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Abstract: This paper presents a novel minimum seeking algorithm referred to as the Hunger Games
Search (HGS) algorithm. The HGS is used to obtain optimal values in the model describing proton
exchange membrane fuel cells (PEMFCs). The PEMFC model has many parameters that are linked in
a nonlinear manner, as well as a set of constraints. The HGS was used with the aforementioned model
to test its performance against nonlinear models. The main aim of the optimization problem was to
obtain accurate values of PEMFC parameters. The proposed heuristic algorithm was used with two
commercial PEMFCs: the Ballard Mark V and the BCS 500 W. The simulation results obtained using
the HGS-based model were compared to the experimental results. The effectiveness of the proposed
model was verified under various temperature and partial pressure conditions. The numerical
output results of the HGS-based fuel cell model were compared with other optimization algorithm-
based models with respect to their efficiency. Moreover, the parametric t-test and other statistical
analysis methods were employed to check the robustness of the proposed algorithm under various
independent runs. Using the proposed HGS-based PEMFC model, a model with very high precision
could be obtained, affecting the operation and control of the fuel cells in the simulation analyses.

Keywords: hunger games search algorithm; hydrogen; modeling and simulations; parameter
identification; PEMFCs

1. Introduction

Nowadays, DG is considered to be one of the prominent solutions in distribution
networks. The use of DG has several advantages, including: (a) being a quick solution
that defers the required expansion of the distribution network, (b) if the network deferral
is imminent, new capacities are reduced, (c) it also supports the bus and overall system
voltage, (d) it mitigates power losses considerably, (e) it increases the reliability of the
distribution system, (f) above all, it decreases the amount of emitted green-house gases [1–3].
Of course, all of the aforementioned points are realized when using renewable energy
resources with DGs. PEMFCs are considered to be one of the most promising clean
DG units.

In PEMFCs, electrical energy is obtained from chemical reactions without producing
any harmful emissions [4,5]. However, there are many industrial variants of fuel cells with
similar concepts, including SOFCs [4–6], PEMFCs [7,8], etc. [9]. High performance is one of
the notable merits of PEMFCs, along with their zero-waste material characteristics. PEMFCs
operate at temperatures ranging from 50 to 100 ◦C, with efficiency lying between 30% and
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60%, depending on the surrounding environmental conditions [10,11]. PEMFCs possess a
wide range of applications, ranging from domestic applications [12] to the motor drives of
switched reluctance motors [13]. As mentioned earlier, they are used in DG distribution
networks [14]. Moreover, they are extensively employed in microgrid applications [15].

Due to the importance of PEMFCs, the published literature contains many efforts
to model and optimize the parameters defining PEMFC operation. The authors in [16]
summarized some of these efforts. The principal aim of these efforts is to accurately derive
a mathematical model that actually represents the performance of PEMFCs under various
working conditions. When the precision of parameter estimation is on target, the tools
used for estimation produce minimal error. In other words, optimization tools narrow the
gap between the estimated values and their experimental counterparts [17]. The empirical
models representing PEMFC performance are listed in [18,19]. One of these empirical
methods is the broadband current excitation method, which can be used in determining
online PEMFC electrochemical impedance [20]. Then comes another modeling technique,
known as the fractional order method for PEMFC [21]. The authors in [22] used semi-
empirical equations to construct a model for PEMFC. Meanwhile, in [23], the GRG method
was implemented to optimize the parameters of the PEMFC model.

In addition to the above, in [24], the analytical method was used to model the un-
certainty of the PEMFC parameters and to analyze their sensitivity. Another analytical
method was implemented in [25], this time with the aim of using PEMFC to produce
hydrogen. These two analytical methods are characterized by great complexity. Therefore,
their analysis implies a huge calculation burden [26].

It is worth mentioning that traditional optimization techniques are prone to several
disadvantages, such as: (a) difficulty in reaching an optimum solution; (b) dependence on
the appropriate selection of initial conditions; (c) the software itself affects the accuracy
of the solution; and (d) getting stuck in local minima during the search. The issues arise
mainly in problems with nonlinear objective functions and multiple constraints that create
complex terrain. Here arises the importance of using metaheuristic techniques, which
can achieve better results while maintaining an acceptable calculation burden. It is worth
mentioning that there are various types of metaheuristic techniques, among which (a) atom
search [10], (b) adaptive GA [27], (c) BSO [28], (d) cuckoo search [29], (e) DE [30–32],
(f) GWO [33], (g) harmony search [34], (h) hybrid bee colony [35], (i) JAYA [36], (j) NNA [7],
(k) satin bowerbird optimizer [37], (l) SSA [38], and (m) SSO [39] have been used to perform
the modeling of PEMFCs. In addition, other optimizers have been used to achieve this
aim, including firefly and SFLA [40], backtracking framework [41], DE and VSA [42],
flower pollination [43], GHO [44], modified particle swarm optimization [45], multi-verse
optimizer [46], and teaching-learning [17,47]. All these techniques behave differently with
respect to optimization problems. A technique might be able to solve certain categories
of problems effectively, while the same technique might fail to solve another category of
problems. Here arises an important theory known as the “no free lunch theorem”. The
theorem indicates that, as problems differ in all aspects, starting with the complexity of the
objective function and continuing on to the types of constraints, there will not be a single
optimization technique that is able to solve all effectively categories of problems. Generally
speaking, there will not be a super technique. Therefore, there will always be a need, every
now and then, to invent new techniques offering new perspectives and philosophies. The
optimal solutions of optimization problems are of great interest [48]. In fact, they represent
the principal motivation of the authors in applying the novel Hunger Games Search (HGS)
algorithm to find the optimal values of the PEMFC model, thus achieving a high-precision
model. Actually, such high-performance models are highly essential in all simulation and
dynamic analyses of fuel cells, whether in microgrids, distribution networks, or smart
grid applications.

The proposed HGS is a population-based algorithm that emulates the hunger-driven
activity and social behavior of animals. It was introduced by Y. Yang and others in 2021 [49].
Under the HGS algorithm concept, an adaptive weight is designed to emulate the hunger
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effect on all of the search steps. The HGS algorithm follows the games that are used by
animals in the process. Actually, these games are considered to be evolutionary adaptations
that represent the seeking out of food and the chance of survival of animals. The HGS
algorithm has various merits, including a simple procedure and a high convergence speed,
and it leads to high-quality solutions. Furthermore, it was verified by comparing its results
with the results of other optimizers on 23 mathematical functions of the standard IEEE
CEC 2014 test. Moreover, the HGS algorithm has been applied to solve several engineering
problems [49].

In this paper, a novel implementation of the HGS algorithm is considered in order to
obtain optimal values for the model representing the PEMFC. The PEMFC model has many
parameters that are linked in a nonlinear manner, along with a set of constraints. The HGS
is used with the aforementioned model to test its performance against nonlinear models.
The main aim of the optimization problem is to obtain accurate PEMFC parameter values.
The proposed heuristic algorithm is used with two commercial PEMFCs—the Ballard Mark
V and BCS 500 W fuel cells. The fitness function of the optimization problem relies on the
sum of square error obtained between the estimated and experimental fuel cell voltages.
The constraints of the optimization problem are based on the boundaries of the design
variables or model parameters. The simulation results obtained using the HGS-based
model are compared with the experimental results. The accuracy of the proposed model
is validated under variations in both temperature and partial pressure. The numerical
results obtained using the HGS-based fuel cell model are compared with those obtained
using models based on other optimization algorithms. Moreover, the parametric t-test
and other statistical analyses are performed to check the degree to which the algorithm is
robust under various independent runs. With the proposed HGS-based PEMFC model, a
very accurate model can be obtained, affecting the operation, control of the fuel cells in
simulation analysis.

The main contributions of the article include: (1) a novel implementation of the HGS
algorithm, seeking to find the optimal values of the PEMFC model parameters; (2) a
comparison between the simulation results based on the HGS fuel cell model and the
experimental results obtained using two different commercial PEMFCs, (3) a presentation
of an accurate model that can be used efficiently under various environmental conditions
(with respect to temperature and partial pressure).

In the rest of this article, Section 2 presents the mathematical modeling of PEMFCs,
including all of the equations describing it. The theoretical concepts and mathematical
equations of the proposed HGS and the formulation of the problem are provided in
Section 3. Section 4 then provides an analysis of the simulation and the experimental
results. Finally, the Conclusions section wraps up all of the findings as well as proposing
future research that the authors suggest should be carried out.

2. Mathematical Model of Proton Exchange Membrane Fuel Cell

It is well established that the output voltage from a single PEMFC ranges from 0.90
to 1.23 volts. Thus, to obtain the desired voltage and current, the user can connect many
PEMFCs in series/parallel combinations [39,50]. PEMFCs have different operating voltages
in terms of their I–V polarization curves, which are dependent on their operating conditions.
The operating conditions have three categories: (i) low-current conditions, in which the
operating voltage is referred to as the activation voltage (vact); (ii) linear operation, where
the voltage is referred to as the Ohmic resistive drop (vR); and higher loading, where the
operating voltage is referred to as concentration voltage (vcon). Therefore, the final voltage
output from the PEMFC stack (vStack) can be modeled using Equation (1), in accordance
with [7,9,10,51]:

VStack = Ncells × (ENernst − vact − vR − vcon) (1)
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To calculate each voltage in Equation (1), a series of equations will be used. In order
to calculate ENernst, for operating temperatures of 100 ◦C (or less), Equations (2)–(5) have
the following formulas:

E = 1.229− 0.85×10−3
(

Tf c − 298.15
)
+ 4.3085×10−5Tf cln

(
PH2

√
PO2

)
(2)

PH2 =
RHa·PH2O

2

1/

RHa·PH2O

Pa
·e

1.635I f c/A

Tf c
1.334

− 1

 (3)

PO2 = RHc·PH2O

1/

RHc·PH2O

Pc
·e

4.192I f c/A

Tf c
1.334

− 1

 (4)

PH2O = 2.95× 10−2Tc − 9.18× 10−5Tc
2 + 1.44× 10−7Tc

3− 2.18and Tc = Tf c − 273.15 (5)

Meanwhile, to calculate vact, Equations (6) and (7) will be used. Their formulas are
as follows:

vact = −
[
ξ1 + ξ2Tf c + ξ3Tf cln

(
CO2

)
+ ξ4Tf cln

(
I f c

)]
(6)

CO2 =
PO2

5.08·106 ·e
498
Tf c (7)

Then, to calculate vR, Equations (8) and (9) will be used. They have the following formulas:

vΩ = I f c(Rm + Rc); Rm =
ρml
A

(8)

ρm =

181.6
[

1 + 0.03
( I f c

A

)
+ 0.062

( Tf c
303

)2( I f c
A

)2.5
]

[
λ− 0.634− 3

( I f c
A

)]
e

4.18·
Tf c−303

Tf c

(9)

Finally, the vcon can be calculated using Equation (10):

vcon = −βln
(

Jmax − J
Jmax

)
(10)

Models (1)–(10) above comprise seven parameters (ξ1 : ξ4. λ.Rc and β) that were not
provided originally in the data sheet of the manufacturers. This means that these pa-
rameters need to be obtained using optimization techniques in order to achieve accurate
modeling of the PEMFC stack.

3. HGS Overview, Modeling, and Problem Formulation

The proposed HGS is a population-based algorithm and emulates the hunger-driven
activity and social behavior of animals. It was introduced by Y. Yang and others in 2021 [49].
In the concept of the HGS algorithm, an adaptive weight is designed to emulate the effect
of hunger on each of the search steps. The HGS algorithm follows the games, which are
used by animals in this process. Actually, these games are considered to be evolutionary
adaptations that represent the seeking of food and the chance of survival for animals. The
following subsections provide an overview, as well as a description of the modeling and
the problem formulation.

3.1. Overview

The motivation of the HGS optimizer described in [49] was to close the research
gap found in all previous swarm intelligence techniques, including both meta-heuristic
techniques and heuristic ones. This research gap, present in all other optimization tech-
niques, forces users to focus on operations in order to achieve better convergence, and thus



Energies 2021, 14, 5022 5 of 21

enhance the quality of the results. As a result, HGS was designed to be a general-purpose
optimization technique that relies on performance, rather than a change in metaphor. The
authors of the technique compared the results of HGS with various well-known optimiza-
tion techniques in order to prove its superiority. The further analysis of these results is
beyond the scope of this paper, and we refer the reader to the original reference [49] for
further study.

The authors describe HGS as a novel meta-heuristic optimization algorithm based
on swarm intelligence that aims to achieve balance between exploration and exploitation,
which could lead to the discovery of more optimal solutions. The HGS has a simple
structure that allows it to tackle both constrained and unconstrained problems. The HGS is
based on animal activities that are driven by animals’ hunger-driven behavior and choices.
Hunger was selected due to its simple concept, dynamic nature, motivation of crucial
importance, and the fact that the search is dependent on fitness. This means that hunger
adapts each step of the optimization process. The HGS follows game theory based on the
individual rule and its rival rules in an adaptive way.

The HGS algorithm consists of the following stages: initialization, fitness evaluation,
sorting, hunger updating, weight updating, and location updating.

3.2. HGS Mathematical Modeling (Step 1): Approaching Food

For the (t) individual, its location is based on foraging behavior, and can be modeled
mathematically as follows:

−−−−−→
X(t + 1) =


Game1 :

−→
X(t) × (1 + randn(1)). r1 < lHGS

Game2 :
−→
W1 ×

−→
Xb +

→
R ×
−→
W2 × |

−→
Xb −

−−→
X(t) |. r1 > lHGS. r2 > E

Game3 :
−→
W1 ×

−→
Xb −

→
R ×
−→
W2 × |

−→
Xb −

−−→
X(t) | r1 > lHGS. r2 < E

(11)

The factor
−−→
X(t) × (1 + randn(1)) models the individual’s search for food, in the

current location, with a random hunger behavior. Meanwhile, the factor |
−→
Xb −

−−→
X(t) |

depicts the tth individual’s activity range, and the multiplication by factor
−→
W2 simulates

the effect of hunger on the activity of the individual. To control the activity of the individual,

the term
→
R is introduced. When

→
R gradually approaches 0, this indicates that the individual

is no longer hungry, i.e., the individual’s activity is halted. Then the term
−→
W1 ×

−→
Xb is

added/subtracted to simulate that the individual has been informed that its peers have
arrived at the location of the food, this stimulates the individual to search for food in its

current location. Subsequently, the term
→

W1 denotes the error experienced by the individual
in acquiring the actual position of the food.

To calculate the variation control in all positions, the following equation is used:

E = sech(|F(i)− BF|) (12)

where i = 1, 2, · · · , n. In addition, sech(x) = 2
ex+e−x .

→
R can be calculated using the following formula:

→
R = 2× shrink× rand− shrink (13)

shrink = 2×
(

1− t
T

)
(14)
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In the problem space, the HGS relies on the logic of searching depending on the following:

• Search based on
→
X : the first game models the individual’s independent efforts to

search for the food out of hunger, and in a manner that is non-cooperative with other
individuals.

• Search based on
−→
Xb : the second and third games model the cooperation between

individuals by means of sharing information regarding the location of food. By tuning

the variables
→
R,
−→
W1 , and

−→
W2 , the position of the individual can be updated on the

basis of the findings of other individuals.

3.3. HGS Mathematical Modeling (Step 2): Hunger Role

In this section, the individual hunger
−→
W1 , from Equation (11), is modeled using the

following model:

−→
W1 =

{
hungry(i)× N

SHungry × r4. r3 < lHGS

1. r3 > lHGS
(15)

Meanwhile, the other hunger
−→
W2 , also from Equation (11), has the following formula:

−→
W2 =

(
1− e(−|hungey(i)−SHungey|)

)
× r5 × 2 (16)

where hungry represents the hunger of each individual.
To calculate the term hungry(i), Equation (17) is used:

hungry(i) =

{
0. AllFitness(i) == BF
hungry(i) + H. AllFitness(i)! == BF

(17)

where AllFitness (i) indicates the fitness value of all individuals in this iteration. For any
iteration, the hunger value of the best individual is set to 0. For the remaining individuals,
a new value of their hunger (H) is calculated using the original hunger. This means that as
an individual’s hunger changes, the corresponding value of (H) will change as well.

The formula of (H) is as presented in Equations (18) and (19), as follows:

TH =
F(i)− BF
WF− BF

× r6 × 2× (UB− LB) (18)

H =

{
LH × (1 + r). TH < LH
TH. TH ≥ LH

(19)

The factor F(i) − BF indicates the amount of food that the ith individual needs to
satisfy his hunger. This value changes with each iteration. Meanwhile, the factor WF− BF
describes the individual’s capacity for food foraging. Then, the ratio F(i)−BF

WF−BF is referred to
as the hunger ratio. Finally, the factor r6 × 2 introduces the positive/negative effects of the
factors in the surrounding environment on the individuals hunger.

3.4. HGS Pseudo Code and Flowchart

The following pseudo code presents the steps for performing the HGS algorithm:
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1:→ Initialize the parameters N. T. lHGS. D. SHungry
2:→ Initialize the position of all individuals Xi(i = 1, 2, · · · , N)
3:→ While(t ≤ T)
4:→ Calculate the fitness of all individuals
5:→ Update BF. WF. Xb. BI
6:→ Calculate the Hungry using Equation (17); W1 using Equation (15); W2 using

Equation (16);
7:→ For each individual
8:→ Calculate E using Equation (12); update R using Equation (13); update positions

using Equation (11)
9:→ End For
10:→ t = t + 1
11:→ End While
12:→ Return BF. and Xb

To sum up the previous equations of the HGS algorithm, Figure 1 presents the steps
needed to perform the HGS algorithm:

3.5. Problem Formulation

To find the seven unknown parameters of the PEMFC model described in Section 2, it
was considered to be an optimization problem with nonlinear constraints. In this problem,
the SSD was calculated on the basis of measured and proposed model voltage points.
The fitness function was minimized using the HGS algorithm to ensure matching values
from both theoretical and actual measurements. The formula describing SSD can be found
in [6,7,29–36,38–40,42–47] and is as follows:

SSD =
n

∑
k=1

(Vm(k)−Ve(k))
2 (20)

Meanwhile, the fitness function FF has the following formula:

FF = Minimize (SSD) (21)
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4. Simulation Results

In this study, the proposed HGS algorithm was applied directly to obtain the unknown
parameters of the PEMFC model. To this end, the PEMFC model was considered nonlinear
model, possessing a nonlinear nature due the impact of temperature and hydrogen and
oxygen pressure. The HGS algorithm was implemented to minimize the objective function,
yielding accurate parameters for the fuel cell model. To achieve this end, some commercial
PEMFCs were tested, including Ballard Mark V, BCS 500 W, and Nedstack PS6. The
detailed datasheets for these fuel cells provided in the vast literature available, while the
search space limits for the unknown parameters are provided in [7]. The optimization
problem under study was considered as an offline optimization problem, which entails
the computational effort not being determinant. The simulations were carried out using
the MATLAB program, version R2019a. The PC comprised an Intel(R) Core ™ i7 CPU,
2.6 GHz operating Microsoft Windows 10. The PEM fuel cell model and the proposed HGS
algorithm codes were built using the MATLAB environment. The optimal settings of the
HGS algorithm involved 50 agents and 100 iterations. Actually, these settings were selected
by the designer in order to obtain precise results. To check the robustness of the proposed
HGS algorithm, 100 independent simulation runs were performed, and some statistical
data were obtained, such as the best value, worst value, and standard deviation (SD). The
following subsections provide a detailed analysis of this PEMFC modeling.

4.1. Ballard Mark V

The Ballard V 5 kW PEMFC possesses thirty-five cells, which are connected in series.
The maximum current of this fuel cell is 70 A. The proposed HGS algorithm was imple-
mented to minimize the objective function in order to accurately obtain the PEM fuel cell
model parameters. Several runs were performed, and the best values were chosen. The
convergence curve of objective function is illustrated in Figure 2. Notably, this convergence
curve is very smooth, with no fluctuations, and it reaches its final value in an expeditious
way. Table 1 reports the optimal values of the unknown parameters of the Ballard PEMFC
model using the proposed HGS algorithm in comparison with other models using other
optimization algorithms. The statistical analysis presented in Table 1. It can be observed
that the HGS-based PEMFC model results in a lower fitness value and SD, which demon-
strates its superiority with respect to other approaches reported in the literature. This leads
to an accurate model of the PEMFC. The current–voltage (I–V) and current–power (I–P)
curves of this fuel cell model are shown in Figure 3a,b, respectively. The HGS-based fuel
cell model results are compared with their experimental results in Figure 3. It is worth
mentioning here that the proposed PEM fuel cell model is very close to the experimental
model, and it achieves a very small error that lies within an acceptable range. Moreover, the
simulation of the HGS-based fuel cell model was performed under different temperature
and pressure conditions. Figure 4a,b depicts the I–V and I–P curves of this fuel cell model
under various temperature conditions (25, 50, 70 and 90 oC), while maintaining the oxygen
and hydrogen pressures constant at one atmospheric pressure. It can be observed that as
the fuel cell temperature increases, the PEMFC voltage and power increases. Furthermore,
Figure 5a,b show the I–V and I–P curves of the fuel cell model under various pressure
conditions while maintaining the fuel cell temperature constant at 70 oC. It can be noted
that as the partial pressure of oxygen and/or hydrogen increases, the voltage and power
of the fuel cell increase. Therefore, these pressures can be carefully adjusted to achieve
specific output power from the fuel cell under specific environmental conditions.
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Table 1. Optimal parameters of the Ballard PEMFC model.

Parameter HGSA NNA [7] GOA [44]

ξ1 −0.991 −0.979 −0.853

ξ2 × 10−3 3.70 3.694 3.417

ξ3 × 10−5 9.1 9.087 9.8

ξ4 × 10−5 −16.35 −16.28 −15.95

λ 22.87 23 22.84

Rc(mΩ) 0.1 0.1 0.1

β 0.0135 0.0136 0.0136

Best value 0.85360 0.85361 0.871

Worst value 0.861 0.8706 0.909

SD 4.6 × 10−4 0.0085 0.011
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4.2. BCS Fuel Cell

The BCS 500 W fuel cell has thirty-two cells, which are connected in series. This fuel
cell is fabricated using BCS technology. The maximum current of the fuel cell is 30 A. The
proposed HGS algorithm was implemented to minimize the objective function in order to
accurately obtain the PEMFC model parameters. Several runs were performed and the best
values were chosen. The convergence curve of objective function is illustrated in Figure 6.
It can be observed here that the convergence curve is smooth, and it quickly reaches the
final value. Table 2 demonstrates the optimal values of the unknown parameters of the
BCS fuel cell model using the HGS algorithm in comparison with other models using other
optimization algorithms. The statistical analysis is provided in Table 2. It can be noted that
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the HGS-based PEMFC model leads to lower fitness values and SD. This indicates its great
superiority over the other models reported in the literature. This indicates that an accurate
model of the PEMFC was obtained. The polarization curves (I–V) and (I–P) of the BCS fuel
cell model using the proposed HGS algorithm are shown in Figure 7a,b, respectively. The
results for the HGS-based fuel cell model are compared with the experimental results in
Figure 7. It is worth mentioning here that the proposed PEMFC model coincides with the
experimental model.

Energies 2021, 14, x FOR PEER REVIEW 14 of 22 
 

 

noted that the HGS-based PEMFC model leads to lower fitness values and SD. This indi-

cates its great superiority over the other models reported in the literature. This indicates 

that an accurate model of the PEMFC was obtained. The polarization curves (I–V) and (I–

P) of the BCS fuel cell model using the proposed HGS algorithm are shown in Figure 7a,b, 

respectively. The results for the HGS-based fuel cell model are compared with the exper-

imental results in Figure 7. It is worth mentioning here that the proposed PEMFC model 

coincides with the experimental model. 

Furthermore, the simulation results of the HGS-based fuel cell model were obtained 

under different temperature and pressure conditions. Figure 8a,b provide the I–V and I–

P curves of this fuel cell model under various temperature conditions (30, 50, and 70 oC), 

while maintaining the oxygen and hydrogen pressures at one atmospheric pressure. It can 

be observed that as the fuel cell temperature increases, the voltage and power of the 

PEMFC increase. Furthermore, Figure 9a,b show the I–V and I–P curves of the fuel cell 

model under various pressure conditions while maintaining the temperature of the fuel 

cell temperature at 60 oC. It can be noted that as the partial pressure of oxygen and/or 

hydrogen increases, the voltage and power of the fuel cell increase. Therefore, these pres-

sures can be carefully adjusted to achieve specific output power from the fuel cell under 

specific environmental conditions. 

 

Figure 6. Convergence of the objective function of the BCS PEMFC model. 

Table 2. Optimal parameters of the BCS PEMFC model. 

Parameter HGSA NNA [7]K SFLA [40] ICA [40] FOA [40] SSO [39] 

𝜉1 −1.11 −1.059 −0.965 −0.908 −0.992 −0.853 

𝜉2 × 10−3 3.753 3.743 3.081 2.479 2.621 4.811 

𝜉3 × 10−5 9.71 9.69 7.223 4.458 3.746 9.433 

𝜉4 × 10−5 −19.35 −19.302 −19.3 −19.31 −19.30 −19.205 

𝜆 20.97 20.87 20.886 22.66 21.101 23 

𝑅𝑐(𝑚Ω) 0.1 0.1 0.1 0.246 0.1 0.349 

𝛽 0.0161 0.0161 0.0161 0.0162 0.01630 0.0158 

Best value 0.011692 0.011698 0.011697 0.01185 0.01181 0.0122 

Worst value 0.0134 0.01367 0.01169 0.03466 0.03023 0.0152 

SD 3.4 × 10−4 5.641 × 10−4 5.04 × 10−8 0.00587 0.0041 8.71 × 10−4 

Figure 6. Convergence of the objective function of the BCS PEMFC model.

Table 2. Optimal parameters of the BCS PEMFC model.

Parameter HGSA NNA [7]K SFLA [40] ICA [40] FOA [40] SSO [39]

ξ1 −1.11 −1.059 −0.965 −0.908 −0.992 −0.853

ξ2 × 10−3 3.753 3.743 3.081 2.479 2.621 4.811

ξ3 × 10−5 9.71 9.69 7.223 4.458 3.746 9.433

ξ4 × 10−5 −19.35 −19.302 −19.3 −19.31 −19.30 −19.205

λ 20.97 20.87 20.886 22.66 21.101 23

Rc(mΩ) 0.1 0.1 0.1 0.246 0.1 0.349

β 0.0161 0.0161 0.0161 0.0162 0.01630 0.0158

Best value 0.011692 0.011698 0.011697 0.01185 0.01181 0.0122

Worst value 0.0134 0.01367 0.01169 0.03466 0.03023 0.0152

SD 3.4 × 10−4 5.641× 10−4 5.04× 10−8 0.00587 0.0041 8.71× 10−4
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Furthermore, the simulation results of the HGS-based fuel cell model were obtained
under different temperature and pressure conditions. Figure 8a,b provide the I–V and I–P
curves of this fuel cell model under various temperature conditions (30, 50, and 70 oC),
while maintaining the oxygen and hydrogen pressures at one atmospheric pressure. It
can be observed that as the fuel cell temperature increases, the voltage and power of the
PEMFC increase. Furthermore, Figure 9a,b show the I–V and I–P curves of the fuel cell
model under various pressure conditions while maintaining the temperature of the fuel
cell temperature at 60 oC. It can be noted that as the partial pressure of oxygen and/or
hydrogen increases, the voltage and power of the fuel cell increase. Therefore, these
pressures can be carefully adjusted to achieve specific output power from the fuel cell
under specific environmental conditions.
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4.3. Robustness of the Proposed HGS Algorithm

To check the robustness of the proposed HGS algorithm, the hypothesis t-test was
implemented in the Ballard PEMFC model. The hypothesis test is a procedure used to
ensure that the characteristics of the population are correct. The goal test checks the
statistical evidence for accepting the null hypothesis. To this end, 20 independent runs
were carried out on the HGS-based PEMFC model, and the fitness values of each of these
runs were recorded and used in the t-test, which was performed using the MATLAB
environment. The test employed a 5% level of significance. The h-value and P-value were
recorded as 0 and 1, respectively. The value of the test statistics was 0. The degree of
freedom of these test records was 19 and the standard deviation was 4.9 × 10−6. These
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statistical measurements indicate the high robustness of the proposed HGS algorithm-based
PEMFC model.

4.4. Discussion

The proposed HGS algorithm was effectively implemented in order to obtain the
unknown parameters of the PEMFC model. As demonstrated in the previous subsections,
the proposed algorithm provided the lowest fitness value among the results obtained from
other algorithms. This demonstrates its superiority for solving the optimization problem
under study. This high performance of the proposed algorithm comes from its appropriate
design, which depends on the experience of the designer in finding its optimal settings.
Moreover, the proposed algorithm possesses a high convergence speed, with a minimal
number of parameters needing to be tuned. This has encouraged many researchers to use it
to solve many engineering problems. There is a lack of studies focusing on finding suitable
environments in which to operate and store hydrogen pipes, where safety is dependent on
certain temperature and pressure requirements.

5. Conclusions

This paper presented a novel application of the HGS algorithm to efficiently identify
the PEMFC model parameters. The PEMFC model can affect the simulation results of
fuel cells and their analyses, having dramatic implications in many applications, such as
distributed generation, microgrids, and smart grid systems. The fitness function is based
on the sum of square error between the identified voltage model and the experimental
voltage. The design variables of the model comprise seven unknown model parameters.
The proposed HGS algorithm is applied to minimize the fitness function, and yields
the design variables under varying constraints. In fact, this optimization problem was
built in response to the shortage of PEMFC data provided by the manufacturers. The
simulation results of the HGS-based model demonstrated its accuracy in comparison with
the experimental results. Moreover, the simulation results demonstrated the capability and
flexibility of the model for studying fuel cells under different environmental conditions
(i.e., temperature and partial pressure of oxygen and/hydrogen). The results obtained using
HGS outperformed those obtained with other optimizers, which was a result of the proper
design of the HGS algorithm. The robustness of the HGS algorithm was successfully tested
on the basis of several statistical analyses and the parametric t-test, achieving superior
values. With the proposed HGS-based fuel cell model, accurate modeling of the fuel cell
can be performed. Moreover, the proposed algorithm can be applied to solve other power
engineering problem such as those in renewable energy and smart grid systems.
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Nomenclature

A Membrane area
(
cm2)

BF Best fitness obtained in the current HGS iteration
CO2 concentration of oxygen in

(
mol/cm3)

E Variation control for all HGS individual positions
ENernst Reversible voltage of PEMFC (V)
F(i) Fitness value of each HGS individual
H Hunger sensation
Ifc Operating current of PEMFC (A)
J Density of actual current

(
A/cm2)

Jmax Maximum value of J
(
A/cm2)

l Membrane thickness (cm)
lHGS Parameter that improves HGS performance
LB Lower bound of variable
N Number of individuals of HGS algorithm
NCells Total number of PEMFC
PH2 Partial pressure of H2 (atm)
PO2 Partial pressure of O2 (atm)
PH2O Pressure at which H2O is saturated (atm)
Pa Inlet pressure of Anode (atm)
Pc Inlet pressure of Cathode (atm)
→
R HGS variable in the range of [−a.a]
r1 : r6 HGS random variables between [0.1]
rand HGS Random number between [0.1]
randn(1) Random number follows normal distribution
Rm membrane resistance (Ω)
Rc Connection resistance (Ω)
RHa Relative humidity of vapor at Anode
RHc Relative humidity of vapor at Cathode
SHungery Sum of all hungry feelings of all individuals
t Current iteration of HGS individual
T Maximum number of HGS iterations
Tfc PEMFC operating temperature (K)
UB Upper bound of the variable
vact Activation voltage at low current values (V)
vcon Over-potential voltage at high loading (V)
vR Ohmic resistive drop at linear operating conditions (V)
vStack Overall voltage from PEMFC stack (V)
WF Worst fitness value obtained in current HGS iteration
→

W1.
→

W2 Represents weight of hunger
→
Xb Location of best HGS individual in current iteration
→

X(t) Represents each HGS current location
Abbreviations
BSO Balanced seagull optimization algorithm
CF Correlation coefficient
CPU Central processing unit
DE Differential evolution
DG Distributed/dispersed generation
FCs Fuel cells
FF Fitness function
GA Genetic algorithm
GHO Grasshopper optimization algorithm
GRG Generalized Reduced Gradient
GWO Grey wolf optimization
HGS Hunger games search
MATLAB MATrix LABoratory
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Nomenclature

NNA Neural network optimizer
PEMFC Proton exchange membrane FC
SFLA Shuffled frog-leaping algorithm
SOFCs Solid oxide fuel cells
SSA Shark-smell algorithm
SSD Sum of squared deviation
SSO Salp swarm optimization algorithm
VSA Vortex search approach
WOA Whale optimization algorithm
Greek Letters
β Parametric coefficient
λ Adjustable parameter
ξ1 to ξ4 Experimental quantities
ρm Membrane resistivity (Ω.cm)
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