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Abstract: For international civil aviation to be able to significantly reduce its greenhouse gas (GHG)
emissions, the use of Sustainable Aviation Fuels (SAF) needs to be made feasible. This paper presents
the results of an assessment of the feasibility of production of SAF in Brazil, considering three
certified routes, based on the dedicated production of eucalyptus, soy, sugarcane and corn. The
results presented here refer to the production of biomass in selected locations, aiming to reduce
GHG emissions and minimise production costs. Considering that the opportunity costs of feedstocks
were not observed, the minimum selling price (MSP) of SAF in the reference case was estimated at
13.4 EUR·GJ−1 for the production based on soybean oil (HEFA-SPK route), 21.0 EUR·GJ−1 for the
production based on ethanol from sugarcane and corn (ATJ-SPK) and 32.0 EUR·GJ−1 from eucalyptus
(FT-SPK). These values refer to SAF’s nth industrial plant and biomass costs that are compatible with
the current agricultural yields in Brazil but which are also the highest. The MSP results are relatively
low compared to the estimates available in the literature, but they do not show the strict economic
viability of SAFs in the short- to medium-term, mainly because of the low prices of fossil fuels.

Keywords: GHG mitigation; biofuels; sustainability; aviation; georeferenced; feasibility

1. Introduction

As long as biomass is produced sustainably and its conversion is efficient, bioenergy
can contribute significantly to the mitigation of greenhouse gas (GHG) emissions [1].
Bioenergy is still the main source of renewable energy and is the only one that can directly
contribute to the supply of fuels and electricity, potentially with negative GHG emissions,
as long as carbon capture, utilisation and storage (CCUS) technologies are applied to
bioenergy systems. In the IEA (International Energy Agency) scenario that corresponds
to maintaining the Earth’s temperature not exceeding 1.5 ◦C in this century, the demand
for primary bioenergy is expected to increase from the current 60 EJ to 125 EJ in 2070 [2].
In 2011, when a special report of the IPCC (International Panel on Climate Change) was
published, it was estimated based on a review of the scientific literature that the deployment
levels of biomass for energy by 2050 could be in the range of 100–300 EJ·year−1 [1]. The
same subject has been recently addressed by reference [3], indicating that biomass could
provide between 70 and 360 EJ·year−1 also by 2050.

It is estimated that, in 2018, aviation contributed to 2.4% of the global CO2 emissions,
while the overall GHG contribution was even higher due to induced aircraft contrails and
other emissions [4]. Prior to COVID-19, ICAO [5] (International Civil Aviation Organiza-
tion) estimated that, by 2045, the fuel consumption by the International Civil Aviation could
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be 2.2–3.1 times higher than the one in 2015, depending on the scenarios. In this sense,
the civil aviation sector has set ambitious targets for reducing its GHG emissions up to
the middle of this century: both ICAO and IATA (International Air Transport Association)
mention that the GHG emissions must be reduced by 50% in 2050, regarding the estimated
emissions of 2005 [5,6].

One of the options for reducing GHG emissions is the use of fuels with a lower carbon
footprint, displacing—even partially—conventional petroleum-based Jet A-1 fuel. These
alternative fuels will be classified as Sustainable Aviation Fuels (SAF) if they meet the
supply chain sustainability criteria defined by ICAO CORSIA (Carbon Offsetting and
Reduction Scheme for International Aviation) [7].

As the main motivation for producing alternative jet fuels is the reduction in GHG
emissions, one of the principles of the sustainability criteria is related to lower carbon
emissions on a lifecycle basis. In the first moment (i.e., the pilot phase of ICAO CORSIA),
only two principles need to be fulfilled: the one related to GHG emissions (Theme 1)
and a second to the carbon stocks (Theme 2). However, by the end of in the pilot phase,
other themes should be included in the sustainability criteria, addressing aspects such
as water; soil; air; conservation (biodiversity); wastes and a set of socioeconomic aspects
(e.g., human and labour rights, land use and water use rights, local and social devel-
opment and food security) [7]. The principle related to GHG emissions establishes that
eligible fuels shall achieve reductions of at least 10% compared to the baseline life cycle
emissions for conventional aviation fuel (defined as 89 gCO2eq.MJ−1) [7]. Obviously, an
aviation company will be interested in meeting its GHG goals at the lowest possible cost,
with low sustainability-related risks and assured supply. For additional information, see
reference [8].

This paper presents an assessment of three certified routes for the sustainable produc-
tion of biofuels (SAF) in Brazil. These three routes, certified by ASTM D7566 (American
Society for Testing and Materials), are FT-SPK (Fischer-Tropsch conversion to produce syn-
thetic paraffinic kerosene from gasified biomass) based on planted eucalyptus, HEFA-SPK
(hydro-treated esters and fatty acids) based on soybean oil and ATJ-SPK (alcohol-to-jet)
based on anhydrous ethanol produced from sugarcane and corn. The assessment presented
here is based on the assumption that dedicated biomass would be produced for SAF pro-
duction. This paper follows a recent publication by the same authors [8], in which the
conditions for the sustainable production of eucalyptus, soy, sugarcane and corn in Brazil
were evaluated.

Both papers are based on a geospatial database (SAFmaps) that was built in the
context of a project with the aim of providing information to stakeholders who would be
interested in the production of SAF. SAFmaps is a publicly available database and provides
information on eight feedstocks (six of them crop-based).

This paper is organised into five sections, including this introduction. The following
section provides background information about the three production routes addressed here.
Section 3 describes the methodology and the assumptions for the assessment. Section 4
presents the results and the related discussion. Finally, the conclusions are presented.

2. Routes for SAF Production

Conventional fuels for aviation turbines consist of refined hydrocarbons derived
from fossil sources, with variable chemical compositions. The composition depends on
the raw material used in refining, but it is crucial to meet the strict specifications regard-
ing its physical and chemical properties. Kerosene-type jet fuels consist of hundreds of
different components ranging between 8 and 16 carbons, with n-paraffins, isoparaffins,
cycloparaffins and aromatics as the major components [9].

The rigorous safety standards and procedures adopted by the commercial aviation
industry impose stringent quality requirements for the fuel used to power aircrafts. The
most widely used standard to define the kerosene-type fuel specifications for aviation
turbine fuels is the one by the American Society of Technical Materials, ASTM D1655.
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Due to the strict quality control and economic concerns, the introduction of alternative
fuels must follow the “drop-in” concept. This means that the alternative fuel must be
interchangeable and compatible with the conventional jet fuel when blended so that
no adaptations are needed for the aircraft/engine fuel system or the fuel distribution
network [10].

To complement the ASTM D1655 standard, in 2009, ASTM introduced a specific
standard for alternative aviation fuels: the ASTM D7566. This standard addresses the spec-
ifications for aviation turbine fuels that have synthesised hydrocarbons. Thus, alternative
fuel production routes need to be certified by ASTM D7566, and each time a new process is
certified, the standard is complemented with a new annex [11].

In 2009, the first certified conversion process was announced, the FT-SPK, using as
raw material coal, natural gas or biomass; the use of this alternative fuel is currently limited
to a 50% blend with conventional jet fuel (volume basis). The specification of the blending
limits for these alternative fuels is part of the certification procedure. The HEFA-SPK was
approved in 2011, followed by the routes of HFS-SIP, ATJ-SPK and CHJ. FT-SPK with an
increased aromatic content (FT-SPK/A) has also been certified.

In 2020, there were eight conversion processes approved for the production of aviation
fuels in accordance with ASTM D7566 (seven of them) and ASTM 1655 (the one related
with coprocessing). Table 1 summarises the information of these routes. In each case, the
commercial initiatives listed in the table correspond to the companies that are involved
with the production of alternative jet fuels.

Table 1. Bio-jet fuel production processes approved by ASTM International; the blending ratios are expressed on a
volume basis.

Conversion Process Route Feedstocks Blending
Ratio Commercial Initiatives

Fischer-Tropsch hydroprocessed synthesised
paraffinic kerosene FT-SPK Coal, natural gas, biomass 50%

Fulcrum Bioenergy, Red
Rock Biofuels, SG Preston,

Kaidi, Sasol, Shell,
Syntroleum

Synthesised paraffinic kerosene produced
from hydroprocessed esters and fatty acids HEFA-SPK Bio-oils, animal fat, recycled oils 50%

World Energy, Honeywell
UOP, Neste Oil, Dynamic

Fuels, EERC
Synthesised isoparaffins produced from

hydroprocessed fermented sugars SIP-HFS Biomass used for sugar production 10% Amyris, Total

Synthesised kerosene with aromatics derived
by alkylation of light aromatics from

nonpetroleum sources
SPK/A Coal, natural gas, biomass 50% Sasol

Alcohol-to-jet synthetic paraffinic kerosene ATJ-SPK Biomass from ethanol or
isobutanol production 50%

Gevo, Cobalt, Honeywell
UOP, Lanzatech, Swedish

Biofuels, Byogy
Synthesised kerosene from hydrothermal

conversion of fatty acid esters and fatty acids CHJ Bio-oils, animal fat, recycled oils 50% ARA

Synthesised paraffinic kerosene from
hydroprocessed hydrocarbons, esters and

fatty acids

HC-HEFA
SPK

Oils produced from
(Botryococcus braunii) algae 10% IHI Corporation

Co-processing Fats, oils, and greases (FOG) from
petroleum refining 5%

Source: adapted from references [10,11].

Technologies that convert biomass into alternative aviation fuels rely heavily on the
characteristics of the feedstock. According to reference [12], oilseeds are converted to bio-jet
fuels through hydroprocessing technologies, including hydrotreating, deoxygenation and
isomerisation/hydrocracking. Catalytic hydrothermolysis (CH) is an example of processes
that have also been developed to treat triglyceride-based oils. Solid-based feedstocks can
be converted into biomass-derived intermediates (such as syngas, alcohols, bio-oils and
sugars) through biochemical or thermochemical processes. Finally, the intermediates can be
further converted to biofuels via a variety of synthetic, fermentative or catalytic processes.



Energies 2021, 14, 4972 4 of 21

A crucial point in converting biomass to drop-in biofuels is the removal of oxygen
present in the feedstock, as oxygen is undesirable in the final product. Aspects such as
biofuel compatibility and reactivity are important, but also, the reduction of energy density
is a matter of concern [13].

In the production of drop-in biofuels, the hydrogen–carbon (H/C) ratio must be raised
to the typical range of hydrocarbons, such as diesel, jet fuel and gasoline (H/C close to 2). In
this sense, the greater the effective H/C ratio (Heff/C) of the feedstocks, the less hydrogen is
needed in the industrial process. Sugars and cellulosic biomass have low Heff/C ratios, and
lipids have a higher one. Therefore, biofuel production through the oleochemical platform
requires fewer hydrogen addition steps than the thermochemical conversion processes
based on lignocellulosic materials and biochemical processes for sugar conversion [13]. As
a consequence, the availability of hydrogen (as well as its sustainability and cost) should
be an important aspect of the future production of drop-in biofuels.

Here, it is assumed that the FT-SPK route would not require an external hydrogen
supply, as the amount that would be obtained in gasification and gas synthesis (syngas)
would be sufficient for the subsequent conversion to SAF [12,14].

It was assumed that the production of sustainable aviation fuels (SAF) would be
in industrial units besides oil refineries, where a regular and large amount of hydrogen
is usually available. Figure 1 shows the scheme of the supply chain and production of
bio-jet fuel (SAF), and other fuels, based on the three routes assessed here. Lipids (here,
soybean oil), syngas and ethanol are the intermediate products. As will be described in the
following section, the assumption is that soybean oil and ethanol would be produced close
to where the feedstock production would take place and transported to the SAF plant. In
the case of the FT-SPK route, wood (here, eucalyptus) would be transported to the SAF
plant, and there, it would be gasified. Further information about these routes can be found
in references [9,12,14].

Concerned with the state-of-the-art status of each of the three SAF production routes,
reference [15] mentioned that HEFA-SPK is at a more advanced stage, with both the TRL
(Technology Readiness Level) and FRL (Fuel Readiness Level) at the maximum level (9),
i.e., at the commercialisation stage. At the time of the assessment, the FT-SPK route had a
TRL = 6–8 and FRL = 6 to 7, which would indicate a transition from the demonstration to
the commercialisation stage. Finally, the route ATJ-SPK was evaluated with a TRL = 7 to
8 and FRL = 7, which could also be interpreted as at the same transition stage. All three
routes have several developers involved [16], as can be seen in Table 1.
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3. Methodology and Assumptions
3.1. Methodology

Figure 2 indicates the main steps of the methodological procedure applied to assess the
feasibility of producing SAF in Brazil based on the three routes. The first step corresponds to
evaluating the potential biomass availability in specific locations and its cost as a feedstock
for the production of SAF.
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Figure 2. Scheme of the methodological procedure applied to assess SAF production in Brazil.

The assumptions regarding the transport of feedstocks from the field to the industrial
unit or from the units that allow their conversion to intermediates (i.e., soybean oil and
ethanol) could be crucial to setting the feasibility of SAF production. The feasibility of SAF
is evaluated based on its minimum selling price (MSP).

3.2. Assessing Biomass Availability

The potential availability of a crop-based feedstock is estimated based on a broad
suitability assessment, combined with site-specific estimates of the potential yields and
production costs. The study is based on the information available in the platform SAFmaps,
and the geographic coverage corresponds to 12 Brazilian states, which represent about half
of the country’s total area.

Details of the hypotheses used for assessing the suitability of eucalyptus, soybean,
sugarcane and corn were presented in reference [8]. For the assessment of these crop-based
feedstocks, only a rainfed cultivation was considered. Essentially, suitability was defined
based on the edaphoclimatic requirements of each crop-based feedstock, with a single
classification of soil suitability used for all biomass [18,19]. As described in reference [8],
both the spatial distribution of the estimates of suitability and of the agricultural yields was
validated vis-à-vis the information available for Brazil. As for biomass costs, the estimates
were based on an extensive literature review and on representative cost structures that are
valid for the main production regions in Brazil [20]. The estimated costs were compared
with the information available for different regions of the country, and it was concluded
that the results are good. In the SAFmaps database, there is information about the error
analysis performed for the yield and cost estimates. This paper does not explore an error
analysis on the estimates of the biomass and intermediate production costs.

It was assumed that biomass production for SAF could only occur by displacing
pastures (in this sense, satellite images identifying land use and land cover in 2018 were
used to define the target areas [21]). Taking into account the aim of producing sustainable
aviation fuels (SAF), in the assessment, the total exclusion of two sensitive biomes (Amazon
and Pantanal) was imposed, as well as the exclusion of conservation units, indigenous
reserves and areas that should not be used for biomass production, in accordance with the
CORSIA’s sustainability criteria.

It is clear that the estimated costs are impacted by the predicted yields. Figure 3
illustrates the results of the estimated sugarcane production costs in a five-year cycle, after
the imposition of the restrictions mentioned above. Similar maps for soybean, eucalyptus
and corn are presented in the Supplementary Materials.
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3.3. Estimating Transportation Costs

Here, it was assumed that SAF production could take place at Refinaria Henrique
Lage (REVAP) in São José dos Campos (SP). REVAP is the largest producer of jet fuel
in Brazil (about 30% of the total production in recent years [22]) and is connected to the
main international airport (Cumbica in Guarulhos and, also, in the State of São Paulo) by
a pipeline.

Other important assumption is that the transport of eucalyptus or intermediaries
(soybean oil and ethanol) to the SAF production unit would take place by rail or pipeline
(in the case of ethanol, depending on the location of the distilleries), aiming at both cost
and carbon footprint reductions.

The distance between the origin and the destination was obtained, and the costs were
estimated based on the assumption that the transport costs by rail were 50% of the costs of
transport by road for the same distance and that the transport costs by pipeline were 20% of
the road costs for the same distance [23,24]. The impact of these assumptions was evaluated
in a sensitivity analysis. The details of the procedure for estimating the transporting costs
are presented in the Supplementary Materials.

3.4. Defining Biomass Production Sites

In the following step, the map of the estimated production costs for each feedstock
(in a sense, the production cost is the synthesis both of the suitability and yield estimates)
was combined with the maps of the existing and planned transport infrastructures. The
rationale is that the areas with the lowest estimated costs of biomass production and those
close to the transport infrastructure are the priority for the case studies aimed at assessing
the feasibility of producing SAF.

Figure 4 shows the locations chosen for the production of biomass in the case studies,
combined with the map of the railways and the ethanol pipeline that would allow transport
to REVAP; the information is presented over the soil suitability map. The soil suitability
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map is common for all feedstocks and serves here to indicate in a single figure, as a proxy,
the most suitable areas for biomass production.
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Five eucalyptus production sites were chosen for the development of the case study
related to the FT-SPK route, all of them located in the State of São Paulo (SP): Espigão and
Quatá on the west side of the state, Conchas more to the centre and São José dos Campos
and Guaratinguetá on the east side. São José dos Campos is where the oil refinery is located,
and in this case, the transport of wood from the forest to the refinery would be by truck.

For soy, the two production sites chosen are Paranaíba in the southeast of Mato Grosso
do Sul (MS) and Presidente Venceslau in the west of São Paulo. Finally, for sugarcane and
corn, which will be the inputs for the production of ethanol, the options are Paranaíba
(MS) and Caçu in the south of Goiás (GO). The ethanol produced near Caçu would be
transported by a pipeline to the SAF industrial unit.

For the sake of simplicity, the production areas were defined as a circle around a
reference point. The centre of the circles would be the shipping point in the case of
eucalyptus (or even REVAP, in the case of production around SJ Campos), where soybeans
would be processed, or the ethanol distilleries (in the case of sugarcane and corn). The
radii of the circles of influence were defined as 30 km for eucalyptus, 200 km for soybeans
and 50 km for sugarcane and corn; in order to simplify the analysis, it was assumed that
sugarcane would be produced near the centre of the circle and corn on its edges. Nearby
the production sites, the biomass would be transported by truck.

In the procedure for estimating the areas for biomass production, a pixel-filtering
process was imposed. The rationale is that the mechanisation of planting and/or harvesting
requires minimal contiguous areas. The filtering imposed was for the following minimum
areas: 50 hectares for eucalyptus, 100 hectares for soybean and sugarcane and 100 hectares
for corn, as it was assumed that corn must be the second crop in the soybean area.

3.5. Biomass Supply Curves

For each feedstock, the annual supply curves were estimated. In the case of soybeans,
the estimate was done in the centre of the influence circle, where the oil would be extracted.
In the case of sugarcane and corn, the supply curve was estimated at the ethanol distillery.
Due to the SAF production capacities considered (see Section 3.6), both the soybean oil and
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ethanol production at each production site are sufficient to meet demand, and therefore,
the supply curves were not estimated at the SAF industrial unit.

In the case of eucalyptus, as the production in each of the five locations considered is
relatively small, the supply curve was estimated at the SAF production unit.

3.6. Industrial Units and Assumptions

The total investment costs (TIC) of the SAF industrial units were taken from refer-
ence [25], and they corresponded to the nth plant of a co-locating facility (i.e., sharing as
much infrastructure as possible with the existing industrial plants). A location factor of
1.14 [26] was applied to these values to take into account, more realistically, the costs in
Brazil. The costs presented by reference [25] were not for the same production capacity
assumed here in the base case, and therefore, a scale factor of 0.6 was assumed in the input
(feedstock) capacity for estimating the TIC.

The industrial yields, the input requirements and operation and maintenance (O&M)
costs were taken from references [17,25]. More specifically, this includes the costs of
labour and the inputs (e.g., hydrogen, natural gas, etc.), and in this sense, this simplified
assumption means that some specificities of the Brazilian case are not adequately reflected.
The impacts of this simplification were explored in the sensitivity analysis (see Section 4.4).
The economic assessment was done assuming an annual discount rate of 10% in all cases.
The same assumptions presented by reference [25] were used for the utility prices, financing
scheme, investment schedule, construction time and useful life. The tax rates were also the
same as presented in reference [25]. In this sense, once more, the results of the evaluation
were very likely not completely consistent with the Brazilian reality, but this was done in
order to establish a basis for comparison with the results presented in the literature; either
way, the impact of this simplification should be small. The parameters assumed in the
economic assessment are presented in the Supplementary Materials.

Table 2 presents the parameters of the SAF units considered in the base case for
each of the three routes studied. The base case was defined for a given SAF production
capacity in order to explore a comparison between the three routes. The scale effects were
further explored.

Table 2. Assumed technical parameters for the SAF production unit based on the literature and those considered in the base
case—tf refers to tonnes of the feedstock on a dry basis.

Parameters Units
FT-SPK HEFA-SPK ATJ-SPK FT-SPK HEFA-SPK ATJ-SPK

Based on the Literature Assumed in the Base Case

Industrial yield tHC·tf
−1 0.170 0.830 0.504 0.170 0.830 0.504

Industrial yield kgSAF·tf
−1 25.5 120.0 378.8 25.5 120.0 378.8

Input capacity tf·day−1 2000 2500 482 2400 2041 647
HCs production tHC·day−1 340.0 2075 242.9 408.0 1694 325.9
SAF production tSAF·day−1 51.0 300.1 182.6 61.2 245.0 245.0

Sources: references [17,25] and the assumptions of this study.

In the case of the FT-SPK route, reference [25] considered a unit with 2000 t·day−1 (i.e.,
83.3 t·h−1) (dry basis) as the input capacity, which, in practice, corresponds to the input of
the lignocellulosic feedstock to the gasifier (pressurised, oxygen-blown, directly heated, flu-
idised bed). An analysis was presented in reference [27] on the feeding capacity of biomass
gasifiers, and 120 t.h−1 was mentioned as the predicted maximum, with the highest values
of the existing (or predicted) units a few years ago well below this. Here, conservatively,
100 t·h−1 was assumed to be the feed capacity of a biomass gasifier (2400 t·day−1), which
resulted, based on the assumed technical coefficients, in the production of 408 t·day−1 of
hydrocarbons, which was 61.2 t·day−1 of SAF.

To define an adequate basis for comparison, it was assumed that four modules of the
FT-SPK base unit would be built on the same site, resulting in the need for 9600 t·day−1 of
dry wood and the production of 244.8 t·day−1 of SAF. In order to compare the routes for
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the same SAF production capacity, the capacity of the HEFA-SPK route was scaled down
in relation to the reference, while the capacity of the ATJ route was scaled up (see Table 2).

For one module of the HEFA-SPK or ATJ-SPK routes assumed in the case (or four
modules of the FT-SPK route), the annual production of SAF would contribute an amount
equivalent to 1.3% of the total consumption of jet fuel in Brazil in 2018 or 3.0% of the
consumption due to international flights departing from Brazil that year [22].

The soybean oil extraction costs were taken from reference [28] and updated to 2018.
The compatibility of the soybean processing capacities was checked with reference [29].
The extraction costs were allocated between oil and meal in proportion to the mass of
each product.

To estimate the production costs of anhydrous ethanol, a distillery with a capacity of
542 × 103 m3·year−1 was considered, requiring a supply of 4 × 106 t·year−1 of sugarcane
and 526 × 103 t·year−1 of corn. The parameters used in the estimation were based on
reference [30].

3.7. Limiting Production to Degraded Pastures

It has been argued that biomass production on degraded land is an option to reduce
the impacts of induced Land Use Change (iLUC) and that this should be encouraged [31,32].
Based on an assessment of the level of degradation in pastures in Brazil, which is based on
satellite images [33], here, this option was explored in refining the results. This was done
for assessing the impacts of soybean, sugarcane and corn production in the surrounds of
Paranaíba (MS).

Reference study [33] was based on the definitions presented by references [34,35] and,
also, on the remote sensing classification presented by reference [36]. In references [34,35],
the agronomic and biological aspects were considered. Agronomic degradation is related
to the regeneration of native vegetation in pastures, while the biological aspect is due to
the loss of soil fertility and the existence of exposed soil.

A classification of pastures into four groups was presented in reference [33]: no
degradation, slight, moderate and severe degradation. The classification of pastures into
degradation levels was obtained from the stratification of a vegetative vigor index based
on images from 2018 [36]. Here, the assessment was based in the assumption that the
production would be limited in displacing pastures with degradation levels classified as
moderate and severe.

4. Results and Discussion
4.1. Supply of Eucalyptus

Figure 5 shows the estimated wood supply curve at REVAP, based on the potential
production in the five sites considered and the transport by rail from four of them (wood
produced around SJ Campos would be transported by road). The maximum supply would
be 3.5 × 106 t·year−1 (dry basis), with the CIF costs varying from 2.2 to 6.1 EUR·GJ−1

(average 3.5 EUR·GJ−1 ± 0.84 EUR·GJ−1). The estimated production in these five sites
corresponds to 4.9% of the total commercial production of eucalyptus in 2018, excluding
the amount used for charcoal production [37].
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Figure 5. Wood (Eucalyptus) supply curve at REVAP, supposing the production in five sites and the
bulk of the transport by rail.

For a single module of the FT-SPK plant, the best wood supply option would be
production close to the SAF industrial unit, i.e., in SJ Campos and Guaratinguetá (covering
almost two-thirds of the required supply). For four modules, production at all five locations
will be required, and in this case, Espigão, where the potential is larger, would be the main
supplier. Table 3 presents the estimated contributions from each of the five locations.

Table 3. Annual wood demand (dry basis—103 t) as a function of the number of modules of the technology FT-SPK and the
estimated contribution (also in 103 t·year−1) of each of the five sites of production.

Number of
Modules

Annual Wood
Requirement Guaratinguetá SJ Campos Conchas Quatá Espigão

1 788.4 409 212 56 133 0
2 1576.8 504 212 156 453 278
3 2365.2 513 225 278 509 859
4 3153.6 682 299 492 620 1063

Remaining 351.0 100 36 61 2 153

Due to the low energy density of wood, transport has a significant impact on the CIF
costs at the SAF plant. For example, the transport of wood by rail from Espigão to REVAP
(about 790 km) represents 1.36 EUR·GJ−1 of the CIF costs, while the weighted average cost
at the point of shipment is 2.49 EUR·GJ−1. This brings up the discussion about where to
install the SAF plant in order to minimise the distances from the wood planting sites (see
Section 4.8).

4.2. Supply of Soil Oil

The estimated costs of soybean oil at REVAP are quite similar for the two production
sites considered. The estimated weighted average cost of grain in the centre of the pro-
duction area is a little lower in Presidente Venceslau (SP) (about 1.5%), as is the cost of
transport from that region. However, as the difference is almost insignificant, the results
for the production around Paranaíba (MS) are presented in the analysis that follows. The
estimated maximum production of soybean in these two sites is quite large in comparison
to the total Brazilian production in 2018 [37] (about 17%).

To assure the annual supply of soybean oil to the reference HEFA-SPK plant (see
Table 2), the average estimated CIF cost at REVAP is estimated at 5.15 EUR·GJ−1 (varying
from 5.0 to 5.3 EUR·GJ−1). In each region, it is possible to produce more than twice the oil
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required by the reference SAF plant, but the costs increase significantly in the last quartile
(average CIF cost 8.11 EUR·GJ−1). The annual need for soybean oil for a module of the
HEFA-SPK route (see Table 2) is equivalent to 7.6% of all soybean oil production in Brazil
in 2018 [29].

The estimated cost of the dedicated soybean oil production is significantly lower than
the opportunity cost of the product (about three times lower if considering the average
market prices in 2018).

4.3. Production and Supply of Anhydrous Ethanol

It was assumed that anhydrous ethanol would be produced in new distilleries, com-
bining sugarcane and corn, and these feedstocks would be produced in new areas of
cultivation. The production of ethanol from corn is a new issue in Brazil. In the last harvest
season (2020/2021), the total ethanol production was 32.8 × 106 m3, 3.02 × 106 m3 from
corn [38]. In most cases, corn is complementary to sugarcane for ethanol production, and
the objective is to expand the annual capacity factor, using corn in regions where local
market prices are low.

In the base case (see Table 2), an industrial unit on the ATJ route would annually
demand the equivalent of 2.6% of the anhydrous production in Brazil in 2018 [22].

Under the conditions mentioned above, the cost of the combined production
(corn + sugarcane) tends to be lower than that of the production from sugarcane alone. The
obtained results of the ethanol production costs indicate that, with the combined produc-
tion, these can be 11–18% lower, depending on the production capacity; the difference is
smaller in larger units.

The costs of anhydrous ethanol production were estimated at 11.36 EUR·GJ−1 in the
case of the production in Paranaíba (MS) and 11.88 EUR·GJ−1 in the case of Caçu (GO).
The transport from Paranaíba to REVAP by rail (about 600 km) adds 0.69 EUR·GJ−1, while
the transport by the pipeline from Caçu (about 920 km) adds 0.49 EUR·GJ−1. In summary,
there is a small difference in the CIF costs at REVAP, and it is clear that the transport by a
pipeline partially counterbalances the slightly higher costs of the feedstocks in Caçu [8].
It is worth noting that the average prices paid to producers of anhydrous were close to
19 EUR·GJ−1 in 2018 in the regions considered in the case studies presented here [39].

4.4. MSP of SAF in the Base Cases

Table 4 presents the results of the estimated SAF MSP for the base case of each of the
three routes. In the case of HEFA-SPK and ATJ-SPK, Paranaíba and Caçu were chosen
as the biomass production sites, respectively, but there are no significant differences in
comparison to the alternative sites. It should be mentioned that the base case of the FT-
SPK route corresponds to a relatively small production (identified in the table as biomass
production “mainly in two sites”), and the comparison for the same SAF production
capacity should be made for the situation where all five production sites are suppliers.

In any case, the MSP of the FT-SPK route is more than twice that of the ATJ-SPK route
and about 50% larger than that of the HEFA-SPK. Additionally, in Table 4, it can be seen
that the share of the feedstock in the MSP is relatively low, which indicates a small margin
of improvement in the feasibility along with a reduction in the wood costs (e.g., reducing
the transport costs and/or producing in regions of the greatest potential). For the FT-SPK
route, the predicted capital and O&M costs are also high because of the high up-front costs
of the gasification system and syngas cleaning system [14].

However, it is essential to take into account that the results for the HEFA-SPK and
ATJ-SPK routes are deeply impacted by the lower costs of the feedstocks (soybean oil
and ethanol) compared to their opportunity costs. Assuming the market price of soybean
oil in 2018 (15.5 EUR·GJ−1), the estimated MSP of the SAF in the base case would be
25 EUR·GJ−1 (1072 EUR·t−1). The same analysis in the case of the ATJ-SPK route, assuming
19 EUR·GJ−1 for anhydrous ethanol, would result in 30 EUR·GJ−1 (1288 EUR·t−1) for the
SAF’s MSP. In this sense, establishing a supply chain that ensures the regular delivery of
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the biomass at low cost with a guarantee that production is sustainable is a challenge to be
carefully considered.

The structure of the MSP shown in Table 4 highlights the crucial role of the feedstock
in enabling the production of SAF through the ATJ-SPK route. The combined, capital
cost, O&M costs and hydrogen cost (shown separately) are significant in the case of the
HEFA-SPK route.

Table 4. Parameters and results of the selected case studies: SAF MSP and its structure (%) for the reference production
capacity for the three routes considered.

Parameter Units FT-SPK FT-SPK HEFA-SPK ATJ-SPK

Biomass produced at Mainly two sites All five sites Paranaíba (MS) Caçu (GO)
Production capacity tSAF·day−1 61.2 244.8 245.0 245.0
Feedstock CIF cost (EUR·GJ−1) 2.54 3.12 5.15 12.37

MSPSAF (EUR·GJ−1) (EUR·GJ−1) 33.8 32.0 13.4 21.0

MSP structure

Capital costs (%) 40.8 37.6 26.1 8.7
Feedstock (%) 22.1 28.7 42.8 80.4
Hydrogen (%) ___ ___ 5.2 1.6

O&M & other inputs (%) 38.8 35.8 24.5 9.0
Taxes (%) 2.2 2.0 1.4 0.5

Surplus electricity (%) −3.9 −4.1 ___ ___

For the results presented above, a sensitivity analysis was performed, ranging ±10%
(1) of the capital costs related to the SAF plant; (2) the set of O&M costs and the input costs
required for the production of SAF (including natural gas, electricity and hydrogen) and (3)
the costs of the feedstocks at the SAF’s production site. The results are shown in Table 5. In
the case of the capital costs, the uncertainties would be related to the further development
of the industrial technology (including the learning effects) and the additional costs to
internalise it in Brazil, since at least the first units must be mostly imported. As for the costs
of O&M and the other inputs, the uncertainties were partially related to the capital costs
(i.e., the O&M component that is proportional to the investment) and, secondly, to the fact
that the particularities of the costs in Brazil were not fully explored here (e.g., the labour
costs could be lower). It can be seen in Table 5 that these uncertainties would be more
significant in the case of the FT-SPK and HEFA-SPK routes, but it can be concluded that the
simplifications made here would hardly have a significant impact on the MSP estimates.

Table 5. The sensitivity analysis results in relation to the MSP estimates in the base case for the three routes considered.

Case and Parameters FT-SPK HEFA-SPK ATJ-SPK

Biomass produced at All five sites Paranaíba (MS) Caçu (GO)
MSPSAF (EUR·GJ−1) in the base case 32.0 13.4 21.0

Capital costs (±10%) ±3.8% ±2.6% ±0.9%
O&M & other inputs (±10%) ±3.7% ±3.0% ±1.1%

Feedstock CIF costs (±10%, combining the factors below) ±2.9% ±4.3% ±8.1%
Feedstock costs (impact of long-distance transport costs) ±0.7% ±0.4% ±0.3%
Feedstock costs (impact of biomass/intermediate costs) ±2.2% ±3.9% ±7.8%

In the case of the feedstock costs, a relatively small variation in the long-distance
transport costs does not have a material impact on the MSP’s results. The impact is smaller
in the case of the HEFA-SPK and ATJ-SPK routes because of the energy density of what is
transported. However, it should be considered that, depending on the distance between the
biomass production site and the SAF production unit, the impacts could also be significant.
On the other hand, the variations in the biomass production costs (or intermediates) are
more significant, especially in the case of the ATJ-SPK route. The cost of the biomass (or
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intermediates) is most impacted by the agricultural yields, and it should not be assumed
that, on average, the yields can be more than 10% higher than those estimated here. Very
low yields would not be likely either, given that the analysed production sites are adequate,
and it is assumed that the best agricultural practices would be used.

4.5. Exploring the Scale Effects on the SAF MSP

The scale effects were explored by varying the capacity of the SAF plant, with cor-
responding changes in the biomass supply curve. The results are presented in Figure 6.
The results presented in Table 4 for the same production of SAF are for 245 tSAF·day−1 (i.e.,
about 84.5 × 103 tSAF·day−1, which is equivalent to 1.3% of the total Brazilian consumption
of jet fuel in 2018 [22]).
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For the assumed hypotheses, this (245 tSAF·day−1) is the greatest production capacity
for the FT-SPK route, since practically all the eucalyptus available in the five sites would
be used to feed the four modules. As explained earlier, a module is essentially defined by
the gasifier’s feeding capacity. The diseconomy of the scale that can be seen in Figure 6 for
three and four modules is explained by two points: first, the scale effect associated with the
total capital cost is relatively small, since scaling is due to the installation of more modules,
and second, for larger capacities, it is necessary to bring wood from more distant locations
(see Table 3) with a higher transport cost.

On the ATJ-SPK route, the new distillery to be built (in this case, in Caçu (GO)) has the
capacity to supply anhydrous ethanol in a quantity that can almost double the production
of SAF in relation to the reference case. As the CIF cost of anhydrous is constant across the
range of capacities explored in Figure 6, it is only the impact of the scale on the capacity
(which is relatively small; see Table 4) that explains the behaviour of the curve.

Finally, in the case of HEFA-SPK, the explanation is the same, but the differences that
the scale effects in the capital and operational expenditures are more pronounced (see
Table 4). The maximum estimated production of soybean in the surrounds of Paranaíba
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(MS) would allow producing even more SAF than the maximum presented in Figure 6
(about 600 t·day−1).

4.6. Comparing Results

The first and obvious comparison of the economic results presented here should be
with those presented by reference [25], since this is the main source of information for the
economic and technical parameters of the SAF plants. The results by other authors are also
presented in Table 6.

Table 6. The MSP results presented in this paper and comparisons with the equivalent estimates available in the literature.

Route MSP Results Other Estimates Reference Comments

FT-SPK 32.0–33.8 EUR·GJ−1

1369–1446 EUR·t−1

38–55 EUR·GJ−1 [25] Feedstock: forest residues and wheat straw (feedstock CIF
costs 4.8 EUR·GJ−1 or 10.6 EUR·GJ−1, respectively)

1188–1738 US$·t−1 [40] Feedstock: municipal solid waste (MSW) (not charged)

1244 and 1982 US$·t−1 [41] Feedstock: willow pretreated (lower value) and wheat straw
(higher value)

2440 EUR·t−1 [42] Feedstock: lignocellulosic residues
32.4 US$·GJ−1 [43] Feedstock: lignocellulosic residues

HEFA-SPK 13.0–17.2 EUR·GJ−1

555–736 EUR·t−1

29 EUR·GJ−1/1241 EUR·t−1 [25] Feedstock: used cooking oil (UCO).

770–1750 EUR·t−1 [44] From different feedstocks. Figures are for production costs.
825–1550 US$·t−1; 988–1775
US$·t−1; 1086–2000 US$·t−1 [40] From top to bottom, estimated MSP from yellow grease,

tallow and soybean oil
23.1 US$·GJ−1 [45] From soybean oil in Brazilian conditions
36.4 US$·GJ−1 [43] From soybean oil in Brazilian conditions

ATJ-SPK
20.6–21.4 EUR·GJ−1

880–915 EUR·t−1

52–78 EUR·GJ−1 [25] Produced from second-generation (2G) ethanol

2300 and 3500 EUR·t−1 [46] From second-generation ethanol, from forest residues
(lower value) and wheat straw (higher value)

27.2 and 36.6 US$·GJ−1 [45] From first-generation (1G) and 2G ethanol in
Brazilian conditions

33.7 US$·GJ−1 [43] From 1G ethanol in Brazilian conditions

It is not possible to simply compare the results of this study with those of other
authors, since the costs of the feedstock, the industrial scale of production and the economic
hypotheses can be quite different. A comparison with the results available in the literature
for the ATJ-SPK route is also difficult, because those results reflect the cost of producing
ethanol 2G. In a general sense, the results of this study are compatible with those of other
authors for the FT-SPK route, but they are relatively low for the HEFA-SPK and ATJ-SPK
routes, since, here, the feedstock cost reflects the dedicated production; in Section 4.4, the
MSP results are presented based on the market prices of soybean oil and anhydrous ethanol.

To put this into perspective, in reference [14] quoting reference [47], it was mentioned
that the price of HEFA-SPK in September 2020 was 2124 US$·t−1; at that moment, the
price of conventional jet fuel was slightly less than 330 US$·t−1; at that time, the jet fuel
prices were impacted by the COVID-19 pandemic and, also, by low oil prices. According
to IATA [48], the price of jet fuel varied in the 612–645 US$·t−1 range in June 2021, with
lower prices in the Middle East and higher ones in Latin America; since 2013, the jet fuel
prices have always been below—and, in some cases, well below—1100 US$·t−1 [49].

4.7. Producing on Degraded Pasturelands

Biomass production on degraded land is recognised as a low iLUC strategy. In the
context of assessing the GHG emissions of SAF on a life cycle basis, the iLUC share can be
significant. The set of default life cycle emission values provided by CORSIA [50] presents
the factors for the routes based on soybean (HEFA) and sugarcane (ATJ) produced in Brazil:
in the case of the HEFA-SPK route, the iLUC value corresponds to 27.0 gCO2eq.MJ−1 of
SAF in an estimated life cycle emission factor totaling 67.4 gCO2eq.MJ−1; in the case of the
ATJ route based on sugarcane, the iLUC share is 8.7 over 32.8 gCO2eq.MJ−1 of SAF.
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Here, the exercise of estimating the biomass production only in degraded pastures
was carried out for the production of soybean, sugarcane and corn in Paranaíba (MS). It
was assumed that the production would displace pastures classified as having moderate
and severe levels of degradation (in 2018). It was also part of the assumptions that the
potential agricultural yields would be achieved after specific actions, and here, the soil
recovery costs were not computed. Table 7 presents the results of the evaluation.

Table 7. The results of the areas assessed for the production of soybean, sugarcane and corn in Paranaíba (MS), considering
cropping when no restrictions were imposed besides those considered for defining the eligible areas (reference case) and
only in degraded pasturelands (moderate and severe levels).

Feedstock
Area Assessed (km2) Production (1000 t) Area Assessed (km2) Production (1000 t)

No (Additional) Restrictions Imposed In Moderate and Severe Degraded Lands

Soybean 25,836.1 9522.3 5469.9 2310.0
Sugarcane 728.4 6460.9 204.6 1815.1

Corn 1416.0 1006.0 363.0 257.8

In all three cases, the area to be potentially utilised would be significantly reduced (to
24–28%); in the case of soybeans, production would not be reduced in the same proportion,
as the remaining area has a greater potential yield than the total area previously estimated.

The consequence would be a drastic reduction in the supply of feedstock for the SAF
plant, with an increase in the biomass costs. In the case of soybean oil, the maximum supply
would be reduced to 468.5 × 103 t·year−1 (from 1931.1 × 103 t·year−1), with an increase
of about 20% in the CIF costs (at REVAP). Counting only on soybean oil produced in
Paranaíba (MS), the maximum SAF production would be 183.8 t·day−1, and its MSP would
be 15.2 EUR·GJ−1 (17% higher than the minimum value in the curve shown in Figure 6,
and about 10% higher than the previous estimate for the same production capacity).

On the production of ethanol in the region of Paranaíba (MS), using sugarcane and
corn as the raw material, the impact is that this would be reduced to less than half of the
maximum production previously estimated. The estimated cost of ethanol production
would increase by almost 20% compared to the previous situation, reaching 13.61 EUR·GJ−1,
while the CIF cost at REVAP would be 14.30 EUR·GJ−1. Altogether, combining the effects
of the smaller industrial scale and the higher feedstock cost, the estimated MSP of the SAF
produced in this new context would be 22.8 EUR·GJ−1 (i.e., about 10% higher than the
previous estimates for similar industrial capacities).

The feasibility of this action needs to be analysed carefully, as clearly, there is a trade-
off situation, with less production and less economic viability but (potentially) lower
GHG emissions. A key question is how much the GHG emissions would be reduced
and whether this reduction would be effectively recognised, as a substantial share of the
expected results would be related to reducing iLUC GHG emissions. In this sense, the
results of a preliminary analysis are presented in Table 8 based on the estimates for the
routes HEFA-SPK and ATJ-SPK assuming the emission factors presented by reference [50]
and calculating the avoided emissions per tonne of SAF used by the procedure described by
reference [51] (see the Supplementary Materials for details). The life cycle emission factors
presented by reference [50] are composed by the core LCA (life cycle assessment) values,
which are related to the material flows in the production process, plus the components that
are related to the land use change (LUC), including the induced impacts.

It is assumed that the MSP is a good proxy to estimate the cost of the avoided GHG
emissions due to the use of SAF, and the assessment was also made using the emission
factors presented by reference [50] in addition to the procedure reported by reference [51].
To estimate the feasibility of adopting low-iLUC measures, the iLUC LCA value was calcu-
lated that corresponds to the breakeven point between the biomass production (soybean,
sugarcane and corn) in the entire area considered suitable or just displacing degraded (at
some level) pastures. In the case of the route HEFA-SPK from soybean oil, it would be neces-
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sary to reduce the iLUC LCA value from 27 gCO2e·MJ−1 (see Table 8) to −1.1 gCO2e·MJ−1,
while, in the case of the ATJ-SPK route, it would be necessary to reduce the factor from
8.7 gCO2e·MJ−1 to −2.6 gCO2e·MJ−1. Negative values indicate that it is not only neces-
sary to avoid induced land use changes but, also, to add carbon to the degraded soil, for
instance, with the adoption of the best agricultural practices.

Table 8. Synthesis of the results of the MSP in different cases, and estimates of the avoided costs of
GHG emissions.

Parameter Jet Fuel HEFA-SPK ATJ-SPK

Life cycle emission factor (gCO2e·MJ−1) 89.0 67.4 32.8 *
Core LCA value (gCO2e·MJ−1) 40.4 24.1 *
iLUC LCA value (gCO2e·MJ−1) 27.0 8.7 *

Avoided emissions per tonne of SAF (tCO2) 0.707 1.995
Jet fuel price (as for June 2021) (EUR·t−1) 514 **

MSP in the base case (EUR·t−1) 574 899
MSP in the low iLUC case (EUR·t−1) 651 976

MSP based on market prices (EUR·t−1) 1070 1288
Cost of avoided emissions—base case (EUR·tCO2

−1) 77.2 192.7
Cost of avoided emissions—low iLUC *** (EUR·tCO2

−1) 79.0 200.3
Cost of avoided emissions—market prices (EUR·tCO2

−1) 724.6 387.7

Note: * Here, the emission factor for ethanol from sugarcane is assumed, as there is still no evaluation for the
combined production from sugarcane and corn. ** Assuming 612 US$·t−1 and an exchange rate of 1.19 US$.EUR−1.
*** Assuming that the iLUC LCA value would be nil.

In addition, the procedure was applied to estimate the cost of the avoided GHG
emissions due to the use of SAF in displacing conventional fossil-based jet fuel, and the
results are also presented in Table 8. It can be seen that the estimated costs are high, which
is also due to the relatively low market prices of conventional fuel; the lower the market
price of fossil fuels, the greater the cost of the avoided GHG emissions. In order to have a
reference, the market price of conventional jet fuel, which would be the breakeven point
for each production route, was calculated in each case; that is, the prices that would make
the costs of the avoided GHG emissions nil. For the HEFA-SPK route, they are 683, 774 and
1273 US$·t−1 for the cases identified as the base, low iLUC and market prices, respectively,
while, for the ATJ-SPK route, they are 1070, 1161 and 1533 US$·t−1, respectively, for the
same three cases. To put these results into perspective, 1030 US$·t−1 corresponds to a jet
fuel price at about 130 US$ per barrel, and this price was reached in mid-2013 [49].

4.8. Identifying Regions with Good Potential

Figure 7A, which highlights part of the Brazilian Southeast and Centre-West regions,
shows the ethanol pipeline in Brazil (existing and planned sections) and also the location
of the existing ethanol distilleries. The figure has as the background the estimated cost of
sugarcane production. The circles, with radii of 100 km, indicate the areas closest to the
pipeline terminals, suggesting where it would be cheaper to access the pipeline in order to
ship ethanol. The two main international airports in the State of São Paulo are also shown,
as well as two oil refineries (REPLAN and REVAP). Caçu (GO), which is one of the case
studies discussed here, is close to the second circle from left to right.

Figure 7B shows similar information used as the background for the estimated costs
of eucalyptus. The figure shows the railroads (existing and planned), the location of four
international airports (two in the State of São Paulo, in addition to Brasília further north
and the one in Belo Horizonte), and also, four oil refineries.

In the case of the ATJ-SPK route, it is clear that there are areas to be explored for new
ethanol production in the States of Minas Gerais and Goiás (near the three circles at the
top of Figure 7A). SAF production could be at the two refineries indicated in the figure.
In the case of the FT-SPK route, since the production of SAF does not require the input of
large amounts of hydrogen, the industrial units should be closer to where it is possible
to produce wood at a low cost, as well as to transport SAF by rail to the airports. Thus,
further studies should consider production in Minas Gerais and in the centre-west.
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5. Conclusions

The objective of this paper was to analyse the feasibility of producing SAF in Brazil
considering three certified routes based on the biomass that would be produced in a
dedicated way in new plantations. The objectives were achieved, and the results showed
that production can be cheaper than in many other countries without the significant risks
associated with land use changes. In this sense, the assessment was carried out under
the premise that cropping can only take place in areas already anthropised (before 2008)
and replacing pastures. The base case corresponded to a SAF production that would be
equivalent to 1.3% of the annual jet fuel consumption in Brazil in 2018 or about 3% of the
estimated consumption due to international flights in the same year.

The economic results are expressed by the minimum selling price (MSP) in each case.
The hypotheses reflected the costs of mature industrial technologies (nth plant) in the
production of SAF, while the biomass costs were those that can be achieved in the short
term, as long as the planting was in suitable areas. The lowest MSP was for the HEFA-SPK
route from soybean oil and the highest for the FT-SPK route from planted eucalyptus.

There was a significant difference in the estimated MSP when considering that the
feedstocks would have to be paid at their opportunity costs. In this sense, an important
conclusion is that a dedicated biomass production must ensure not only supply and
sustainability but, also, a better economic viability of production.
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Among the routes studied, the biggest challenge lied in defining the production
sites for the FT-SPK route, since the transport of wood over long distances, even by rail,
significantly impacts the viability of SAF production. For the HEFA-SPK and ATJ-SPK
routes, there was more flexibility, since the intermediary product could be transported
over long distances even by rail or a pipeline. In this sense, it is important to highlight the
particularity of the Brazilian case, since there are adequate conditions for the production of
a biomass in different places, but the transport infrastructure is inadequate, and there is a
concentration of industrial parks close to the coast.

In this paper, the feasibility of producing a biomass by planting on degraded land was
also analysed, albeit on a preliminary basis. This was done by considering only one of the
production sites and for the cases of soybean and sugarcane planting (plus corn). From the
results, it was concluded that it is necessary not only to reduce the risk of iLUC but, also, to
increase the stock of carbon in soil. However, it is necessary to deepen the analysis and
estimate with greater precision the costs and possible impacts on the agricultural yield.

Even considering the Brazilian conditions for low-cost biomass production, there
would still be significant economic restrictions to replace conventional aviation fuels with
SAF, and this is partly due to the relatively low oil prices. In this sense, higher oil prices
and/or carbon taxation would define a better context for alternative jet fuels.

From the results presented, it is clear that, besides the crucial production of a biomass
and intermediates at low costs, it is also necessary to reduce the transportation and in-
dustrial costs. This point indicates that coordination and planning will be fundamental in
creating adequate conditions for SAF production.

The results presented in this paper are valid for Brazil, and the generalisation of the
conclusions cannot be made without caution. This method can be replicated for other
countries and regions, depending on the data availability, but it is obvious that the results
and conclusions are specific. It is clear that the conditions that exist in Brazil for the large-
scale production of biomass do not exist in many countries, but this viability also crucially
depends on the existing transport and industrial infrastructure. Considering the required
set of aspects, other countries would be able to produce SAF in at least moderate amounts.
The challenge is to identify the context that will make the first units viable.

In addition to reducing the SAF costs and having higher prices for conventional
fuels, to reduce the costs of the avoided emissions, it is necessary to minimise the carbon
footprints of alternative fuels. Some options have been explored in this paper but do not
necessarily represent a trade-off between the production costs and avoided emissions.

Finally, an important aspect is that many consumers are likely to accept paying a
premium if they are confident that the fuel is really sustainable in a broad sense. Although
not clearly explored in this paper, this aspect was considered in defining the case studies
presented.
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