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Abstract: This paper proposes a new surrogate optimization routine for optimal design of a direct
on line (DOL) squirrel cage induction motor. The geometry of the motor is optimized to maximize
its electromagnetic efficiency while respecting the constraints, such as output power and power
factor. The routine uses the methodologies of Latin-hypercube sampling, a clustering technique and a
Box–Behnken design for improving the accuracy of the surrogate model while efficiently utilizing the
computational resources. The global search-based particle swarm optimization (PSO) algorithm is
used for optimizing the surrogate model and the pattern search algorithm is used for fine-tuning the
surrogate optimal solution. The proposed surrogate optimization routine achieved an optimal design
with an electromagnetic efficiency of 93.90%, for a 7.5 kW motor. To benchmark the performance of
the surrogate optimization routine, a comparative analysis was carried out with a direct optimization
routine that uses a finite element method (FEM)-based machine model as a cost function.

Keywords: induction motors; surrogate optimization; Box–Behnken design; Latin-hypercube sam-
pling; clustering; particle swarm optimization; pattern search

1. Introduction

Electrical machines have a wide range of use cases, from household utilities to indus-
trial applications, which consume a huge share of all the generated electrical energy [1]. To
reduce the global greenhouse gas emissions, it is important to design electrical machines
with high energy efficiency. The characteristics of the electrical machines are usually an-
alyzed with a finite element method (FEM)-based electromagnetic simulation for better
accuracy. The output characteristics of the electrical machine are highly sensitive to the
design variables and the global search optimization algorithms, such as particle swarm
optimization (PSO) or genetic algorithm (GA), require many model evaluations to reach
the desired optimal solution [2,3]. This causes the optimization process with a FEM-based
machine model as a cost function to be computationally expensive [4]. To utilize the time
and computational resources efficiently, surrogate optimization techniques are used to
optimize the electrical machines, which requires only a few FEM simulations for evaluation.

Response surface methodology (RSM) is a technique used to develop a polynomial
function for a complex FEM-based multi-physics model, which defines the relationship
between design variables and the output response of an electrical machine [5–9]. This
polynomial model can be used with an optimization algorithm to search for the optimal
solution. The Box–Behnken design, one of the popular response surface approaches, is used
in conjunction with the FEM-based machine model to generate second-order polynomial
functions for objective and constraints of the electrical machine [10–14]. The range of the
boundaries of the design variables affect the accuracy of the polynomial function and in
turn the optimal solution of the electrical machine.

In this article, a novel surrogate optimization routine is proposed for optimizing a
three-phase direct on line (DOL) squirrel cage induction motor. The rotor bars of the
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induction machine are not skewed for the sake of the demonstration of the surrogate
optimization routine. The aim of the new routine is to discretize the problem domain into
a number of subdomains for improving the accuracy of the polynomial models for a better
search of the optimal solution, while efficiently using the computational resources with
a smaller number of FEM simulations. To utilize the full capacity of the computational
resource, the routine is programmed in such a way as to handle 15 FEM simulations in
parallel. The methodologies used in the optimization process are Latin-hypercube sampling
for design of the experiments, a clustering algorithm for dividing the problem domain and
a Box–Behnken design as a response surface approach. The particle swarm optimization
(PSO) algorithm is used for optimizing the polynomial functions of the response surfaces,
while a pattern search algorithm is used for fine-tuning the surrogate optimal solution
from the PSO. For the purpose of visualization, the proposed surrogate optimization
routine is demonstrated with a simplification of the design problem, leaving three design
variables. Validation of the results from the proposed surrogate optimization routine for
a multivariate design problem is performed by comparing it to the direct optimization
routine, which uses FEM simulation as a cost function.

2. Optimization Problem

The electrical machine analyzed in the optimization problem is a three-phase squirrel
cage induction motor for a direct online industrial application. The electrical steel core
material used in the motor is M400-50A and the rotor cage is made of aluminum. The goal
of the optimization problem is to maximize the electromagnetic efficiency, η, satisfying
the constraints of the output power, Pout, and power factor, PF, for a given volume of the
machine. The outer diameter of the stator, Dse, and axial length of the machine, l, are
fixed so that the volume of the machine remains constant throughout the optimization
process. The rotor end-ring overhang length, loh, is kept constant so that the cross-section
area of the end ring depends only on the height of the rotor slot. The specifications
and fixed parameters of the induction motor for the optimization problem are shown
in Table 1. The objective and constraints of the optimization problem are specified in
Table 2. The optimization variables and their ranges for the induction motor are shown
in Figure 1 and Table 3. The analysis of the machine design is done with timestepping
simulation of a 2D finite element solver software, FCSMEK, developed by the research
group of electromechanics at Aalto university [15]. The simulation of the timestepping
analysis computes the electromagnetic characteristics of electrical machines by solving the
circuit and field equations with the Crank–Nicholson timestepping method. The time is
discretized at short time intervals and the magnetic field, currents, and potentials of the
windings are solved at successive instants of time. The rotation of the rotor is accomplished
by changing the finite element mesh in the air gap. The non-linear system of equations
obtained at each timestep is solved using the Newton–Raphson method. The core losses
are evaluated using the modified Jordan loss equation with a two-component loss model,
namely with eddy current loss and hysteresis loss. The excess losses are included in the
dynamic eddy current loss computation [15]. For simplicity, the mechanical losses and
other manufacturing losses are not considered for comparing the results of the optimal
solutions. Hence, the electromagnetic efficiency η is computed as shown in Equation (1).

η =
Pin − Pelec

Pin
× 100% (1)

where Pin is the input power of the induction motor and Pelec is the electromagnetic loss of
the induction machine, which is comprised of iron losses and copper losses of the stator
and rotor. The steady state temperature of the stator and rotor are considered as 80 ◦C and
100 ◦C, respectively, for the simulation.
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Figure 1. Optimization variables of the induction motor.

Table 1. Specifications and fixed parameters of the induction motor.

Parameter Value

Output power, Pout [W] 7500

Line voltage, Ul [V] 400

Frequency, f [Hz] 50

Number of poles, p 4

Filling factor-stator slot, KCu 0.6

Number of conductors-stator slots, ZQs 28

Number of parallel paths-stator windings, a 2

Number of stator slots, Ns 48

Number of rotor slots, Nr 44

Axial length of the machine, l (mm) 220

Stator outer diameter, Dse (mm) 227.7

Rotor inner (shaft) diameter, Dye (mm) 48.98

End-ring overhang length, loh (mm) 40

Conductivity—aluminum (20 ◦C), σAl [S/m] 35.5 × 106

Conductivity—copper (20 ◦C), σCu [S/m] 57 × 106

Table 2. Objective and constraints of the optimization problem.

Objective Goal

Electromagnetic efficiency, η (%) To maximize the electromagnetic efficiency, η

Constraints Range

Output power, Pout [W] 7500 ≤ Pout ≤ 7600

Power factor, PF PF ≥ 0.78
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Table 3. Optimization variables and their range.

Optimization Variables Range

Stator inner diameter, Ds (mm) 120 ≤ Ds ≤ 150

Stator tooth width, bds (mm) 2 ≤ bds ≤ 4

Stator yoke width, hys (mm) 10 ≤ hys ≤ 30

Slip, s (%) 1 ≤ s ≤ 2.1

Air gap width, δ (mm) 0.4 ≤ δ ≤ 0.7

Rotor slot upper width, b4r (mm) 3 ≤ b4r ≤ 6

Rotor slot lower width, b5r (mm) 0.5 ≤ b5r ≤ 2

Rotor yoke width, hyr (mm) 2 ≤ hyr ≤ 15

3. Response Surface Methodology Optimization with Box–Behnken Design

Response surface methodology (RSM) is a set of mathematical and statistical tech-
niques used to draw a relationship between control variables (inputs) and output response.
This relationship can be approximated into a polynomial model, which can be useful in
predicting the response of the control variables, hypothesis testing and finding the optimal
condition of the variable settings [16]. In practice, the response surface methodology can
be applied to simulate experimental results or for constructing a surrogate function of a
computationally expensive multi-physics model. Optimizing the geometric variables of
the induction motor directly with the finite element model is computationally expensive.
In this article, for boundary-constrained input variables the RSM is used for approximating
the electrical quantities of an induction machine into a second-order polynomial model.
The second-order polynomial model that describes the functional relationship of the RSM
between the control variables and the output response is as shown in Equation (2) [17].

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k−1

∑
i=1

k

∑
j=i+1

βijxixj (2)

where y is the output response, xi and xj are the input control variables, β0, βi, βii, andβij
are the coefficients of the input control variable terms, and k is the number of control
variables. The coefficients are estimated as shown in Equation (3).

β = [XTX]
−1

XTY (3)

where X is the matrix of input control variables sampled at multiple points and Y is the
corresponding output response vector. The surrogate function shown in Equation (2) works
well for interpolation of design variables to predict the output response, but prediction
of output response by extrapolation of design variables can be inaccurate. One of the
commonly used designs for determining the response surface, as shown in Equation (2),
is the Box–Behnken design codeveloped by Box and Behnken in 1960 [18]. If the control
variable space is defined as a cube, then the sample points are taken at the geometric center
of the cube and at the middle points of the edges of the cube. The Box–Behnken design
sample points represented for a three-dimensional control variable space are shown in
Figure 2. Positioning sample points in this way preserves a uniform variance within the
definition of the hyper-cube [18]. The number of sample points, N, for a given number of
control variables is shown in Equation (4) [19].

N = 2k(k − 1) + C0 (4)

where k is the number of design variables and C0 is the number of center points.



Energies 2021, 14, 5042 5 of 19

Figure 2. Box–Behnken design represented for a 3-dimensional variable space.

The Box–Behnken design was applied to the problem of an induction machine as
described in Section 2 for performing the surrogate optimization. The process flow of
optimization with the Box–Behnken design is presented in Figure 3. For easier represen-
tation, the optimization variables presented in Table 3 are assumed as x1, x2, x3. . . , x8 in
their respective order. Based on the optimization variable boundaries from Table 3, the
Box–Behnken design sample points were created for the variables as an eight-dimensional
hypercube. These samples were simulated with FCSMEK finite element software for calcu-
lating their corresponding response characteristics, such as efficiency, η, output power, Pout,
and power factor, PF. The relationship between the optimization variables and the output
response was established as a second-order polynomial function as shown in Equation (2).
The coefficients of the polynomial terms were calculated from the predetermined out-
put responses by FEM simulations sampled at Box–Behnken sample points as shown in
Equation (3). The polynomial response functions for the surrogate optimization problem
are presented in Appendix A. These surrogate functions were used as the cost function
of the PSO algorithm. A population of 1000 particles of the PSO was initialized with the
Latin-hypercube sampling method.

Box-Behnken samples

FEM simulation

Box-Behnken functions

Optimization with PSO

Optimal design

Start

Figure 3. Flow chart: optimization with Box–Behnken design.

The objective and constraints of the problem are as shown in Table 2. The optimal
motor design from Box–Behnken design is validated with FEM simulation as shown in



Energies 2021, 14, 5042 6 of 19

Table 4. It is observed that a difference in the result of the objective electromagnetic
efficiency, η, between the surrogate optima and its FEM validation is considerably high.
Moreover, the optimal solution does not respect the constraints of the output power,
Pout, and the power factor, PF, coupled with a high margin of error. The accuracy of
the surrogate functions is impacted by the application of the Box–Behnken design to a
large design variable space. Hence, a new optimization routine is proposed in this article
(Section 6) for improving the accuracy of the surrogate functions resulting in an improved
optimal solution.

Table 4. FEM validation of the optimal solution from Box–Behnken design

Output Response Box–Behnken Design FEM Validation Difference

Electromagnetic efficiency, η 95.30% 93.31% 2.13%

Output power, Pout 7500.28 W 7131.98 W 5.18%

Power factor, PF 0.7860 0.7267 8.16%

4. Latin-Hypercube Sampling

Latin-hypercube sampling is a statistical method for selecting near-random samples
from the input variable space, proposed by McKay, Beckman, and Conover [20]. It uses
a sampling scheme of stratification to improve the distribution of samples in the input
variable space. To select n Latin-hypercube samples for a sampling function with xi =
(x1, x2) as input variables, the range of each of the xi is stratified into n equiprobable
intervals. One observation is selected at random from each of the n intervals. These
observations corresponding to x1 and x2 are matched at random to form n Latin-hypercube
samples. A set of five samples generated with the Latin-hypercube sampling method for
the input variables of xi = (x1, x2) is shown in Figure 4. The Latin-hypercube sampling
method is widely used in the design of experiments for various applications of computer
modeling [21–23]. In this article, the Latin-hypercube sampling method is used in the
proposed optimization routine for selecting samples that satisfy a set of criteria and for
initializing the first swarm of the PSO algorithm.

Figure 4. Latin-hypercube sampling.
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5. Clustering

Clustering is a method involved in partitioning a given dataset into different groups
or clusters. The data that are mapped to a particular cluster tend to have similar charac-
teristics and follow a similar pattern [24]. Clustering helps in classifying and analyzing
large datasets, which can be applied in fields of machine learning, data science, pattern
recognition, image processing, and bioinformatics [25–27]. The k-means is one of the oldest
computational techniques used in solving clustering problems, based on the algorithm
proposed by Lloyd [28]. If an integer k is chosen for partitioning a dataset into k clusters
and n is the number of data points of the dataset, the goal of Lloyd’s (k-means) algorithm
is to find k centroids so as to minimize the potential function, γ. The potential function γ is
a measure of the total squared Euclidean distance between each data point and its closest
centroid, as shown in Equation (5).

γ =
k

∑
j=1

m

∑
i=1

∥∥xi + cj
∥∥2

(5)

where m is the number of data points in the jth cluster, xi and cj are the data points
and centroid of the jth cluster. Since Lloyd’s (k-means) algorithm involves selecting the
initial k centroids uniformly at random from the dataset, it suffers from inconsistency and
accuracy issues. Arthur and Vassilvitskii proposed a randomized seeding technique for
selecting the initial centroids of the k-means and combined it with the original k-means
algorithm to call it the k-means++ algorithm with improved speed and accuracy [29]. A
set of randomly generated samples clustered with the k-means++ algorithm is shown in
Figure 5. In the proposed surrogate optimization routine, the k-means++ algorithm is
used in partitioning the samples created from design variables into different clusters. In
a multi-variable clustering problem, the variables can have varying scales of magnitude
and incomparable units. Thus, it is required to apply the feature scaling technique to
normalize the data for standardization. Z-score transformation is one of the successful
standardization techniques utilized before applying the k-means clustering method to a
dataset [30]. Equation (6) is used to estimate the Z-score,

x′ =
x − x

σx
(6)

where x is the variable vector that needs to be standardized, x and σx are the mean and
standard deviation of the vector x, and x′ is the transformed variable vector that implies
the z-score.

-3 -2 -1 0 1 2 3 4

X

-3

-2

-1

0

1

2

3

4

Y

cluster 1
cluster 2
cluster 3
cluster 4

Figure 5. A set of randomly generated samples clustered with the k-means++ algorithm.
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6. The Proposed Surrogate Optimization Routine

To overcome the issue in the accuracy of the surrogate model as shown in Section 3, a
new surrogate optimization routine is proposed for the induction machine problem. The
concepts of Latin-hypercube sampling, clustering, and Box–Behnken design are used in the
proposed optimization routine, and algorithms such as PSO and pattern search are used
for optimizing the control variables of the problem statement. The proposed optimization
routine is divided into two parts, namely a surrogate optimization part and a pattern search
part, which are presented as flow charts in Figures 6 and 7, respectively. The implementa-
tion of the surrogate optimization routine was carried out with MATLAB programming.

Design of experiments with 

Latin-hypercube sampling

FEM simulation

Selection of samples 

satisfying the set criteria

Clustering

Start

Cluster 

1

Box-Behnken samples

Cluster 

2

Cluster 

n

FEM simulation

Box-Behnken surrogate 

functions

Optimization with PSO

Surrogate optimal 

solution

Figure 6. Flow chart: proposed optimization routine—part 1 (surrogate optimization).

Pattern search optimization 

algorithm

Surrogate optimal 

solution

FEM simulation

Optimal solution

Figure 7. Flow chart: proposed optimization routine—part 2 (pattern search).

The surrogate optimization part begins with the design of experiments using the
Latin-hypercube sampling method. The design variables shown in Table 3 were sampled
for 500 Latin-hypercube samples within the boundaries of the variable design space. These
samples were simulated with FCSMEK finite element software for calculating their output
responses, including electromagnetic efficiency, η, output power, Pout, and power factor,
PF. A set of criteria (satisfying the threshold values of the output responses) was devised
to select a set of samples from the design of experiment. The design variables of the
selected samples were standardized as shown in Equation (6), and clustered with the
k-means ++ algorithm into different groups or clusters. The optimality of the number
of clusters was evaluated by the MATLAB built-in function evalclusters using the gap
statistics criterion [31,32]. The domain of the optimization problem was divided into n
clusters and within those clusters, new boundaries of the design variables were established.
The surrogate optimization process with Box–Behnken design as explained in Section 3
was applied to each cluster. At the end of the surrogate optimization, n surrogate optimal
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solutions were obtained. The accuracy of the surrogate optimal solutions was validated
with timestepping FEM simulation.

The surrogate optimal solutions were used for initializing the pattern search opti-
mization algorithm. The goal of the pattern search algorithm is to search for an optimal
solution in the vicinity of the surrogate optimal solution, which improves the objective of
the optimization problem while respecting the constraints. The FEM simulation was used
as a cost function for the pattern search algorithm. The final improved optimal solution
was obtained at the end of the pattern search optimization process.

7. Results
7.1. Visualization of a 3-Variable Optimization

A three-variable optimization problem for an induction machine is demonstrated to
visualize the flow of the proposed surrogate optimization routine as shown in Figure 8.
The stator inner diameter, Ds, stator yoke width, hys, and slip, s, from Table 3 were chosen
as the design variables and the remaining variables were fixed to constant values. The
objective and constraints of the optimization problem are presented in Table 2. A set
of 500 samples of the optimization variables were generated using the Latin-hypercube
sampling method as shown in Figure 8a. These samples were simulated with FCSMEK
finite element software to calculate the respective output responses. Selection criteria
based on the output response of the samples as presented in Table 5 were applied to the
Latin-hypercube samples to pick the samples of interest, as shown in Figure 8b. These
samples were clustered into different groups as shown in Figure 8c. The Box–Behnken
domain of each of the groups was as shown in Figure 8d. The surrogate optimal solution
was computed and validated with FEM simulation for each of the clusters. The best
solution of the surrogate optimization from one of the clusters is presented in Table 6. It
is seen that the difference in the computation of the surrogate optimal solution has been
reduced considerably when compared with the results from Table 4, but the constraint of
the output power Pout is not respected. The pattern search algorithm with FEM simulation as
the cost function was applied to the surrogate optimal solution to search for a better solution
in its vicinity. The objective and design variables of the optimal solution from the surrogate
optimization part and pattern search part are compared in Tables 7 and 8. It can be seen that
the pattern search algorithm found a marginally better solution in the neighborhood of the
surrogate optimal solution, while respecting the constraints of the optimization problem. The
electromagnetic efficiency, power factor and electromagnetic losses are compared for various
load points in Tables 9 and 10.

Table 5. Sample selection criteria from the Latin-hypercube sampling method.

Output Response Sample Selection Criteria

Electromagnetic efficiency, η (%) η ≥ 91

Output power, Pout [W] 7000 ≤ Pout ≤ 8000

Power factor, PF PF ≥ 0.75

Table 6. Validation of surrogate optimal solution of the proposed optimization routine (part 1—surrogate optimization)
with FEM simulation 3-variable optimization problem.

Output Response Surrogate Optima FEM Validation Difference

Electromagnetic efficiency, η 93.63% 93.64% 0.01%

Output power, Pout 7599.97 W 7614.76 W 0.19%

Power factor, PF 0.7800 0.7825 0.32%
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Table 7. Surrogate optimal solution compared with the improved optimal solution (part 1—surrogate optimization vs. part
2—pattern search) of the proposed optimization routine 3-variable optimization problem.

Output Response Optimal Solution (Part 1) Optimal Solution (Part 2) % Increase

Electromagnetic efficiency, η 93.64% 93.66% 0.021%

Output power, Pout 7614.76 W 7572.32 W −0.56%

Power factor, PF 0.7825 0.7801 −0.31%

(a) Latin-hypercube sampling (b) Selection of samples respecting the set criteria

(c) Clustering (d) Box–Behnken domain of the clustered samples

Figure 8. Visualization of the process involved in the proposed surrogate optimization routine.

Table 8. Comparison of design variables of the optimal solution (part 1—surrogate optimization
vs. part 2—pattern search) from the proposed surrogate optimization routine 3-variable optimiza-
tion problem.

Design Variables Optimal Solution (Part 1) Optimal Solution (Part 2)

Stator inner diameter, Ds (mm) 147.54 146.65

Stator yoke width, hys (mm) 17.01 17.27

Slip, s (%) 1.12 1.12
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Table 9. Comparison of electromagnetic efficiency and power factor for various load points of the
optimal design 3-variable optimization problem.

Output Response Load (100%) Load (75%) Load (50%)

Electromagnetic efficiency, η 93.66% 93.74% 92.97%

Power factor, PF 0.7801 0.7122 0.5888

Table 10. Comparison of losses for various load points of the optimal design 3-variable optimiza-
tion problem.

Losses Load (100%) Load (75%) Load (50%)

Stator losses, Pstator 335.81 W 251.63 W 195.66 W

Rotor losses, Protor 177.18 W 124.02 W 88.06 W

Total electromagnetic losses, Pelec 512.99 W 375.65 W 283.72 W

7.2. Multivariate Optimization

The proposed surrogate optimization routine was applied to a multivariate optimiza-
tion problem as specified in Section 2. The selection criteria of the samples based on its
output response for the clustering process were as shown in Table 5. The output response of
the surrogate optimal solution from one of the clusters was validated with FEM simulation
as presented in Table 11. It was found that difference in the output responses has been
reduced considerably when compared with the solution presented in Table 4. The decrease
in difference of the output response leads to the surrogate optimal solution respecting the
set of constraints of the optimization problem. The pattern search algorithm improves the
objective of the surrogate optimal solution by searching in the vicinity of the surrogate
design. The objective and design variables at the end of both the surrogate optimal part
and the pattern search part are compared in Tables 12 and 13. It can be noted from Table 13
that to improve the electromagnetic efficiency, η, of the surrogate optimal solution, the
values of the design variables, such as air gap width, δ, stator tooth width, bds, and stator
yoke width, hys, have changed by a small margin. The electromagnetic efficiency, power
factor, and electromagnetic losses are compared for various load points in Tables 14 and 15.
The flux density distribution of the optimal solution (quadrant of the optimal induction
machine) at the end of pattern search algorithm is shown in Figure 9.

Table 11. Validation of surrogate optimal solution of the proposed optimization routine (part 1—surrogate optimization)
with FEM simulationdesign–multivariate optimization problem.

Output Response Surrogate Optima FEM Validation Difference

Electromagnetic efficiency, η 93.48% 93.54% 0.064%

Output power, Pout 7500.16 W 7514.74 W 0.194%

Power factor, PF 0.7964 0.7970 0.075%

Table 12. Surrogate optimal solution compared with the improved optimal solution (part 1—surrogate optimization vs.
part 2—pattern search) of the proposed optimization routine–multivariate optimization problem.

Output Response Optimal Solution (Part 1) Optimal Solution (Part 2) % Increase

Electromagnetic efficiency, η 93.54% 93.90% 0.385%

Output power, Pout 7514.74 W 7502.62 W −0.161%

Power factor, PF 0.7970 0.7803 −2.095%
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Table 13. Comparison of design variables of the optimal solution (part 1—surrogate optimization vs. part 2—pattern search)
from the the proposed surrogate optimization routine–multivariate optimization problem.

Design Variables Optimal Solution (Part 1) Optimal Solution (Part 2)

Stator inner diameter, Ds (mm) 142.77 142.77

Stator tooth width, bds (mm) 3.28 3.30

Stator yoke width, hys (mm) 19.65 15.80

Slip, s (%) 1.26 1.26

Air gap width, δ (mm) 0.68 0.70

Rotor slot upper width, b4r (mm) 5.78 5.78

Rotor slot lower width, b5r (mm) 0.88 0.88

Rotor yoke width, hyr (mm) 6.81 6.81

Table 14. Comparison of electromagnetic efficiency and power factor for various load points of the
optimal design–multivariate optimization problem.

Output Response Load (100%) Load (75%) Load (50%)

Electromagnetic efficiency, η 93.90% 93.95% 93.19%

Power factor, PF 0.7803 0.7164 0.5944

Table 15. Comparison of losses for various load points of the optimal design 3-variable optimiza-
tion problem.

Losses Load (100%) Load (75%) Load (50%)

Stator losses, Pstator 305.44 W 234.83 W 185.66 W

Rotor losses, Protor 181.89 W 127.15 W 88.77 W

Total electromagnetic losses, Pelec 487.33 W 361.98 W 274.43 W

0 T

2.1 T

Figure 9. Flux density distribution of the optimal solution from the proposed surrogate optimization
routine–multivariate optimization problem.
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7.3. Comparison: Proposed Surrogate Optimization Routine vs. Direct Optimization Routine

In this section, the result from the proposed surrogate optimization routine is com-
pared with the direct optimization routine, which uses FEM simulation as the cost function.
The flow chart of the direct optimization routine is presented in Figure 10. The computa-
tional cost of the direct optimization routine is high since it uses FEM simulation as the cost
function. The PSO algorithm and pattern search algorithm were used in the direct optimiza-
tion routine with the same configuration as that of the proposed surrogate optimization
routine. Due to the high computational cost of the FEM simulation and limitation in the
computational capabilities of the research workstation, the size of the population was fixed
to 30 particles for the PSO algorithm in the direct optimization routine. The optimal solution
from the PSO algorithm was used to initialize the pattern search algorithm, which searches
for a better solution in the vicinity. The objective and design variables of the optimal
solution from the proposed surrogate optimization routine are compared with the optimal
solution from the direct optimization routine in Tables 16 and 17. The electromagnetic effi-
ciency, η, of the optimal solution from the proposed surrogate optimization routine reached
closer to that of the direct optimization routine. The marginal difference in the design
variables slip, s, rotor slot lower width, b5r, and rotor yoke width, hyr, between the routines
impacts the electromagnetic efficiency, η, of the optimal solutions. The electromagnetic
efficiency, power factor, and electromagnetic losses are compared for various load points in
Tables 18 and 19. The advantage of using the proposed surrogate optimization routine
is that it requires far fewer FEM simulations than the direct optimization routine, while
maintaining an accurate evaluation of the optimal design. The optimization routines
were performed in the computer with dual processors of Intel Xeon Silver 4114 CPU at
a clock-rate of 2.2 GHz, which can handle parallel computations of 15 FEM simulations.
The comparison of the number of FEM simulations in the proposed surrogate optimization
routine and direct optimization routine is presented in Table 20.

Pattern search optimization 

algorithm
FEM simulation

Improved optimal 

solution

PSO algorithm

Start

FEM simulation

PSO optimal 

solution

Figure 10. Flow chart: direct optimization routine with FEM as the cost function.
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Table 16. Optimal design from the proposed surrogate optimization routine compared with the direct optimization routine.

Output Response Proposed Surrogate Optimization Routine Direct Optimization Routine

Electromagnetic efficiency, η 93.90% 93.89%

Output power, Pout 7502.62 W 7505.29 W

Power factor, PF 0.7803 0.7801

Table 17. Design variables of the optimal solution from the the proposed surrogate optimization routine compared with
direct optimization routine.

Design Variables Proposed Surrogate Optimization Routine Direct Optimization Routine

Stator inner diameter, Ds (mm) 142.77 142.09

Stator tooth width, bds (mm) 3.30 3.40

Stator yoke width, hys (mm) 15.80 15.28

Slip, s (%) 1.26 1.30

Air gap width, δ (mm) 0.70 0.70

Rotor slot upper width, b4r (mm) 5.78 5.80

Rotor slot lower width, b5r (mm) 0.88 1.34

Rotor yoke width, hyr (mm) 6.81 9.50

Table 18. Comparison of electromagnetic efficiency and power factor for various load points of the optimal design—
proposed surrogate optimization routine vs. direct optimization routine.

Load Output Response Proposed Surrogate Optimization Routine Direct Optimization Routine

100% Electromagnetic efficiency, η 93.90% 93.89%

100% Power factor, PF 0.7803 0.7801

75% Electromagnetic efficiency, η 93.95% 93.94%

75% Power factor, PF 0.7164 0.7159

50% Electromagnetic efficiency, η 93.19% 93.16%

50% Power factor, PF 0.5944 0.5926

Table 19. Comparison of losses for various load points of the optimal design-proposed surrogate optimization routine vs.
direct optimization routine.

Load Losses Proposed Surrogate Optimization Routine Direct Optimization Routine

100% Stator losses, Pstator 305.44 W 302.42 W

100% Rotor losses, Protor 181.89 W 185.6 W

100% Total electromagnetic losses, Pelec 487.33 W 488.01 W

75% Stator losses, Pstator 234.83 W 233.65 W

75% Rotor losses, Protor 127.15 W 129.37 W

75% Total electromagnetic losses, Pelec 361.98 W 363.03 W

50% Stator losses, Pstator 185.66 W 185.60 W

50% Rotor losses, Protor 88.77 W 89.78 W

50% Total electromagnetic losses, Pelec 274.43 W 275.38 W
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Table 20. Comparison of the number of FEM simulations in proposed surrogate optimization routine and direct optimiza-
tion routine.

Parameter Proposed Surrogate Optimization Routine Direct Optimization Routine

Number of FEM simulations 1364 75,208

The reliability of the proposed surrogate optimization routine for the induction ma-
chine problem was assessed with 20 continuous runs. The electromagnetic efficiency, η,
output power, Pout, and power factor, PF, of the optimal solution from each run were
analyzed to provide the probability distribution as presented in Figure 11. It can be seen
that all of the optimal solutions from the proposed surrogate optimization routine respect
the constraints specified in the optimization problem and that the range of the objective,
electromagnetic efficiency, η, varies between 93.75% and 93.95%.

(a) Objective–electromagnetic efficiency (b) Constraint–output power

(c) Constraint–power factor

Figure 11. Probability distribution of the objective and constraints from 20 runs of the proposed surrogate optimization routine.

8. Conclusions

This paper proposes a novel, efficient, and reliable surrogate optimization routine
that can be applied to multiple design problems. The proposed clustering technique used
in the routine enables improving the accuracy of the surrogate model while exploring
promising subsets of the design variable range. The surrogate optimization routine was
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applied to design an optimal three-phase induction motor, maximizing its efficiency for a
given volume. The surrogate functions of the electromagnetic efficiency, output power, and
power factor were constructed as a function of eight design variables and these functions
acted as the objective and constraints of the optimization problem. A precision of 0.01 mm
was considered for the optimization process, which is possible only with laser cutting of
the electrical sheets at the prototyping level. A three-variable optimization problem was
performed to demonstrate the discretization of the optimization problem into a few sub-
domains with the clustering algorithm for searching for the optimal solution. The results
of the proposed surrogate optimization routine applied to the multivariate optimization
problem show an improved optimal solution when compared with optimization with a
simple Box–Behnken design. This proves the improvement of the accuracy of the surrogate
functions by the application of the proposed surrogate optimization routine. To benchmark
the proposed surrogate optimization routine, a direct optimization routine was applied
to the induction motor problem, which uses FEM simulation as a cost function. Upon
comparing the results of both routines, the optimal solution from the proposed surrogate
optimization routine was shown to reach closer to that from the direct optimization routine.
Additionally, the proposed surrogate optimization routine used 1364 FEM simulations
compared with 75,208 FEM simulations of the direct optimization routine, thus greatly
improving the computational efficiency. Future work on the proposed surrogate optimiza-
tion routine will focus on performance evaluations on different types of machines and its
application for multi-objective optimization problems with several constraints.
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Appendix A

Table A1. Quadratic closed form equation of Box–Behnken design—constant and first order terms.

Efficiency, η Output Power, Pout Power Factor, PF Terms

−2.13 −17,793.93 −7.21 constant

19.70 181,583.20 45.91 x1

49.97 412,548.73 91.53 x2

33.81 −253,121.70 114.90 x3

−66.36 −1,451,699.89 −1295.93 x4

54.17 −2,003,197.88 11.83 x5

56.87 −1,835,156.76 176.28 x6

−14.46 −1749.63 −47.77 x7

543.42 3,068,544.76 1640.46 x8

Table A2. Quadratic closed form equation of Box–Behnken design—second-order squared terms.

Efficiency, η Output Power, Pout Power Factor, PF Terms

−145.04 −13,854,715.08 −10,487.18 x2
1

14092.83 203,636,581.33 −49,000.00 x2
2

−2056.07 −71,109,777.78 −14,800.00 x2
3

316.60 −27,247,703.79 1164.10 x2
4

−6796.98 −26,223,650.13 −14,116.67 x2
5

1444.97 54,209,095.30 12,323.08 x2
6

−4837.02 300,328.53 −17,066.67 x2
7

919.65 −492,073.97 3357.69 x2
8

Table A3. Quadratic closed form equation of Box–Behnken design—second-order product terms.

Efficiency, η Output Power, Pout Power Factor, PF Terms

−41.93 −745,736.39 −135.53 x1.x2

−325.50 −2,094,333.11 −1541.78 x1.x3

−144.03 −2,518,297.47 −937.01 x1.x4

−8885.96 358,926,619.68 −172,724.87 x1.x5

−2609.85 −23,720,999.82 −16,790.21 x1.x6

−1773.84 −96,582,265.11 −35,390.48 x1.x7

−81.98 −3,469,143.73 −878.47 x1.x8

−35253.62 −115,771,295.06 −143,252.98 x2.x3

−169.52 −1,850,886.93 −4.83 x2.x4

−101.87 4,251,893.60 −400.60 x2.x5

250.33 7,026,589.33 7777.78 x2.x6

80.11 20,428,872.87 1755.56 x2.x7

−212.22 14,168,262.83 −473.33 x2.x8

51.70 964,692.96 219.99 x3.x4
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Table A3. Cont.

Efficiency, η Output Power, Pout Power Factor, PF Terms

−1369.82 −12,319,740.72 −3271.67 x3.x5

−246.48 −1,619,519.09 −318.64 x3.x6

397.42 −2,404,587.73 −5716.67 x3.x7

−550.39 3,492,065.36 −505.00 x3.x8

−377.48 9,293,965.01 −603.33 x4.x5

89.05 −1,249,662.46 175.38 x4.x6

−2335.66 −22,764,991.96 −215.00 x4.x7

536.32 −1,139,470.06 19757.58 x4.x8

−575.70 63,834,896.15 −2057.58 x5.x6

−431.04 48,765,232.48 −1333.33 x5.x7

83.45 −10,184,611.42 237.06 x5.x8

−2747.19 −20,314,075.20 −4236.36 x6.x7

846.01 −91,722,135.11 45,777.77 x6.x8

1596.02 −106,614,524.44 46,888.89 x7.x8
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