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Abstract: Under unbalanced grid voltage faults, the output power oscillation of a grid-connected
inverter is an urgent problem to be solved. In the traditional topology of inverters, it is impossible
to eliminate power oscillation and simultaneously maintain balanced output current waveform. In
this paper, considering the solvability of reference current matrix equation, the inherent mechanism
of inverter output power oscillation is analyzed, and a modified topology with auxiliary modules
inserted in series between the inverter output filter and the point of common coupling (PCC) is
proposed. Due to the extra controllable freedoms provided by auxiliary modules, the inverter
could generate extra voltage to correct PCC voltage while keeping balance of output current, so as to
eliminate the oscillation of output power. Simulation and experimental results verify the effectiveness
of the proposed topology.

Keywords: modified gird-connected inverter topology; negative-sequence component; power
oscillation; unbalanced grid voltage fault

1. Introduction

The grid-connected inverter is the vital interface module for distributed generation
(DG) systems, including wind power generation, photovoltaic power generation, to be
connected to the grid. It can directly determine the value and direction of current and
power and is crucial for the safe operation of the grid [1,2]. Small and medium-sized DG
systems are often connected to the grid through the power distribution network. However,
due to the abnormal weather conditions, large load switching on–off, insulation failure,
human error and so on, voltage faults often occur in the power distribution network. Most
of voltage faults can be attributed to the asymmetric faults of grid voltage, for example, the
unbalanced voltage fault caused by single-phase grounding is a representative type [3]. In
the case of asymmetric faults, the grid-connected inverter is required to have the low voltage
ride through (LVRT) capability so as to avoid the chain reaction of DGs disconnection with
the grid [4,5]. When the voltage at the point of common coupling (PCC) drops, grid code
requires the inverter to keep connecting with the grid for a certain period of time [3]. At the
same time, the grid-connected inverter should have the power transmission capacity under
abnormal voltage at PCC [1,6]. Under unbalanced PCC voltage, the traditional current
closed-loop control strategy which only controls positive-sequence current in essence will
cause output power oscillation so as to enlarge the voltage ripple of DC side bus and
damage the output current quality [6–9]. To enhance the performance of inverters, it is
necessary to eliminate the output power oscillation of grid-connected inverters under
unbalanced PCC voltage.

At present, the main methods to eliminate the output power oscillation of grid-
connected inverter under unbalanced grid voltage can be divided into two categories: the
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first type is to improve the control strategy; the second one is to change the topology of the
inverter. In [6,10,11], different proportions of negative-sequence current is added to the
current reference to decrease power oscillation. The main problem is that the output current
has difficulty meeting the requirements of grid codes, and there may be risk of current
overrun. In [12,13], the power reference is modified by considering the upper current limit
value of switch tube to guarantee that the output current will not exceed the maximum
allowable value. However, the waveform of the output current is seriously distorted. A
positive and negative-sequence conductance and susceptance control scheme is proposed
in [14]. By optimizing the value of negative-sequence conductance, the peak value of the
output current can be controlled, but the power oscillation is not effectively reduced. The
second type of strategy is to eliminate the power oscillation by changing the topology of
the inverter. In [15], a three-phase four-wire system with zero-sequence current channel is
proposed. The introduction of zero-sequence current increases the controllable quantity of
the system, which is conducive to eliminating power oscillation and improving current
quality. Nevertheless, the power oscillation still exists when adopting the current closed-
loop control strategy. In one word, the reference current matrix equation of grid-connected
inverter in the topologies mentioned above cannot meet the solvability condition, which is
the essential reason that the power oscillation could not be eliminated while the current
waveform is balanced.

In this paper, a modified grid-connected inverter topology with auxiliary modules
inserted in series between PCC and the output filter of each phase is proposed, which could
increase the controllable freedoms of reference current equation of inverter so as to make
the reference current equation of the inverter meet the solvability condition. Then, the
oscillation of the output power is eliminated, and the negative-sequence current is avoided
to be injected into power grid simultaneously. The simulation and experimental results are
presented to verify the effectiveness of the modified topology.

2. Relationship between Power Oscillation and Grid Voltage in Traditional Topology

Typical grid voltage faults can be divided into seven categories [16], most of them
are asymmetric faults. Unbalanced voltage fault caused by single-phase grounding is a
representative one [3]. The unbalanced voltage at PCC will cause the oscillation of output
power and the distortion of output current, which will affect the safe operation of the
grid-connected inverters [11].

2.1. Relationship among Output Current, Power Oscillation and Unbalanced Voltage

The traditional control strategy of grid-connected inverters under unbalanced grid
voltage can be summarized as a unified control strategy [10,11,17], which uses different
values of adjustment coefficient (−1 ≤ k ≤ 1) to reflect different control strategies, as
shown in Table 1. No matter what control strategy is used, it is always difficult to achieve
the optimal output current and power at the same time. A quantitative numerical analysis
is given as follows.

Table 1. Output effect under different adjustment coefficient k.

k Control Strategy

Characteristics

Oscillation Cancellation
Current Quality

Active Power Reactive Power

1 Average Active Reactive Control ×
√

×
0 Balanced Positive Sequence Control × ×

√

−1 Positive Negative Sequence Control
√

× ×
Other value Trade-off between power oscillation cancellation and current quality
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(1). Numerical analysis of output current

Since there is no zero-sequence current component channel in the three-phase three-
wire power distribution network, the voltage at PCC and output current can be expressed
in Equation (1): ua

ub
uc

 = U+

 sin(ωt + θvp)
sin(ωt + θvp − 120◦)
sin(ωt + θvp + 120◦)

+ U−

 sin(ωt + θvn)
sin(ωt + θvn + 120◦)
sin(ωt + θvn − 120◦)

+ U0

 sin(ωt + θ0)
sin(ωt + θ0)
sin(ωt + θ0)

 (1)

 ia
ib
ic

 = I+

 sin(ωt + θip)
sin(ωt + θip − 120◦)
sin(ωt + θip + 120◦)

+ I−

 sin(ωt + θin)
sin(ωt + θin + 120◦)
sin(ωt + θin − 120◦)

 (2)

where U+, U− and U0 are the amplitudes of positive, negative and zero-sequence com-
ponents of the voltage, I+ and I− are the amplitudes of positive and negative-sequence
components of output current, θvp, θvn and θ0 are the initial phase angles of positive, nega-
tive and zero-seqence components of the voltage, θip and θin are the initial phase angles of
positive, negative-sequence component of output current and ω is the angular frequency
of the voltage, respectively.

When the three-phase inverter is connected to the grid, the current reference value is
shown in Equations (3) and (4) [12].

I∗α = 2
3

P∗

(U+)2+k(U−)2

[
U+ sin(ωt + θvp) + kU− sin(ωt + θvn)

]
+ 2

3
Q∗

(U+)2+k(U−)2

[
−U+ cos(ωt + θvp)− kU− cos(ωt + θvn)

] (3)

I∗β = 2
3

P∗

(U+)2+k(U−)2

[
−U+ cos(ωt + θvp) + kU− cos(ωt + θvn)

]
+ 2

3
Q∗

(U+)2−k(U−)2

[
−U+ sin(ωt + θvp) + kU− sin(ωt + θvn)

] (4)

where P* and Q* are the reference values of active power and reactive power, respectively.
After transformation to abc coordinate system, Equations (5)–(7) are obtained,

I∗a =
2
3

√
A2

1 + (kA2)
2 + 2kA1 A2 cos(θvp − θvn − 2δ) · sin(ωt + ψa) (5)

I∗b =
2
3

√
A2

1 + (kA2)
2 + 2kA1 A2 cos(θvp − θvn − 2δ− 240◦) · sin(ωt + ψb) (6)

I∗c =
2
3

√
A2

1 + (kA2)
2 + 2kA1 A2 cos(θvp − θvn − 2δ + 240◦) · sin(ωt + ψc) (7)

where,

A1 =

√√√√[ P∗U+

(U+)2 + k(U−)2

]2

+

[
Q∗U+

(U+)2 − k(U−)2

]2

δ = arctan
Q∗
[
(U+)

2
+ k(U−)2

]
P∗
[
(U+)2 − k(U−)2

]

A2 =

√√√√[ P∗U−

(U+)2 + k(U−)2

]2

+

[
Q∗U−

(U+)2 − k(U−)2

]2

ψa = arctan
A1 sin(θvp − δ) + kA2 sin(θvn − δ)

A1 cos(θvp − δ) + kA2 cos(θvn − δ)

ψb = arctan
A1 sin(θvp − δ− 120◦) + kA2 sin(θvn − δ + 120◦)
A1 cos(θvp − δ− 120◦) + kA2 cos(θvn − δ + 120◦)
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ψc = arctan
A1 sin(θvp − δ + 120◦) + kA2 sin(θvn − δ− 120◦)
A1 cos(θvp − δ + 120◦) + kA2 cos(θvn − δ− 120◦)

.

When three-phase inverter is in grid-connected operation state, the current closed-loop
control strategy is often used [8], so the output current could accurately track the reference
value. The maximum value of output current is given as Equation (8):

Imax = max
{

2
3

√
A2

1 + (kA2)
2 + 2kA1 A2 cos(θp − θn − 2δ),

2
3

√
A2

1 + (kA2)
2 + 2kA1 A2 cos(θp − θn − 2δ− 240◦),

2
3

√
A2

1 + (kA2)
2 + 2kA1 A2 cos(θp − θn − 2δ + 240◦)

}
.

(8)

It can be seen from Equations (5)–(7) that the amplitudes and phase angles of three-
phase currents are related to the amplitudes of positive and negative-sequence voltages,
initial phase angles of positive and negative-sequence voltages, power reference value
and adjustment coefficient k. To ensure that the output current of grid-connected inverters
meets the grid codes [18,19], the only way is to set the adjustment coefficient k as 0, which
means to use the balanced positive sequence control (BPSC) strategy [20].

According to Equation (8), when the parameters of Table 2 are adopted, the rela-
tionship between the maximum value of output current amplitude and the adjustment
coefficient k is shown in Figure 1. When k changes from −1 to 1, the maximum value
of output current amplitude decreases firstly and then increases, and the BPSC control
method, which means k as 0, can ensure that the current stress of the inverter is minimum
under the same power.

(2). Analysis of power oscillation

According to the instantaneous power theory, the active power and reactive power
can be expressed as Equations (9) and (10):

p = 3
2 uα

[
A1 sin(ωt + θvp − δ) + kA2 sin(ωt + θvn − δ)

]
+ 3

2 uβ

[
−A1 cos(ωt + θvp − δ) + kA2 cos(ωt + θvn − δ)

] (9)

q = − 3
2 uα

[
−A1 cos(ωt + θvp − δ) + kA2 cos(ωt + θvn − δ)

]
+ 3

2 uβ

[
A1 sin(ωt + θvp − δ) + kA2 sin(ωt + θvn − δ)

] (10)

where uα and uβ are the αβ axis components of the PCC voltage, respectively.
When expanding Equations (9) and (10), the quadratic term is the fluctuating power,

as shown in Equations (11) and (12):

∆p = −(1 + k) P∗

(U+)2+k(U−)2 U+U− cos(2ωt + θvp + θvn)

−(1 + k) Q∗

(U+)2−k(U−)2 U+U− sin(2ωt + θvp + θvn)
(11)

∆q = (1− k) P∗

(U+)2+k(U−)2 U+U− sin(2ωt + θvp + θvn)

−(1− k) Q∗

(U+)2−k(U−)2 U+U− cos(2ωt + θvp + θvn).
(12)

When the parameters shown in Table 2 are adopted, the relationship between the
power oscillation value and the adjustment coefficient k is shown in Figure 2. When k
changes from −1 to 1, the oscillation value of output power can reach 0.4 p.u. at most. The
change trend of active power oscillation value is just opposite to that of reactive power
oscillation value. It is impossible to make active power oscillation value and reactive
power oscillation value minimal at the same time by changing k. When BPSC is used, the
oscillation value of active power and reactive power can reach 0.2 p.u., which means that
the oscillation of output power is not eliminated.
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Table 2. Operating parameters of main circuit used in simulations.

Symbol Description Value (p.u.)

Va Amplitude value of A-phase voltage 220
√

2 V (1 p.u.)
Vb Amplitude value of B-phase voltage 110

√
2 V (0.5 p.u.)

Vc Amplitude value of C-phase voltage 220
√

2 V (1 p.u.)
P0 Output power 10 kW (1 p.u.)
f 0 Fundamental frequency 50 Hz
fsw Operating frequency 10 kHz
Lf Output inductor 0.044 p.u.

Vdc DC voltage 700 V
kp Proportional coefficient 2.0
ki Integral coefficient 1.0
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The variation of k represents different control strategies. The power oscillation cannot
be eliminated by just changing the control strategy when the topology is not optimized.
The next section will give a strict theoretical proof.

2.2. Deficiency of Traditional Inverter Topology

After Clark transformation, Equation (1) can be written as Equation (13):

[
uα

uβ

]
=

2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] ua
ub
uc

 =

[
u+

α + u−α
u+

β + u−β

]
(13)

where [
u+

α

u+
β

]
=

[
U+ sin(ωt + θvp)
−U+ cos(ωt + θvp)

][
u−α
u−β

]
=

[
U− sin(ωt + θvn)
U− cos(ωt + θvn)

]
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Three-phase output currents can be written as Equation (14):

[
iα

iβ

]
=

2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] ia
ib
ic

 =

[
i+α + i−α
i+β + i−β

]
(14)

where [
i+α
i+β

]
=

[
I+ sin(ωt + θip)
−I+ cos(ωt + θip)

][
i−α
i−β

]
=

[
I− sin(ωt + θin)
I− cos(ωt + θin)

]
The instantaneous output power is given as Equation (15):[

p
q

]
=

[
vαiα + vβiβ

vαiβ − vβiα

]
=

[
P0 + Pc2 cos(2ωt) + Ps2 sin(2ωt)

Q0 + Qc2 cos(2ωt) + Qs2 sin(2ωt)

]
(15)

where P0 is the DC component value of active power, Pc2 and Ps2 are the coefficients of
cosine and sinusoidal terms for the second oscillation value of active power, Q0 is the
DC component value of reactive power, Qc2 and Qs2 are the coefficients of cosine and
sinusoidal terms for the second oscillation value of reactive power.

P0, Pc2, Ps2, Q0, Qc2 and Qs2 can be expressed by matrix as Equation (16):



P0
Q0
Pc2
Ps2
Qc2
Qs2

 =



v+d v+q v−d v−q
v+q −v+d v−q −v−d
−v−d −v−q −v+d −v+q
−v−q v−d v+q −v+d
−v−q v−d −v+q v+d
v−d v−q −v+d −v+q




i+d
i+q
i−d
i−q

 (16)

where v+d , v+q are the dq axis components of u+
α , u+

β ; v−d , v−q are the dq axis components of

u−α , u−β ; i+d , i+q are the dq axis components of i+α , i+β ; i−d , i−q are the dq axis components of i−α ,

i−β after Park transformation, respectively.
When the output current meets the grid codes [18,19], the negative-sequence current

should be set as zero, then Equation (16) will be changed into Equation (17):



P0
Q0
Pc2
Ps2
Qc2
Qs2

 =



v+d v+q
v+q −v+d
−v−d −v−q
−v−q v−d
−v−q v−d
v−d v−q


[

i+d
i+q

]
. (17)

In Equation (16), the rank of the coefficient matrix is 4, the rank of the augmented
matrix is 5. The rank of the coefficient matrix is not equal to the rank of the augmented
matrix, so Equation (16) has no solution. This is the reason why the control strategy
in [10–14] has difficulty eliminating the power oscillation.

In Equation (17), the rank of the coefficient matrix is 2, the rank of the augmented
matrix is 3. The rank of the coefficient matrix is not equal to the rank of the augmented
matrix, so Equation (17) has no solution. This is the reason why the BPSC control strategy
has difficulty eliminating power oscillation for the traditional topology.

In the same way, it can be found that after adding a zero-sequence component in [15],
Equation (17) becomes:
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P0
Q0
Pc2
Ps2
Qc2
Qs2

 =



v+d v+q v0
Re v0

Im
v+q −v+d 0 0
−v−d −v−q v0

Re −v0
Im

−v−q v−d −v0
Im −v0

Re
−v−q v−d 0 0
v−d v−q 0 0




i+d
i+q
i0Re
i0Im

 (18)

where v0
Re, v0

Im are the real and imaginary components of zero-sequence voltage at PCC, i0Re,
i0Im are the real and imaginary components of zero-sequence output current, the detailed
definition refers to [15].

In (18), the rank of the coefficient matrix is 4, the rank of the augmented matrix
is 5. The rank of the coefficient matrix is not equal to the rank of the augmented matrix,
so Equation (18) has no solution. This is the reason why the BPSC control strategy has
difficulty eliminating power oscillation for three-phase four-wire inverter in [15].

3. Principle and Advantages of Modified Topology for Grid-Connected Inverter

According to the discussion in Section 2, the reason why the traditional topology
is incapable of eliminating the power oscillation is that the number of controllable free
variables is small, which leads to the mismatch between the order of the current reference
coefficient matrix and the order of the augmented matrix. From the point of view on
hardware, the number of controllable variables in the current reference equation can be
increased by changing the topology structure, so that the equation can meet the solvability
conditions.

3.1. Modified Topology of Grid-Connected Inverters

The proposed topology of grid-connected inverter is shown in Figure 3. The auxiliary
modules are inserted in series between the output filter of inverter (the points a1, b1 and c1
in Figure 3a) and PCC (the points a2, b2 and c2 in Figure 3a).
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2

d d q q

q q d d
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s q q d d q
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s d d q q

P v v v v

Q v v v v

P v v v v i

P v v v v i

Q v v v v

Q v v v v

+ + + +

+ + + +

− − − − +

− − − − +

− − − −

− − − −

 +  +  
  

+  − −  
    − −  − −

=     
− −  +       
   − −  + 
  

+  +      
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It can be further simplified as Equation (23): 

Figure 3. Structure block diagram of the modified topology of grid-connected inverter: (a) general
system diagram. (b) Auxiliary module block diagram.

The three-phase auxiliary modules are independent of each other and can be separately
controlled. Figure 3b shows the detailed internal block diagram of the auxiliary module
which is essentially a single-phase inverter. Ladd and Cadd constitute the output filter circuit
of the auxiliary module to filter the switching subharmonics in the circuit. Radd is the
damping resistance of the output filter circuit to prevent the possible oscillation of the LC
filter circuit. For the voltages at PCC1, Equation (19) could be obtained as:

va1 = va + ∆vavb1 = vb + ∆vbvc1 = vc + ∆vc (19)

where ∆va, ∆vb and ∆vc are the output voltages of auxiliary modules in phases A, B and C,
respectively.
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Accordingly, Equation (17) can be changed into Equation (20):



P0
Q0
Pc2
Ps2
Qc2
Qs2

 =



v+d + ∆v+d v+q + ∆v+q
v+q + ∆v+q −v+d − ∆v+d
−v−d − ∆v−d −v−q − ∆v−q
−v−q − ∆v−q v−d + ∆v−d
−v−q − ∆v−q v−d + ∆v−d
v−d + ∆v−d v−q + ∆v−q


[

i+d
i+q

]
(20)

where ∆v+d , ∆v+q are the positive-sequence dq axis components of ∆va, ∆vb and ∆vc; ∆v−d ,
∆v−q are the negative sequence dq axis components of ∆va, ∆vb and ∆vc after positive and
negative-sequence separation and Park transformation.

When the output of the auxiliary module is set to satisfy Equation (21):

∆v−d = −v−d
∆v−q = −v−q

∆v+d = 0
∆v+q = 0,

(21)

a new equation, Equation (22) can be obtained from Equation (20):

P0
Q0
Pc2
Ps2
Qc2
Qs2

 =



v+d v+q
v+q −v+d
0 0
0 0
0 0
0 0


[

i+d
i+q

]
. (22)

It can be further simplified as Equation (23):[
v+d v+q
v+q −v+d

][
i+d
i+q

]
=

[
P∗

Q∗

]
. (23)

The coefficient matrix rank of Equation (23) is 2, the rank of the augmented matrix is 2.
The number of equations is equal to the number of variables, so that Equation (23) has a
unique solution. The corresponding current reference value can be solved as Equation (24):

[
i∗d
i∗q

]
=

[
i+d
i+q

]
=

[
v+d v+q
v+q −v+d

]−1[
P∗

Q∗

]
. (24)

When it is needed to limit the current, the upper limit of the reference current can be
adjusted by changing the value of ∆v+d and ∆v+q in Equation (21).

The overall control structure of the system is shown in Figure 4. After positive and
negative sequence separation module, positive-sequence components v+a , v+b and v+c ,
negative-sequence components v−a , v−b and v−c , and zero-sequence components v0

a, v0
b and

v0
c are derived from PCC voltages va, vb and vc. Following that, v+d and v+q are generated

from v+a , v+b , v+c through abc/dq transformation. Then, the current reference values i∗d and
i∗q are given from current reference generator module according to Equation (24). After
that, the current reference values i∗d and i∗q generate the PWM waves that control the main
circuit through the PI module as well as processing the decoupling components ω0L f id
and ω0L f iq. The negative-sequence voltage components v−a , v−b , v−c and the zero-sequence
voltage components v0

a, v0
b, v0

c are added and then create reference values ∆v∗a , ∆v∗b , ∆v∗c of
the auxiliary module output voltage by multiplying by minus one. The three reference
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values ∆v∗a , ∆v∗b and ∆v∗c , respectively, generate PWM waves for three auxiliary module
circuits through the PR controller.
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Figure 4. Overall control structure diagram.

The Decoupled Double Synchronous Reference Frame Phase-Locked Loop (DDSRF-
PLL), which has better performance under unbalanced voltage, is adopted to achieve phase
detection [21]. The structure of DDSRF-PLL is shown in Figure 5. After positive and
negative sequence abc/dq transformation, v+d , v+q , v−d and v−q are derived from the grid
voltage va, vb and vc. Then, v+∗d , v+∗q are generated from v+d , v+q after a decoupling network.
Similar to the phase detection principle of the Synchronous Reference Frame Phase-Locked
Loop (SRF-PLL) [21], the phase of the system θ̂ could be obtained by making v+∗q approach
zero through the PI controller. The detailed structure of decoupling network is expressed
as in [21].
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3.2. Advantages of Modified Topology

The voltage and current vector trajectories of the traditional topology and the modified
topology are shown in Figure 6 [9], respectively. When single-phase voltage fault occurs,
the trajectory of voltage vector will be distorted. When the voltage vector trajectory shows
a spindle-shaped variation, as the trajectory of Utra in Figure 6, in order to keep the output
power constant, the trajectory of the current amplitude becomes an ellipse, as the trajectory
of Itra in Figure 6. Where, Imax is the maximum value of the allowable current amplitude
of the system. It can be seen that the amplitude of Itra has exceeded the value of Imax near
the long axis of the actual current track, as shown in the shaded area, which may give
rise to over-current fault. When the auxiliary modules are inserted into the system, the
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unbalanced voltage is corrected to a standard circle, as the trajectory of Umod in Figure 6,
and the corresponding current amplitude trajectory is also a standard circle, as the trajectory
of Imod in Figure 6. Since the amplitude of Umod can be adjusted by changing the value of
∆v+d and ∆v+q , so that the radius of the trajectory of Umod can be ensured not to be too small,
then the corresponding trajectory of Imod can be guaranteed to be included in the circular
trajectory of Imax, so as to avoid the risk of overcurrent fault.
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3.3. Capacity Design of Auxiliary Modules

Supposing that the fault occurs in phase B, and the voltage amplitude of phase B
is β times of its original normal value, then the vector format of three-phase voltage is
described as Equation (25):

Va = V∠ϕ Vb = βV∠(ϕ− 120◦) Vc = V∠(ϕ + 120◦) (25)

The positive, negative and zero-sequence voltage components of phase A are obtained
as Equation (26), [21]. Va(1)

Va(2)
Va(0)

 =
1
3

 1 h h2

1 h2 h
1 1 1

 Va
Vb
Vc

 =


2+β

3 V∠ϕ
1−β

3 V∠(ϕ− 60◦)
1−β

3 V∠(ϕ + 60◦)

 (26)

where

h = ej120◦ = −1
2
+ j
√

3
2

h2 = ej240◦ = −1
2
− j
√

3
2

The positive, negative and zero-sequence voltage components of phase B and phase C
are obtained as Equations (27) and (28): Vb(1)

Vb(2)
Vb(0)

 =


2+β

3 V∠(ϕ− 120◦)
1−β

3 V∠(ϕ + 60◦)
1−β

3 V∠(ϕ + 60◦)

 (27)

 Vc(1)
Vc(2)
Vc(0)

 =


2+β

3 V∠(ϕ + 120◦)
1−β

3 V∠(ϕ + 180◦)
1−β

3 V∠(ϕ + 60◦)

. (28)

In the modified topology, the average powers of the three auxiliary modules are shown
in Equation (29):

Pa =
1− β

6
VI Pb = −1− β

3
VI Pc =

1− β

6
VI. (29)
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When β changes between [0, 1], the power curve of the auxiliary module is shown
in Figure 7. Auxiliary module of the fault phase-phase B essentially injects power into
the circuit. When the output power of the grid-connected inverter is used as the power
base value, which is Pbase = (3/2)VI, the maximum value of the injected power is 0.22 p.u.
(β = 0). Phases A and C are non-fault phases. Their auxiliary modules absorb power
from the circuit, and the maximum absorbed power is 0.11 p.u. (β = 0). Therefore, for the
single-phase voltage fault, the power capacity of the auxiliary module designed above
0.22 p.u. can meet the requirements no matter what the drop depth is and no matter which
phase the fault occurs in.
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According to the clearing time of inverters under voltage faults shown in Figure 8, in
case of voltage drop, the grid-connected inverter only needs to maintain the connection
time of 2 s at most. Therefore, the energy needed to be absorbed or released by the auxiliary
module will not be too large, and the operation of the inverter during the LVRT period will
not cause damage to the energy storage devices in the auxiliary module.
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3.4. Stability Analysis of the Modified Topology

Since the parameters of the three branches of the inverter are identical, according
to [7,22], the whole system can be simplified shown in Figure 9.

In Figure 9, v∗ is the output voltage reference of the auxiliary module, Gadd(s) is the
transfer function of the auxiliary module voltage in open mode. Ladd, Cadd and Radd are in-
ductance, capacitor and resistor of the auxiliary module, respectively. Gcli,m(s) denotes the
current reference to output transfer function of grid-connected inverter, Yoi,m(s) represents
the equivalent output admittance of the system, i∗gm(s) and igm(s) are the reference current
and output current of system, respectively, and their detailed form are expressed as [22].

When we adopt the parameters in Tables 3–5, the pole-zero maps of the current
closed transfer functions for the traditional topology and the modified topology are shown
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in Figure 10, respectively. In Figure 10, p1 and p2 are the dominant closed-loop poles
of the current transfer function for the traditional topology and the modified topology,
respectively. Although p2 is closer to the imaginary axis than p1, they are still very close to
each other and far away from the imaginary axis. Therefore, compared with the traditional
topology, the output stability of the modified topology is reduced, but all poles of the
modified topology system are still in the left half plane and the whole system is still stable.
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Table 3. Operating parameters of main circuit used in experiments.

Symbol Parameter Value (p.u.)

Va Amplitude value of A-phase voltage 50 V (1 p.u.)
Vb Amplitude value of B-phase voltage 25 V (0.5 p.u.)
Vc Amplitude value of C-phase voltage 50 V (1 p.u.)
P0 Output power 105 W (1 p.u.)
f 0 Fundamental frequency 50 Hz
fsw Operating frequency 10 kHz
Lf Output inductor 0.044 p.u.

Vdc DC voltage 120 V
kp
ki

Proportional coefficient
Integral coefficient

2.0
2.0

Table 4. Operating parameters of auxiliary module used in experiments.

Symbol Parameter Value

Vadd DC voltage of auxiliary module 36 V
fadd Switching frequency of auxiliary module 10 kHz
Cadd Filter capacitor of auxiliary module 15 µF
Ladd Filter inductor of auxiliary module 800 µH
Radd Damping resistance of auxiliary module 2.0 Ω
kp
kr

Proportional coefficient
Resonant coefficient

0.01
4.0
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Table 5. Parameters of auxiliary module used in simulations.

Symbol Parameter Value

Vadd DC voltage of auxiliary module 150 V
fadd Switching frequency of auxiliary module 10 kHz
Cadd Filter capacitor of auxiliary module 15 µF
Ladd Filter inductor of auxiliary module 800 µH
Radd Damping resistance of auxiliary module 2.0 Ω
kp
kr

Proportional coefficient
Resonant coefficient

0.02
16.91

4. Simulation Results

With the detailed discussion of the modified topology, the MATLAB/Simulink was
performed to achieve the verification. In the simulation, the fault type is that the voltage of
phase B drops to 0.5 p.u. The parameters of other main circuits are shown in Table 2, and
the parameters of the auxiliary modules are shown in Table 5. The results of the traditional
topology and the modified topology are shown in Figures 11 and 12, respectively.

Comparing the results in Figures 11 and 12, when the modified topology is adopted,
the unbalanced voltage at PCC1 can be corrected, and the inverter output current keeps
being balanced. The oscillation value of the output active power is reduced from 0.49 to
0.17 p.u., and the output reactive power oscillation value is reduced from 0.46 to 0.15 p.u.
The oscillation value of active power for the modified topology is 33.88% of that of the
traditional topology and the reactive power oscillation value is reduced to 32.17% of the
value of traditional topology. The simulation results show that the modified topology can
correct the unbalanced voltage at the output of the inverter and reduce the oscillation of
the output active power and reactive power.
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5. Experimental Results

In order to confirm the simulation results, the three-phase converter was verified by
downscaling the levels of voltage and power. The overall configuration of the experimental
setup is shown in Figure 13. The core control algorithm is implemented on TMS320F28335,
while the intelligent power module (IPM) is PM150RLA120. IT6516C DC source is used to
generate DC voltage and Chroma 61702 AC source is implemented to generate AC voltage
to simulate grid voltage. The auxiliary module consists of three identical single-phase
inverters, all of which adopt the filter composed of Ladd, Radd and Cadd. Lf is the filter
inductance of grid-connected inverter output circuit. In the experiment, the fault type is
that the voltage of phase B drops to 0.5 p.u. The parameters of other main circuits are
shown in Table 3, and the parameters of auxiliary modules are shown in Table 4. The
experimental results of the traditional topology and the modified topology are shown in
Figures 14 and 15, respectively.
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Figure 15. Experimental results of the modified topology, when Vb drops to 0.5 p.u. (a) Output voltage at PCC1; (b) output
current; (c) output active power and reactive power.

Comparing the results of the traditional topology and the modified topology in
Figures 14 and 15, the unbalanced voltage at PCC1 can be corrected under the modified
topology, and the inverter output current keeps balanced. The oscillation value of the out-
put active power is reduced from 43.35 to 13 W, and the output reactive power oscillation
value is reduced from 55.06 to 15.08 var. The oscillation value of active power in the modi-
fied topology is 29.99% of that in traditional topology and the reactive power oscillation
value is reduced to 27.39% of the value of the traditional topology. The experimental results
show that the modified topology can correct the unbalanced voltage at the output of the
inverter and reduce the oscillation of the output active power and reactive power.

6. Conclusions

The grid-connected inverter with modified topology could compensate the negative-
sequence and the zero-sequence components of the output voltage, so that the reference
current equation of the inverter meets the solvability condition, thus eliminating the output
power oscillation while the output current waveform still meets the requirements of grid
codes. The simulation and experimental results show that the modified topology can
effectively correct the unbalanced voltage and reduce the output active power oscillation
and reactive power oscillation.

When the grid voltage is balanced, grid voltage does not contain negative-sequence
components and zero-sequence components. Therefore, the output voltage reference value
of the auxiliary module is zero at this time, and the auxiliary module will not output
voltage, nor will it absorb power from the circuit or inject power to circuit. The auxiliary
module is always connected to the circuit regardless of the unbalanced grid voltage fault
or normal grid voltage, but when the grid voltage is balanced, the auxiliary module will
not play a role.
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The auxiliary voltage source can be a DC voltage source, a large capacitor, a super
capacitor, or other energy storage units. This article aims to illustrate the function of
the auxiliary module, so in the experiment, only the DC voltage source is used. In the
future, the methods of using large capacitors or other energy storage structures to replace
the additional DC power source in the auxiliary module and also designing the effective
charging and discharging topologies of auxiliary modules as well as reducing the cost of
hardware will be explored.
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