times as many characters, but even this may
sometimes prove to be too few. However, this can be easily remedied by splitting the
description of each coefficient into a single structure. This is also consistent with the idea of
programming because the main code of the program should be divided into a subprogram.

Finally, the operation of the described program is presented in the diagram below
(Figure 6). It is only one-quarter of the whole, but the remaining parts perform exactly the
same calculations.
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With the program thus developed, the Bode plots summarized below were obtained
along with the significant values read from the plots.
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When the values of the parameter Jz2 are varied (Table 1), the tendency of the system
to decrease in vibration frequency with increasing values of the moment of inertia can be
observed, but not in a completely linear manner. This is true for both resonance frequencies.
On the other hand, an increase in the parameter Jz2 causes a significant decrease in the
amplitude of vibrations of the wheel while increasing the amplitude of vibrations of the
steering wheel. Noteworthy is the effect of the value of this parameter on the stability of
the system in different frequency ranges. While for low-frequency resonance, the stability
is slightly improved, for high-frequency resonance, a deterioration of stability by exactly
the same value is observed. The observed changes in the oscillation period are directly
related to the frequency, and it becomes longer as the moment of inertia increases while
the relative damping decreases. Changing the value of the analyzed parameter also has
a significant effect on the overall damping properties of the system, which decrease as
Jz2 increases.

Table 1. The values of the parameters read from the graphs shown in Figure 7.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

0.2 kgm2 46.88742 −15.5666 0.000310 0.021285 0.007291 312.4292 −63.5229 0.000141 0.003194 0.022028
0.3 kgm2 40.65839 −10.9375 0.000313 0.024546 0.006386 294.1920 −64.3485 0.000138 0.003392 0.020282
0.4 kgm2 36.38159 −7.58916 0.000315 0.027432 0.005746 284.7340 −65.3905 0.000136 0.003504 0.019382
0.5 kgm2 33.21640 −4.96667 0.000316 0.030046 0.005264 278.9454 −66.4172 0.000135 0.003577 0.018834
0.6 kgm2 30.75335 −2.81362 0.000317 0.032452 0.004885 275.0379 −67.3769 0.000134 0.003628 0.018465
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Figure 7. Amplitude and phase characteristics of the steering angle position transmittance when the parameter value is
changed Jz2.

In the analyzed case, when the values of the parameter Jx1 and Jz1 are varied, the
opposite situation to the one described earlier takes place, namely the change of the value
of the wheel moment of inertia parameter affects the higher frequency vibrations to a
greater extent. Changes in the value of the wheel moment of inertia parameter affect the
resonance frequencies to a greater extent, and the nonlinearity of the changes is much
more pronounced. The same relationship for stability is maintained for higher frequency
resonance in this case; when increasing the value of moment of inertia increases, for lower
frequency resonance, it decreases. The other values, such as vibration period and relative
damping, have the same nature of changes, but their changes are more for the higher
frequency resonance.
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Previously, it could be observed (Figure 8, Table 2) that the moment of inertia of
the wheel Jy1 causes only slight changes in the low-frequency resonant vibration, while
it affects the higher-frequency resonance. This case is similar (Figure 9, Table 3), while
what is different is that the overall damping properties of the system no longer change
so significantly.
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13 kg 9.746465 41.622516 0.071632 0.078237 0.457791 117.681195 −30.264714 0.012193 0.007562 0.806202 

Figure 8. Amplitude and phase characteristics of the steering angle position transmittance when the parameter values are
changed Jx1 and Jz1.

Table 2. The values of the parameters read from the graphs shown in Figure 8.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

0.11 kgm2 39.88838 7.73275 0.000320 0.025020 0.006398 656.7857 −85.4846 0.000131 0.001518 0.043121
0.16 kgm2 38.02698 −3.21068 0.000318 0.026245 0.006051 358.2607 −70.5517 0.000133 0.002785 0.023963
0.21 kgm2 36.38159 −7.58916 0.000315 0.027432 0.005746 284.7340 −65.3905 0.000136 0.003504 0.019382
0.26 kgm2 34.91741 −10.3023 0.000313 0.028582 0.005476 248.8033 −62.6528 0.000138 0.004011 0.017207
0.31 kgm2 33.60604 −12.2465 0.000311 0.029697 0.005237 227.0204 −60.9958 0.000140 0.004396 0.015926
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Figure 9. Amplitude and phase characteristics of the transmittance of the steering angle position when the parameter value
is changed Jy1.
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Table 3. The values of the parameters read from the graphs shown in Figure 9.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

0.32 kgm2 35.62876 −9.07527 0.000314 0.028011 0.005607 264.219 −63.8366 0.000137 0.003777 0.018132
0.37 kgm2 35.99977 −8.37082 0.000315 0.027723 0.005675 273.6848 −64.5580 0.000136 0.003646 0.018707
0.42 kgm2 36.38159 −7.58916 0.000315 0.027432 0.005746 284.7340 −65.3905 0.000136 0.003504 0.019382
0.47 kgm2 36.78380 −6.60721 0.000316 0.027138 0.005818 298.3647 −66.3273 0.000135 0.00335 0.020188
0.52 kgm2 37.17963 −5.71695 0.000316 0.026843 0.005893 313.6558 −67.5049 0.000135 0.003181 0.021168

Looking at the graphs shown in Figure 10 and the data summarized in Table 4, which
relate to the vertical displacement of the steering wheel, it can be concluded that low-
frequency torsional vibration is only slightly transmitted to the vertical motion, while
higher-frequency torsional vibration is transmitted to a greater extent. The system also
shows much greater stability for vertical steering wheel vibration and damping than for
torsional vibration. This is consistent with the actual behavior of the motorcycle, as no
vertical self-excited vibration of the front of the motorcycle is observed, only torsional
(wobble) vibration.
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Figure 10. Amplitude and phase characteristics of the transfer function of the handlebar angle position when the value of
parameter m1 is changed.

Table 4. The values of the parameters read from the graphs shown in Figure 10.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

11 kg 9.752281 43.017107 0.071647 0.078168 0.458287 132.194115 −31.761882 0.012178 0.006956 0.875390
13 kg 9.746465 41.622516 0.071632 0.078237 0.457791 117.681195 −30.264714 0.012193 0.007562 0.806202
15 kg 9.740655 40.435734 0.071618 0.078306 0.457297 117.681195 −28.993801 0.012207 0.008122 0.751427
17 kg 9.734852 39.404514 0.071604 0.078375 0.456804 104.761575 −27.843054 0.012221 0.008647 0.706683
19 kg 9.729055 38.494112 0.071590 0.078444 0.456313 97.544519 −26.834981 0.012235 0.009141 0.669250

Compared to the previous graphs and values in the tables presented in Figure 11
and Table 5 show that the change of wheel mass m1 causes only slight or even negligible
changes in the analyzed values. On this basis, it can be concluded that the wheel mass
does not significantly affect the torsional vibration despite some coupling of vertical and
torsional motion through the advance section.
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Figure 11. Amplitude and phase characteristics of the transmittance of the steering angle position when the parameter
value is changed m1.

Table 5. The values of the parameters read from the graphs shown in Figure 11.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

11 kg 36.458999 −18.859719 0.000316 0.027373 0.005771 288.253307 −64.962969 0.000136 0.003462 0.019600
13 kg 36.420204 −18.850010 0.000316 0.027403 0.005758 286.471864 −64.832420 0.000136 0.003483 0.019490
15 kg 36.381594 −18.840356 0.000315 0.027432 0.005746 284.734004 −64.704775 0.000136 0.003504 0.019382
17 kg 36.343169 −18.830756 0.000315 0.027461 0.005733 283.038060 −64.579941 0.000136 0.003525 0.019277
19 kg 36.304927 −18.821209 0.000315 0.027490 0.005721 281.382448 −64.457829 0.000136 0.003546 0.019174

The graphs presented in Figures 12 and 13 and the data in Tables 6 and 7 allow us to
conclude that the change in mass m2 has little effect on vertical vibration and negligible
effect on torsional vibration of the handlebars. This thus contradicts claims among motor-
cyclists that mass distribution affects wobble vibration. It is interesting to note, however,
that despite changes in mass m2 and changes in stability amplitude, vibration period, and
damping, the frequency does not change for higher frequency vibrations.
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Table 6. The values of the parameters read from the graphs shown in Figure 12.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

190 kg 9.929478 23.353815 0.071281 0.070308 0.506918 117.681195 −21.872242 0.012544 0.008233 0.761811
210 kg 9.863696 23.577621 0.071469 0.074423 0.480156 117.681195 −23.015869 0.012356 0.008171 0.756067
230 kg 9.740655 23.806457 0.071618 0.078306 0.457297 117.681195 −24.020465 0.012207 0.008122 0.751427
250 kg 9.600872 24.033914 0.071739 0.081994 0.437463 117.681195 −24.916998 0.012086 0.008083 0.747599
270 kg 9.405021 24.256714 0.071839 0.085516 0.420033 117.681195 −25.726974 0.011986 0.008051 0.744385

Table 7. The values of the parameters read from the graphs shown in Figure 13.

Changing
Parameter

From Mas m1 From Mas m2

Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression Frequency Max.
Amplitude Stability Oscillation

Period
Relative

Suppression

(rad/s) (dB) (-) (s) (-) (rad/s) (dB) (-) (s) (-)

190 kg 9.929478 37.839789 0.071281 0.070308 0.506918 104.761575 −27.041897 0.012544 0.008233 0.761811
210 kg 9.863696 39.202653 0.071469 0.074423 0.480156 104.761575 −28.076808 0.012356 0.008171 0.756067
230 kg 9.740655 40.435734 0.071618 0.078306 0.457297 117.681195 −28.993801 0.012207 0.008122 0.751427
250 kg 9.600872 41.561546 0.071739 0.081994 0.437463 117.681195 −29.814093 0.012086 0.008083 0.747599
270 kg 9.405021 42.597395 0.071839 0.085516 0.420033 117.681195 −30.561990 0.011986 0.008051 0.744385

3. Discussion of Simulation Results

Complex models are not only difficult to interpret but also to identify a large number
of parameters. The presented description of the program used shows not only the imple-
mentation of the method of analysis of system dynamics, but also the method of model
reduction. This is a much simpler approach than the theory developed by Mandelstam
to evaluate the coupling of partial sub-systems [33]. With Mandelstam’s theory, it is pos-
sible to break the full model down into a group of partial models. Another approach is
parametric simplification, which addresses Hadamard’s postulate of continuity of solution
changes with respect to model parameters [34]. However, both approaches are rarely used,
because as a rule, partial models are extracted based on an a priori assumption about the
weakness of the remaining interactions or the complete isolation of the system [33]. In the
presented approach, the reduction can be obtained by breaking down the transmittance
into a sum of factors. By omitting one of the lower order transmittances, a transmittance
model of the system is obtained that is oriented towards the dynamics of the system in the
range of selected vibration frequencies. However, this model is no longer in parametric
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form, which is indirectly related to the Abel–Ruffini theorem. In addition, depending on
the values of the individual denominator factors, the breaking down into factors may or
may not be performed, as the system will be unstable.

The system stability evaluation was performed using the Hurwitz method, but any
other method can be used. This function has only been added to the program for your
convenience and can be carried out separately using any other tool. The stability analysis
indicates that the motorcycle’s steering is at the limit of stability. The small values of the
third Hurwitz sub-designator confirm that the torsional vibration can be induced by the
forces from the road irregularities. It can also be observed that in order to improve the
stability of the system to vibrations of one frequency, we cause a deterioration of stability
for the other frequency.

The computational results, shown in Figures 7–13, although related to a selected
portion of the simulation study, allow a number of interesting observations and conclusions
to be drawn.

After breaking the higher-order transmittance down into two lower-order transmit-
tances, pairs of the same values characterizing the lower- and higher-order resonance for
specific transmittance pairs are obtained. For example, the transmittance under impulsive
excitation of the steering wheel and handlebar. It naturally follows that the resonant fre-
quencies for two connected masses will also be two. Therefore, in the future, there is no
need to analyze four Bode diagrams but only two.

The presented method by separating the two resonance frequencies greatly facilitates
the inference of the behavior of the system depending on the parameters describing it.
In particular with respect to damping properties and stability. The analysis, apart from
confirming the obvious truths, i.e., increasing resonant frequencies with decreasing element
mass, allowed us to notice some nonlinear changes in the system dynamics with linear
changes in parameter values (Figure 8). While the mass of the road wheel may change
slightly, e.g., depending on a more massive tire design, the use of different materials for
the wheel structure (magnesium, carbon fiber) will cause changes in both the resonance
frequencies of the wheel and steering wheel and their phase shifts (Figure 10). Such
modification can be done by the user themself, as wheel rim replacements are now available.

The change in road wheel mass manifests itself only slightly through its effect on
torsional vibration (Figure 11), although from the values (Table 5) the changes are noticeable.
Despite the great importance of the wheel advance section for the handling stability of
the motorcycle, the impacts due to vertical loads are transferred to a small extent to the
torsional vibrations. Although using the total mass of the motorcycle as an example, an
interesting relationship can be observed. As the mass increases, the damping of the system
for vertical vibration also increases, but the stability and relative damping for torsional
vibration decreases, which may indicate that increasing the mass of the motorcycle will
increase the likelihood of torsional vibration occurring. Interestingly they will be at a higher
frequency than for an unloaded motorcycle (Table 7). Therefore, if vibrations occur with a
more heavily loaded wheel, the motorcycle will be more difficult for the rider to stabilize.

4. Summary and Conclusions

This paper presents a method of the breaking down of a system model into simpler
components and the analysis of vibrations of particular frequencies, which can be applied
in dynamics studies of not only motorcycles but also other systems. A mathematical
model written in the form of operator transmittance was used, and on this basis, Bode
diagrams were determined. The difficulties encountered in breaking down higher-order
transmittances into simple fractions using the LabVIEW environment have been described
in detail.

The method can be easily applied to more complex objects, which only requires the
use of another mathematical model describing the investigated object. The results obtained
in the numerical form also make it easier to grasp small substitutions, which may not
be directly visible on the frequency characteristics but may be useful at the initial stage
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of machine design. With this method, it is possible to perform the model reduction in a
formal way so that all relevant parameters are included in the final form of the model. It is
relatively easy to obtain a simplified formula describing the dynamics of the system for a
selected frequency and then develop a control system.

The driver, by deciding how to use the vehicle and making modifications to it, has an
influence on the resonant frequencies of the steering system. However, typical operating
factors do not cause significant changes, although they may contribute to the system’s
sensitivity to vibration.
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Abbreviations

X, Y, Z main axes of the coordinate system;
Mnk, Mb, Mor,
Msk, W0

a torque that adequately stimulates vibrations, driving from the drum and
resistance to movement, steering, excitation from the road surface;

ψ1, ψ2 the steering angle respectively of the wheel and handlebar;
ϕ1 wheel rotation angle;
ϕ2 steering head angle (24 deg);

z1, z2
vertical displacement of the elements associated with the wheel and the frame,
respectively;

J1, J2
the equivalent moment of inertia of the components associated with the wheel
(0.21 kgm2) and handlebar (0.4 kgm2), respectively;

m1, m2, m
reduced weight of the components associated with the wheel (15 kg) and frame
(230 kg), and sum of masses m1 i m2, respectively;

cr, ca, csz, cz,
Co

damping coefficient of the driver’s hands (0.2 Nms/rad), torsional vibration
damper (0 Nms/rad), torsional damping of suspensions (3 Nms/rad),
longitudinal damping of suspension (2.6 kNs/m), tire damping coefficient
(150 Ns/m), respectively;

kr, ksz, kz
stiffness coefficient of the driver’s hands (1 kN/rad), torsional stiffness
(7 kNm/rad), longitudinal stiffness (14 kN/m), respectively;

Kz, Kα, Kx
radial tire (190 kN/m), cornering stiffness coefficient (10 kN/rad), longitudinal
stiffness coefficient (180 kN/m), respectively;

p1, p2, p3 the point of suspension end, wheel rim, and wheel/road contact, respectively;
rd dynamic wheel radius (0.3 m);

l, l1, lk
wheelbase (1.35 m), distance between the center of mass and the front wheel’s
axis of rotation (0.6 m), offsetting the wheel axis from the control axis of the
frame head (0.03 m);

wpo tire profile height (0.08 m);
a1 actual overtaking distance (0.1 m);
ω angular velocity;
χ wheel camber angle;
Fx, Fy, Fz longitudinal, lateral, and vertical reaction forces, respectively;
ex displacement of normal force;
Sx longitudinal slip.
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13. Dębowski, A. Analiza Możliwości Ograniczenia Drgań Skrętnych w Układzie Kierowniczym Motocykla, Rozprawa Doktorska; Military
University of Technology: Warszawa, Poland, 2019.

14. Available online: http://andrzejdebowski.wat.edu.pl/galeria.html (accessed on 14 April 2021).
15. Sharp, R.S. The stability and control of motorcycles. J. Mech. Eng. Sci. 1971, 13, 313–329. [CrossRef]
16. Sharp, R.S. The Influence of Frame Flexibility on the Lateral Stability of Motorcycles. J. Mech. Eng. Sci. 1974, 16, 117–120.

[CrossRef]
17. Sharp, R.S.; Alstead, C.J. The influence of structural flexibilities on the straight-running stability of motorcycles. Veh. Syst. Dyn.

1980, 9, 327–357. [CrossRef]
18. Kane, T.R. The Effect of Frame Flexibility on High Speed Weave of Motorcycles; SAE Technical Paper 780306; SAE International:

Warrendale, PA, USA, 1978.
19. Cossalter, V. Motorcycle Dynamics; LULU: Morrisville, NC, USA, 2006.
20. Cossalter, V.; Lot, R.; Massaro, M. An Advanced Multibody Code for Handling and Stability Analysis of Motorcycles; Springer Meccanica:

Berlin/Heidelberg, Germany, 2011; Volume 46, pp. 943–958. [CrossRef]
21. De Falco, D.; Di Massa, G.; Pagano, S.; Strano, S. Wheel Force Transducer for Shimmy Investigation. In Proceedings of the World

Congress on Engineering, London, UK, 1–3 July 2015.
22. Sharp, R.S.; Limbeer, D.J.N. On steering wobble oscillations of motorcycles. J. Mech. Eng. Sci. 2004, 14, 1449–1456. [CrossRef]
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29. Adamiec-Wójcik, I.; Maczyński, A.; Wojciech, S. Zastosowanie Metody Przekształceń Jednorodnych w Modelowaniu Dynamiki Urządzeń
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Zastosowaniami: Matematyka w Działaniu, Poznań, Poland, 17–20 September 2014.
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