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Abstract: The well-known gear tooth defects such as root cracks and flank spalls have been widely
investigated in previous studies to model their effects on the time varying mesh stiffness (TVMS)
and consequently the dynamic response of motor-gearbox systems. Nevertheless, the effect of
assembly errors such as the center distance and the eccentricity has been less considered in past
works. Determining the signature of these errors on the system response can help for their early
detection and diagnostic to avoid overloading and failure of gears. An original geometric-based
method combined with the potential energy method is proposed in this paper to accurately model
the effect of these assembly errors on the TVMS of mating spur gear pairs. This is achieved by
updating the line of action equation (LOA) at each meshing step using the actual coordinates of
gear centers and employing a contact detection algorithm (CDA) to determine the actual contact
points coordinates. An electrical model of a three-phase induction machine was then coupled with
a dynamic model of a one-stage spur gear system to simulate the effect of assembly errors on the
electromechanical response of the motor-gearbox system. The simulation results showed that the
center distance error induces a reduction in the TVMS magnitude and the contact ratio, whereas the
eccentricity error causes a double modulation of the TVMS magnitude and frequency. In addition,
the results showed that assembly errors can be detected and diagnosed by analyzing the system
vibration and the motor phase-current.

Keywords: time varying mesh stiffness; center distance; eccentricity; induction motor; gearbox; diagnostics

1. Introduction

Thanks to their robustness and good efficiency–cost ratio, induction motors and
gearboxes are widely adopted in modern power transmission applications. Gearboxes
offer a large variety of solutions to realize customized power transmission needs in a
very reduced space by choosing the convenient gear types (spur, helical, bevel, etc.),
gears configuration (parallel shaft, planetary, etc.) and the right combination of teeth
and stage numbers depending on the desired transmission ratio. To ensure a smooth
power transmission and a uniform load distribution, gears should be properly designed
and assembled in their housing [1]. Otherwise, design and mounting failures lead to the
apparition of transmission problems such as backlash and excessive noise. Two frequent
problems are almost inevitable when assembling gear systems: the center distance and the
eccentricity errors.

The center distance error occurs when the distance separating the two mating gear
centers is not adjusted properly, whereas the eccentricity error appears when a shift exists
between the geometric center of the gear and its rotation center. These anomalies should
be avoided in gear systems because they affect the transmission efficiency of gearboxes
and reduce their practical useful life by increasing the tooth surface contact stress and
the tooth root bending stress [2]. Understanding the effect of the center distance and
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eccentricity errors on the system’s observable quantities such as the vibration and the
electrical response could help enormously in the early detection and reparation of them in
order to avoid system failure [3,4].

Dynamic modeling has always been an efficient tool to predict the response of motor-
gearbox systems under varying operating conditions. A set of models were proposed in the
literature to simulate gearboxes and induction machine responses; among them, numerical
models based on the finite element method (FEM) and analytical models based on the
lumped parameter method (LPM) were the most popular ones [5–9]. FEM-based models
generally provide more precise results and a high fidelity to the original system. However,
they are very sensitive to the mesh density and the types of finite elements selected and
their computational cost varies exponentially with the mesh density. In the LPM-based
models, the system components are replaced with their respective inertial or electrical
properties in concentrated points, and the interactions between them are modeled with
basic physics laws such as the Newton’s second law or the Maxwell–Faraday equations of
electromagnetic induction. Analytical methods make it possible to obtain very satisfying
results of the system performance and offer a good precision–complexity ratio.

Another method used to model the effect of mechanical faults on the induction motor
current signature can be found in [10,11]. In this method, the different characteristic
frequencies such as gear mesh, gear faults, etc., are directly introduced as fluctuations
around the average load torque with subjectively chosen amplitudes based on experimental
observations. Then, this torque is used as input of the electrical model of the induction
machine to evaluate its effect on the stator phase current. This method allows us to easily
model the electromechanical system, but it fails in quantifying the system excitations,
especially the fault oscillation components.

A key parameter in modeling gear dynamics with the LPM is the gear mesh stiffness.
Stiffness of mechanical structures is an inherent parameter that depends mainly on the
structure geometry and the loading conditions; the gear mesh stiffness reflects the teeth
capacity to support the contact load during meshing process. Various methods were pro-
posed to estimate this parameter experimentally [12], numerically [13] or analytically [14].
Experimental and numerical methods for the TVMS calculation are mainly based on the
determination of the gear deflection when subjected to the applied load, whereas analytical
methods use the different energies stored in the gear tooth body when supporting the load
to derive the gear mesh stiffness components by the potential energy method proposed
in [15].

In the last decade, countless works have been published in the literature to inves-
tigate the effect of local gear teeth faults such as cracks and spalls on the gear mesh
stiffness [16–19]; however, only few studies were realized to model the center distance and
eccentricity errors effect on this parameter [20]. In [21], the authors studied the effect of
eccentricity errors on the dynamic behaviour of planetary gears, where the time varying
mesh stiffness (TVMS) was calculated using a simplified analytical formula in terms of
elastic properties. A kinematic model based on the potential energy method was proposed
in [22] to determine the effect of time varying center distance on the TVMS curve for perfect
gears and gears with local gear teeth faults (cracks and spalls). In [23], planetary gear train
motions and the mesh stiffness were solved simultaneously considering the time varying
center distance caused by the eccentricity errors. In [24], the effect of eccentricity error on
the TVMS and the dynamic response of a two-stage spur gear system was determined using
the potential energy method and the lumped parameter theory. The effect of eccentricity
error on helical gears was calculated in [25].

Experimental and FE methods for the TVMS determination need specific tools and
materials and are often time and cost consuming, which is why significant efforts have
been made to develop efficient analytical methods of calculating the gear mesh stiffness.
Traditional analytical methods were based on the angular expressions of the TVMS com-
ponents to determine the contact points, but these expressions make the reproduction of
gears varying geometries and defects a real challenge. In addition, these mathematical
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expressions need huge transformations in order to consider gear center displacement
during the meshing process.

An original geometric method based on the potential energy method is proposed in
this paper to accurately model the effect of gears center distance and the eccentricity errors
in the TVMS of mating gear pairs. This method was first proposed and validated in [26] to
determine the effect of teeth surface defects (spalls and pits) on the TVMS and is further
improved in this study to consider gear center displacement and varying teeth shapes.
This is achieved by updating the line of action (LOA) at each meshing step using the actual
coordinates of gear centers and employing a contact detection algorithm to determine
these contact point coordinates. An electromechanical model of a motor-gearbox system is
then developed to simulate the system dynamical and electrical response by combining
an electrical model of the three-phase induction machine with the dynamical model of a
one-stage spur gear system. The gearbox model was improved to consider the presence of
assembly errors in the system.

The proposed method for the TVMS calculation presents many advantages compared
to traditional analytical methods:

• It uses linear expressions instead of angular expressions for the evaluation of the
TVMS components, which makes the incorporation of gear faults less complicated;

• This method could be seen as a compromise between the FEM and the analytical
method, because the discretization of the gear allows one to consider the actual
geometry as in the FEM, and then the equations derived from the potential energy
method are used for the calculation of the TVMS because they are time efficient
compared to the FEM;

• It calculates the gear mesh stiffness based on the actual contact points and allows us
to visualize the meshing process and stiffness evolution;

• All modifications made to the gear tooth geometry could be incorporated in the TVMS
calculation process such as tooth tip corner, the tooth width variation and the tooth
root geometry.

This paper is organized as follows: Section 2 describes the method proposed in this
study for motor-gearbox modeling, contact points detection, geometric errors incorporation
and the stiffness calculation process. In Section 3, the simulation results are presented and
discussed for different stages of the center distance error and different configurations of
the eccentricity error. Finally, we conclude the paper with some summarizing conclusions.

2. Method Description
2.1. Gear Mesh Stiffness Determination

Figure 1 represents the overall flowchart of the TVMS evaluation method proposed in
this study. The gears used in this investigation are industrial KHK gears of references: KHK
SS2-29/KHK SS2-36 (these two gears were chosen because we have them in our laboratory,
so we can verify the extracted geometry by the real gears, but the developed method is
applicable for any type of gear). In the initialization part of this method, the gear 3D models
downloaded from the constructor website are incorporated in a computer-aided design
software to extract the gear teeth geometric features (the tooth profile, the tooth width
variation, etc.). These features are used then to reconstruct the gear matrices as explained
in Section 2.1.1. In the calculation part or the dynamic part of this flowchart, these matrices
are transformed at each simulation step to adjust the position and the angular rotation
of their centers; then, the corresponding LOA equation is defined and swept to detect
contact points at every iteration. Finally, these points are used to calculate the stiffness at
this iteration using Equations (1)–(5) and the angular position of the pinion is incremented
for the next iteration. The TVMS evaluation steps are described in more detail in the
following subsections.
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Figure 1. Overall flowchart of the proposed method for the TVMS calculation.

2.1.1. Gear Representation in the Proposed Method

Each gear is modeled with an N × Z matrix as illustrated in Figure 2, where N
represents the sampling rate of the chosen gear tooth profile and Z represents the number
of gear teeth. Every cell (n, z) of this matrix contains the coordinates of the nth point of the
zth tooth profile Pz,n as shown in Figure 2. We should note here that only the active side of
the gear teeth is considered in this representation.

This representation offers a set of advantages compared to the traditional analytical
methods, because it allows one to efficiently consider all types of geometrical modifications
or errors of the gear teeth. These modifications include: form errors (profile form error,
lead form error, etc.) and location errors (single and multiple pitch errors, runout errors,
etc.). Global tooth profile errors/modifications are incorporated directly in the tooth profile
vector TP, whereas local profile errors are assigned to the specific tooth index. Runout error
could be considered by performing a periodic translation of teeth profile vectors TP.

 

Gear 2D model Gear tooth 

discretization 
Gear matrix 

𝑃𝑖,1 

𝑃𝑖,𝑛 

𝑃𝑖,𝑁 

Figure 2. Gear matrix construction process.

The above mentioned errors could be handled by the two-dimensional representation
proposed in this study; other high dimensional modifications such as gear tooth crowning,
lead form slope, etc., could also be considered in this method by adding slicing operation
on the gear width direction as described in [26].
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As explained in the last paragraph, the first step in building a gear matrix is the
determination of the gear tooth profile; three different options could be used to do this:
analytically, experimentally or numerically. The analytical method is the most used one in
the literature; this method uses the mathematical expression of the involute curve and the
tooth root to determine the complete tooth profile curve. The experimental method uses
reverse engineering tools and techniques to reconstruct the tooth profile curve from a real
gear geometry. Finally, numerical methods use dedicated computer-aided design software
to extract the gear tooth profile geometry from the 3D model of the corresponding gear.

The third option is adopted in this study because no explicit mathematical expressions
of the teeth root shape are available and experimental methods require sophisticated
machines and tools to extract gear teeth profiles from real gears. The CAD models of two
commercialized gears were downloaded from the constructor website (KHK-Gears) and
the corresponding gear tooth shape was extracted using a CAD software (SOLIDWORKS),
as shown in Figure 3.

 
Figure 3. Extracted gear tooth geometry.

The main differences between the extracted gear tooth geometry and that of theoretical
one are illustrated in Figure 3. We can see that the gear addendum diameter is modified,
the tooth tip is cornered and the gear tooth width is variable along the tooth length
direction. These modifications will affect the gears’ contact ratio and the tooth resistance to
the applied contact force and, consequently, the TVMS value of the mating gear pair.

The elementary gear tooth profile and side curve are extracted and saved in two
vectors, TP and L. An adaptive resampling of these vectors is applied when needed to
increase the resolution and the calculation precision, but one should note that excessively
high resolutions will lead to high calculation time and so will compromise the method’s
efficiency. Then, iterative rotational transformations are applied to the TP curve with respect
to each tooth’s angular position and the resulted vector is assigned to the corresponding
tooth column in the gear matrix. Other gear parameters such as addendum and root
diameters will also be saved to be used in the next steps.

2.1.2. The Line of Action Determination

In this section, we will discuss the algorithm used to define the line of action equation
for arbitrarily chosen coordinates of pinion and gear centers, respectively. The origin of the
global frame used in this study is fixed at the pinion reference center point (xr

o,p, yr
o,p), so

the pinion and gear reference center coordinates are: (xr
o,p, yr

o,p) = (0, 0) and (xr
o,g, yr

o,g) =
(r1 + r2, 0).

As shown in Figure 4, only the gear base circles and centers are required to define the
corresponding LOA. Algorithm 1 details the steps followed for the determination of the
LOA for varying positions of gear centers:
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Algorithm 1 The line of action determination

1. Define pinion and gear actual positions:{
Ot

p = (xt
o,p, yt

o,p)

Ot
g = (xt

o,g, yt
o,g)

2. Calculate the pinion-gear center distance:

dpg =
√
(xt

o,g − xt
o,p)

2 + (yt
o,g − yt

o,p)
2

3. Determine the intersection point of LOA and the line of center distance:{
xint = xt

o,p + dp cos(αe)

yint = yt
o,p + dp sin(αe)

where:

αe = tan−1(
yt

o,g−yt
o,p

xt
o,g−xt

o,p
) dp =

rb,p
rb,p−rb,g

dpg

See Figure 4 for more details.
4. Calculate the direction of the LOA:

αt
L = αe + sin−1(

rb,p
dp

)

where: αt
L is the absolute angle of the LOA in the reference frame of study. Not to be

confused with the apparent pressure angle αp as shown in Figure 4.
5. Define the LOA equation yt

LOA = f (xt
LOA):

yt
LOA = tan(αt

L)× (xt
LOA − xint) + yint

α
L

r
 = 20 °

α
p

r
 = 20 °

O
p

r
 = (0,0)

O
g

r
 = (48.75,0)

O
p

t
 = (-2,-2.5)

O
g

t
 = (49.75,3)

α
L

t
 = 22.26 °

α
p

t
 = 28.33 °

LOA
t

(x
int

,y
int

)

d
g

d
pg

α
e

d
p

r
b,p

r
b,g

LOA
r

Figure 4. Line of action variation with the displacement of the gear centers.

2.1.3. Contact Point Detection

In this section, we will detail the contact point detection algorithm at each iteration.
Let PN×Z be the pinion matrix and GN×Z the gear matrix; this process is realized following
these steps:

1. Set the pinion angular position at time t:

θp ← θp
t Pn,z ← R(θp

t)× Pn,z

where R(θi) is the rotation transformation matrix defined as:

R(θi) =

[
cos(θi) sin(θi)
− sin(θi) cos(θi)

]
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2. Update the position of pinion and gear centers:

Px ← Px + xt
o,p Py ← Py + yt

o,p Gx ← Gx + xt
o,g Gy ← Gy + yt

o,g

3. Determine the line of action equation:
Use the algorithm described in Section 2.1.2 to define the line of action equation.

4. Determine the potential contact points:
Sweep the line of action to determine its intersection points with pinion and gear
teeth, respectively. Two sets of points are defined at this step: the first set contains the
intersection points of the LOA with the pinion teeth and the second one contains the
intersection points of the LOA with the gear teeth.
To optimize the exploration time, this operation is limited to the active portion of
the line of action. We can prove geometrically that this part is limited by the two
addendum circles of the pinion and gear, respectively.

5. Rearrange the intersection points sets:
Use the Euclidean distance to rearrange the two sets of intersection points by cross-
comparison; note that the two sets are not necessarily of equal size. This step aims to
extract the potential contact point pairs.

6. Rotate the gear matrix until contact between gear teeth occurs:
Use a penalization value εp to decide whether the points extracted in the previous step
are contact points or not (compare the Euclidean distance of potential contact points
to εp). This penalization value will depend on the resolution used when building
the gear matrices and the line of action. If no contact points are detected, the gear
matrix is rotated gradually until contact occurs (the penalization constraint is satisfied)
as follows:

repeat
θg ← θg + ds × dθG
G ← R(θg)× G

until Nc 6= 0

where ds = ±1 depending on the nearest intersection point location and Nc is the
number of contact points.
The gear rotation direction ds is chosen based on the position of the intersection points
determined previously. The gear rotation step dθG should be refined properly to
avoid contact jumping, but very small steps could lead to very high computation time.
A sufficient condition to avoid this jumping phenomenon is:

dθG <
εp

2rg,h

where rg,h is the gear head radius.
7. Define contact points:

Once contact points at the current iteration are determined, their corresponding
indexes, coordinates and the current pressure angle are sent to the mesh stiffness
calculation algorithm to determine the corresponding stiffness components.

8. Update the pinion angular position and return to 1:
Increment the pinion angular position and repeat the above described process to
determine the contact points at the next iteration.

The algorithm proposed here to locate contact points is not limited to center distance
and eccentricity errors only, but it could be used for any positions of pinion and gear
centers. Consequently, this algorithm could be used in an online determination of TVMS of
gears when simulating the overall dynamic model of the gear system using the positions
of pinion and gear centers determined by the system dynamic model integration.
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2.1.4. Gear Mesh Stiffness Components

In this section, the outputs of the contact detection algorithm are used in order to
calculate the corresponding components of the gear teeth stiffness. In this calculation,
the extracted gear tooth geometry is used for the integration of the different stiffness components.

In the potential energy method, the gear tooth is considered as a non-uniform can-
tilever beam subjected to the contact force F as shown in Figure 5 and the beam theory
is applied to calculate the different energies stored in the gear tooth structure. Then,
the corresponding stiffnesses are derived from these energies.

dx

F

F
x

F
y

x

α

x
c

y
c

Figure 5. Gear tooth modeling in the beam theory.

The stiffness components considered in this study are the Hertzian stiffness kh caused
by the local deflection at the contact point position. The tooth bending and shearing
stiffnesses (kb, ks) are caused by the vertical component of the contact force Fy. The tooth
axial compression stiffness ka is caused by the horizontal component of the contact force
Fx, and the fillet-foundation stiffness k f is caused by the gear body torsional deformation.

Based on the Hertzian theory, the potential energy method and the work carried out
in [27], the mathematical expressions of these components are given as follows:

kh =
πELx

4(1− ν2)
(1)

1
ka

=
∫ xc

0

sin2α

ESx
dx (2)

1
kb

=
∫ xc

0

(xc cos α− yc sin α)2

EIx
dx (3)

1
ks

=
∫ xc

0

1.2cos2α

GSx
dx (4)

1
k f

=
cos2α

L f oE

L∗
(

u f

S f

)2

+ M∗
(

u f

S f

)
+ P∗

(
1 + Q∗tan2α

) (5)

where E, G, ν are the material Young modulus, shear modulus and Poisson coefficient,
respectively, and Sx, Ix are the tooth section area and moment of inertia, respectively, at
coordinate x. L f o is the gear foundation width and the coefficients u f , S f , L∗, M∗, P∗, Q∗

are detailed in [27].
These stiffness elements are evaluated using the discrete trapezoidal integration

method. Then, the total mesh stiffness km at each iteration is determined as follows:

km =
Nc

∑
i=1

1

1
kh

+ ∑
j

(
1

k fi,j
+ 1

kai,j
+ 1

kbi,j
+ 1

ksi,j

) (6)
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where Nc is the total number of contact points, i refers to the contact point index and j to
the pinion and gear.

2.2. Electromechanical Model of a Motor-Gearbox System

To study the effect of assembly errors on the response of a motor-gear system, the elec-
tromechanical model of a three-phase induction motor and a one-stage spur gearbox is
developed in this section.

A schematic representation of the induction motor is given in Figure 6. This motor is
composed of three phases of windings (sa, sb, sc) on the stator spaced by 120◦ and three
others on the rotor (ra, rb, rc). The stator phases are supplied by three-phase sinusoidal
voltages at constant frequency and amplitudes, and the rotor windings are short-circuited.
The adopted model is based on the following assumptions: proportionality of flux to
currents, the influence of skin effect and heating is not taken into account, constant air gap,
magneto motor forces are represented with sinusoidal spatial distribution and currents
other than in windings are neglected [5].

 

 

vsb 

sb 

vsa 

 

sa 

sc 

vsc 

ra 

vra 

rb 

rc 

vrc 

d 

q 

s 
m 

s l 

vrb 

Figure 6. Schematic representation of the induction motor.

The application of the fundamental laws of electromagnetic induction gives the fol-
lowing relationships for all windings [28,29]:

Stator →


vsa = Rsisa +

dϕsa
dt

vsb = Rsisb +
dϕsb

dt
vsc = Rsisc +

dϕsc
dt

Rotor →


vra = 0 = Rrira +

dϕra
dt

vrb = 0 = Rrirb +
dϕrb

dt
vrc = 0 = Rrirc +

dϕrc
dt

(7)

With Rs and Rr are the resistance of the stator and rotor winding, respectively. (vsa, vsb, vsc),
(vra, vrb, vrc) instantaneous voltages across the stator phases. (isa, isb, isc), (ira, irb, irc) instanta-
neous currents flowing in its phases. (φsa, φsb, φsc), (φra, φrb, φrc) the stator and rotor fluxes.

We observe that each flux interacts with the currents of all the phases including its
own. If we take the stator flux on phase “a”, the latter can be expressed as follows:

ϕsa = lsisa + Msisb + Msisc + Maaira + Mabirb + Macirc (8)

where: 
Maa = Msr cos(θm)
Mab = Msr cos (θm + 2π/3)
Mac = Msr cos (θm − 2π/3)

Msr is the maximum mutual inductance between a phase of the stator and a phase
of the rotor. θm is the angle between the stator frame and the rotor frame. The mutual
inductances of the model are dependent on the rotation angle. The Park transformation
will be used in order to project the three phases of the windings (a, b, c) of the machine on a
frame with two orthogonal two-phase winding (d, q, 0). The purpose of this transformation



Energies 2021, 14, 4993 10 of 21

is to make the mutual inductances independent of the rotation angle. Only the voltage
equations on the direct and quadrature axes are used to define the electrical and dynamic
model of the induction motor. The equation system constituting the electrical and dynamic
model of the induction motor in an equivalent two-phase frame is written as follows:

Stator →
{

vsd = Rsisd +
dϕsd

dt −
dθs
dt ϕsq

vsq = Rsisq +
dϕsq

dt + dθs
dt ϕsd

, Rotor →
{

vrd = Rrird +
dϕrd

dt −
dθsl
dt ϕrq

vrq = Rrirq +
dϕrq

dt + dθsl
dt ϕrd

(9)

with:
ϕsd = Lsisd + Lmird
ϕsq = Lsisq + Lmirq

and
ϕrd = Lrird + Lmisd
ϕrq = Lrirq + Lmisq

Ls is the stator self-inductance. Lr is rotor self-inductance. Lm is the mutual inductance
between stator and rotor. θs: the electrical angle between the d axis and the stator. θsl : the
electrical angle between the q axis and the rotor. It is therefore possible to estimate from the
two preceding equations the stator currents (isd, isq) as well as the rotoric fluxes (φrd, φrq),
which will subsequently be used for the estimation of the electromagnetic torque:

d
dt

isd =
1

σLs
vsd −

(
1

σTs
+

1
Tr

1− σ

σ

)
isd + ωsisq +

1
TrLm

1− σ

σ
φrd +

1
Lm

1− σ

σ
θ̇mφrq (10)

d
dt

isq =
1

σLs
vsq −

(
1

σTs
+

1
Tr

1− σ

σ

)
isq −ωsisd +

1
TrLm

1− σ

σ
φrq −

1
Lm

1− σ

σ
θ̇mφrd (11)

d
dt

φrd =
Lm

Tr
isd −

1
Tr

φrd + ωslφrq (12)

d
dt

φrq =
Lm

Tr
isq −

1
Tr

φrq −ωslφrd (13)

with ωs = dθs
dt being the stator pulsation and ωsl = ωs − dθm

dt = ωs − θ̇m, σ = 1− Lm
2

Lr Ls

being the total dispersion coefficient; Tr =
Lr
Rr

: rotor time constant and Ts =
Ls
Rs

: the stator
time constant.

The electromagnetic torque can then be expressed as follows:

Tem =
pLm

Lr

(
ϕrdisq − ϕrqisd

)
(14)

With p being the number of pole pairs.
Then, Newton’s second law is employed to derive the spur gear dynamic model of

Figure 7. For simplification, the LOA direction is assumed to be unchanged in this part of
the model, which is justified because we have ei � rbi in this study. The reference frame of
study is chosen such as the y axis is aligned with the line of action direction as shown in
Figure 7, where Oi is the rotation center and Gi is the geometric center of the gear i.

The equations of motion of the proposed one-stage gearbox are given as follows [9]:

Im θ̈m = Tem − k1(θm − θ1)− c1
(
θ̇m − θ̇1

)
(15)

I1θ̈1 = k1(θm − θ1) + c1
(
θ̇m − θ̇1

)
− rb1(Fk + Fb) + e1FI1 (16)

m1 ẍ1 = −kbx1 − cb ẋ1 + FC1 sin(θ1 − αL) + FI1 sin(θ1 +
π

2
− αL) (17)

m1ÿ1 = −kby1 − cbẏ1 + Fk + Fb + FC1 cos(θ1 − αL) + FI1 cos(θ1 +
π

2
− αL) (18)

m2 ẍ2 = −kbx2 − cb ẋ2 + FC2 sin(θ2 + αL) + FI2 sin(θ2 +
π

2
+ αL) (19)

m2ÿ2 = −kby2 − cbẏ2 − Fk − Fb + FC2 cos(θ2 + αL) + FI2 cos(θ2 +
π

2
+ αL) (20)
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I2θ̈2 = −k2(θ2 − θl)− c2
(
θ̇2 − θ̇l

)
+ rb2(Fk + Fb) + e2FI2 (21)

Il θ̈l = −Tl + k2(θ2 − θl) + c2
(
θ̇2 − θ̇l

)
(22)

where FCi = miei θ̇
2
i is the centrifugal force and FIi = miei θ̈i is the inertial force as repre-

sented in Figure 7. The elastic and damping mesh forces Fk and Fb are expressed as follows:{
Fk = km(rb1θ1 − rb2θ2 + y1 − y2)
Fb = cm

(
rb1θ̇1 − rb2θ̇2 + ẏ1 − ẏ2

) (23)

One can see that the coupling between the mechanical and the electrical models is
realized through the motor rotation speed θ̇m and the electromagnetic torque Tem. The pro-
posed model in this study is more precise for simulating the effect of assembly errors
because models proposed in the literature often consider only the centrifugal and the
inertial efforts induced by the eccentricity and neglect the TVMS deformation or employ
approximate formula of this parameter. Additionally, a synchronization is necessary be-
tween the centrifugal and inertial fault directions and the TVMS value at each rotation
angle; to solve this problem, the TVMS value is injected following the angular positions of
the pinion and gear, respectively. This model is general, and one can use the healthy model
simply by setting the eccentricities e1, e2 value to zero.
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Figure 7. One-stage gearbox model with a double-eccentricity error.

3. Simulation Results and Discussion
3.1. Gear Mesh Stiffness Results

Table 1 shows the geometrical and mechanical parameters of the gear pair used for
the TVMS simulation.

Table 1. Simulation parameters of the spur gear pair.

Parameter Value

Teeth number z1 = 29, z2 = 36
Module (mm) 1.5

Teeth width (mm) 15
Pressure angle (°) 20

Young modulus (N/mm2) 2.068× 105

Poisson’s ratio 0.3

First, the developed model is used to simulate the gear tooth width modification effect
on the final TVMS. Four different configurations were proposed as follows (see Figure 8):

1. Gear tooth with a uniform width (unmodified tooth);
2. Gear tooth with KHK modification (extracted from the KHK gear 3D model);
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3. Gear tooth with the first proposed modification, a quadratic reduction is proposed
with parameters: xm = 2 mm and zm = 1 mm, where xm is the modification length
and zm is the modification depth;

4. Gear tooth with the second proposed modification. a quadratic reduction is proposed
with parameters xm = 2 mm and zm = 1.5 mm.

The width modification profiles represented in Figure 8 are the total width variation
along the tooth length direction considering the tooth modification from both sides.
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Figure 8. Configurations of the gear tooth width modification.

The TVMS results for the four modifications of the gear tooth width are illustrated in
Figure 9. We can see that, globally, the gear tooth width reduction causes a proportional
reduction in the gear pair stiffness. For the KHK gear modification, a tiny reduction is
observed only in the double-contact period, because the modification length xm covers
only the double-contact area of the tooth profile, whereas the two proposed modifications
lead to a reduction in the stiffness in the two periods.
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108
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KHK modification

Modification 1

Modification 2

Figure 9. TVMS for different tooth width modifications.

3.1.1. Center Distance Error Effect

Center distance is an inevitable error when assembling gear systems. The effect of
center distance variation on the final gear mesh stiffness of the studied spur gear pair is
investigated in this section. Different stages of the center distance error are considered in
this study from dx = 0 mm to dx = 0.8 mm with a step of 0.2 mm.

Figure 10 shows the TVMS calculation results for different values of the center distance
dx. The simulation results show that increasing the center distance error affects the TVMS
quantitatively by reducing the magnitude of both single-contact and double-contact periods
and qualitatively by reducing the gears’ contact ratio.
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Figure 10. TVMS results for different stages of the center distance error.

The variation of the apparent pressure angle and the contact ratio with respect to
the center distance variation is detailed in Table 2. One can see that increasing the center
distance error causes an increase in the apparent pressure angle and a decrease in the
contact ratio.

Table 2. Pressure angle and contact ratio variation for different stages of the center distance error.

Center Distance Error (mm) 0.0 0.2 0.4 0.6 0.8

Pressure angle (°) 20.00 20.63 21.24 21.83 22.40
Contact ratio 1.589 1.482 1.354 1.235 1.114

The order spectrum of the TVMS for the different stages of the center distance error is
represented in Figure 11. The TVMS signals were calculated in one round. As shown in
the TVMS order spectrum, the amplitude of the fundamental mesh frequency decreases
when the center distance error increases; however, its harmonics behaves in different ways
for each center distance. Indeed, the even harmonics are attenuated for symmetric TVMS
curve (the duration of the double-contact phase is equal to that of single-contact phase),
and they tend to equal amplitudes when the duration of the double-contact phase becomes
very low compared to that of the single-contact phase (Dirac impulse). This means that the
center distance error has a direct impact on the system’s dynamic response behavior as it is
closely related to the TVMS allure.
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Figure 11. Order spectrum of the TVMS for different stages of the center distance error.
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Figure 12 shows the effect of the center distance error dx in the working part of
the gear tooth flank and the distribution of the single-contact and double-contact areas.
When the center distance error increases, we can see that the total active area of the tooth
flank is reduced, the single-contact area increases and the double-contact area decreases.
In addition, one can see that the critical part of the gear tooth moves to the tooth tip
direction for greater values of the center distance error; this is very important to note,
because almost all methods used for gear strength calculation are based on the location of
this critical zone.

Single-contact area

Double-contact area

d
x
= 0.8 mm

d
x
= 0.6 mm

d
x
= 0.4 mm

d
x
= 0.2 mm

d
x
= 0 mm

Figure 12. Single-contact and double-contact areas distribution in the gear tooth profile for different
stages of the center distance error.

From the above mentioned results, it was found that the center distance error causes a
considerable reduction in the mating gear strength, which will result in higher stresses on
the gear teeth. In addition, reducing the contact ratio means that gear teeth will be subjected
to these high stresses for extended time periods. Consequently, this will accelerate the
degradation and the aging of gear teeth.

3.1.2. Eccentricity Error Effect

The eccentricity error is another common fault occurring when assembling gear
systems. It is characterized by a shift between the geometrical center of the gear and that of
rotation. This error is incorporated in the previous algorithm by updating the gear center
position block using the current gear angular position θt as follows:

xt
o,p = −e1 + e1cos(θt

p) yt
o,p = e1sin(θt

p)

xt
o,g = r1 + r2 + e2(1 + cos(θt

g)) yt
o,g = e2sin(θt

g)

These expressions were used to ensure that the center distance would be always
greater than r1 + r2, which is the lowest possible value of the center distance. Otherwise,
gears will interfere with each other and may not rotate at all.

Different configurations of this error are proposed: eccentricities in the pinion, in the
gear and in both the pinion and gear and the corresponding impact in the final mesh
stiffness are determined. Figure 13 represents the center distance variation with respect to
the pinion rotation angle for the three different scenarios considered in this study, an eccen-
tricity of e1 = 0.2 mm for the pinion and e2 = 0.25 mm for the gear were considered.
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Figure 13. Center distance variation for different configurations of the eccentricity error.

As shown in Figures 14 and 15, an eccentricity error causes a double modulation
of the TVMS: an amplitude modulation and a frequency modulation. The modulation
frequency is equal to that of the defected gear. The amplitude modulation effect is due to
the variation of the couple of points being in contact from a mesh period to another due
to the modification of the absolute center distance between gears, whereas the frequency
modulation is mainly due to the contact ratio modification.
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Figure 14. TVMS variation for a single-eccentricity error.
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Figure 15. TVMS variation for a double-eccentricity error.

To better illustrate the effect of the eccentricity error in the TVMS, we represented its
order spectrum with respect to the pinion rotation angle. To consider the double-eccentricity
in the system, the TVMS of the system was calculated in 36 rounds of the pinion which
corresponds to a complete period and, for comparison, the remaining configurations were
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calculated for the same period. Figure 16 shows a close-up of the order spectrum around
the fundamental mesh frequency fm = 29.

 

Figure 16. Order spectrum of the TVMS for different scenarios of the eccentricity error.

From Figure 16, we can see that an eccentricity error causes a global reduction in
the TVMS magnitude proportional to the error severity. In addition, it causes the raise of
gears rotation frequencies and sidebands in the order spectrum around the mesh frequency
which are equal to the defected gear rotation frequency. These sidebands are caused by the
TVMS modulation in amplitude and in frequency.

The computation time of the proposed method for the TVMS calculation depends
closely on the discretization rate and the simulation angular step. Two different angular
steps are to be fixed: the global resolution step, used to increment the pinion angle from an
iteration to another, and a local step, used at each iteration to rotate the gear until contact
with pinion occurs. To improve the computation efficiency, the gear is first rotated with a
big step proportional to the pinion rotation step (with a coefficient equal to the ratio of the
two gear teeth numbers), and then the exploration is executed for contact detection.

Additionally, the gear tooth profile sampling should be refined enough to improve
the precision of the discrete integration of the TVMS components. However, the angular
step could be adjusted to enhance the computation efficiency; we should note here that
this operation is directly related to the dynamic model resolution strategy. If the TVMS is
calculated independently and used as an input of the system dynamic model, the calcu-
lation resolution could be regulated freely. However, if the TVMS calculation is realized
in parallel with the equations of motion integration, the computation time could be very
high. To overcome this shortcoming, one can use two different steps during the system
resolution—one time step for the equations of motion resolution and another angular step
for the TVMS calculation, where the execution of the TVMS model would be conditioned
with the pinion angular position regardless of the time step.

3.2. Electromechanical Model Simulation Results

The induction motor used for model simulation is a 2.2 kW, 50 Hz, 400 V star-connected,
two-pole, 2905 rpm three-phase motor fed directly from the electrical grid. A load torque
of 3.7 Nm was applied which corresponds to 50% of the motor full load. The motor and
the gearbox parameters used for the system model simulation are detailed in Table 3:
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Table 3. Simulation parameters of the motor-gearbox system.

Parameter Value Parameter Value

Pole pairs ∗ 1 Motor inertia ∗ (kg m2) 6.63× 10−3

Bearing stiffness (N/m) 6.56× 108 Load inertia ∗ (kg m2) 3.3× 10−4

Bearing damping (Ns/m) 1.8× 103 Stator resistance ∗ (Ω) 3.45
Pinion mass (kg) 0.16 Rotor resistance ∗ (Ω) 1.66
Gear mass (kg) 0.294 Stator inductance ∗ (H) 0.419

Pinion inertia (kg m2) 4.76× 10−5 Rotor inductance ∗ (H) 0.419
Gear inertia (kg m2) 1.21× 10−4 Magnetic inductance ∗ (H) 0.4

* These parameters were delivered by the manufacturer.

The model equations are implemented at Simulink to simulate the electromechanical
model response. Figure 17 represents the supply voltage signals, the motor current speed,
the developed phase currents and the first pinion displacement y1.

Figure 17. Electromechanical simulation results.

Figure 18 represents the first harmonics of the mesh frequency of the displacement
signal y1 spectrum for different stages of the center distance error. We can see that the
center distance error value has a direct impact on the total behavior of the displacement
spectrum. Consequently, analyzing the form of the signal spectrum could help to detect
the presence of the center distance error in the gear system.

Figure 19 illustrates the first pinion displacement y1 for the different configurations
of eccentricity error considered in this study. One can see that the presence of an ec-
centricity error causes a modulation of the displacement signal with the eccentric gear
rotation frequency.

Analyzing the displacement signal spectrum represented in Figure 20 allows us to
extract the modulation frequencies at each case. As shown in this figure, the eccentricity
error leads to a raising of side band peaks around the mesh frequency fm = 1431 Hz and
its harmonics, distant with the defected gear frequency f1 = 49.33 Hz or f2 = 39.74 Hz
depending on which gear is defected (the mesh frequency is theoretically calculated using
the rotation frequency and the number of teeth: fm = z1 f1 = z2 f2, where f1,2 are deter-
mined from the model resolution θ̇1, θ̇2). In addition, we can see the apparition of the
pinion rotation frequency f1 = 49.33 Hz when it is eccentric because the signal is taken at
the pinion position.
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To show the eccentricity error effect on the system electrical response, the first phase
current spectrum is represented in Figure 21. We can see that in addition to the supply
frequency fs = 50 Hz, the mesh frequency fm = 1431 Hz and its harmonics are also
modulated by the eccentric gear rotation frequencies f1 = 49.33 Hz and f2 = 39.74 Hz.

These simulation results prove the possibility of eccentricity fault detection and isola-
tion by surveying either the vibrational or the electrical response of motor-gearbox systems.
In addition, results show that small values of the eccentricity error induce an important
deformation of the system’s mechanical and electrical responses. These results explain
some aspects of the experimental observations of gear vibration and motor phase-currents
and prove that assembly errors constitute one of the main reasons for the apparition of side
band frequencies around the gear mesh frequencies in addition to other phenomena such
as gear tooth profile errors and shaft deformation, etc.
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Figure 18. Effect of the center distance error on the displacement spectrum.
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Figure 19. Effect of the eccentricity error on the displacement signal y1.

A drawback of these current simulation results is the difficulty to reproduce electrical
harmonics on the system current signal; these harmonics could interfere with the fault
harmonics, making it difficult to distinguish them in real world measured phase currents,
which is mainly due to the adopted model of the induction machine. However, this model
enables us to get an overall idea of the effect of these assembly errors on the system
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electrical response and could contribute a basis to the user when looking for these faults
components on the current spectrum.
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Figure 20. Effect of the eccentricity error on the displacement signal spectrum.
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Figure 21. Effect of the eccentricity error on the phase current signal spectrum.

4. Conclusions

In this paper, the effect of assembly errors on the gear mesh stiffness of spur gears
and the electromechanical response of a motor-gearbox system was determined using a
new geometric-based method. A numerical algorithm based on the Euclidean distance
minimization was developed to detect actual contact points during the meshing process.
This algorithm was then coupled to the potential energy method to calculate the TVMS
components corresponding to the extracted contact points. Two types of mounting errors
were considered in this study, namely the center distance error and the eccentricity error.
The main findings of this study are summarized as follows:
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• The gear teeth geometry has a direct impact on the gear mesh stiffness curve and
modifying the gear teeth width causes a deformation of the TVMS magnitude;

• The center distance error considerably affects the TVMS curve, and increasing the
center distance causes a global reduction in the TVMS magnitude; it also affects the
contact ratio by reducing the proportion of the double-contact period, and conse-
quently, the gear teeth will be subjected to more important stresses;

• The effect of single-eccentricity and double-eccentricity errors on the TVMS was
determined; it was found that an eccentricity error causes a double modulation of the
TVMS amplitude and frequency by the frequency of the eccentric gear;

• The center distance error affects the vibration of the system by modulating the magni-
tudes of the mesh frequency harmonics and the eccentricity error causes the apparition
of characteristic side bands around the mesh frequencies separated by the eccentric
gear frequency;

• In the electrical response of the system, it was found that the presence of an eccentricity
error induces a modulation of the mesh frequency components by the corresponding
eccentric gear frequency in addition to the modulation by the main supply frequency.

These results could constitute a preliminary basis for detecting and diagnosing this
kind of failure, and neglecting these errors could explain some differences between sim-
ulation and experiment results in modeling gear dynamics such as the presence of side
bands around mesh frequencies. From this perspective, the model of TVMS determination
could be further improved to consider gear teeth deformations and load-dependent contact
deflections to refine the transition curve between the single- and the double-contact phases.
In addition, more advanced models of the induction model could give better results of the
effect of these faults on the motor phase current compared to experimental measurements.
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