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Abstract: A successful transformation of the energy and transportation sector is one of the main
targets for our society today. Battery electric vehicles can play a key role in future renewable-based
energy supply systems because of their ability to store electrical power. Additionally, they provide
significant charging flexibility due to the long parking durations. In this paper, we provide insights
into the temporal and power-specific flexibility behavior of three different vehicle fleets. These fleets
are pool vehicles of office employees, a public authority, and a logistics company. Several parameters,
such as the average charging power per charging event or the average plug-in duration per charging
event, are discussed. Additionally, we investigate different charging rates and their impact on the
temporal flexibility of the charging events. The data analysis shows that the logistics site has the
most homogeneous charging profile as well as high charging flexibility, in contrast to the office and
public agency site. The results are of significant importance for future applications in the field of
smart charging and ancillary services provision.

Keywords: electric vehicles; vehicle grid integration; charging flexibility; data analysis; optimization;
smart charging

1. Introduction

The sustainable transition of our energy and transportation systems is one of the cen-
tral challenges for our society today. Globally, the two sectors of energy and transport are
responsible for more than 50 % of annual greenhouse gas emissions [1]. While renewable
energy sources are increasingly replacing fossil-fueled power plants in the energy sector,
plug-in electric vehicles (EVs) play a key role in the transportation sector to drastically
reduce local tailpipe emissions. The expansion of renewable energy sources (RES) leads
to higher fluctuations and a high dependency on the time of day and weather conditions.
For instance, the curtailed energy amounted to more than 6 TWh in Germany in 2019 [2].
Therefore, there is a strong need for flexibility to better integrate the electricity generated by
RES. On the other hand, the introduction of more and more plug-in EVs offer great flexibil-
ity potential. This flexibility potential can be utilized by smart-charging technologies and
energy management systems, such as ChargePilot by The Mobility House [3]. ChargePilot
intelligently manages EV charging, according to local requirements (e.g., grid connection)
and external signals (e.g., grid congestion and energy market prices). It converts EV batter-
ies into storage assets that can stabilize the grid and buffer renewable energy. The system
is the basis for the future participation of EVs in the energy markets, which offers new
possibilities in terms of value-generating services and flexibility portfolios.

To better understand the flexibility potential of different vehicle fleets, it is important
to analyze their plug-in and charging behavior. For instance, the plug-in behavior of an EV
fleet of a logistics company can differ massively from that of a public authority. Therefore,
we contribute in this paper a comprehensive data analysis of real-world charging data
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from three different sites—an urban office, a logistics company and a public authority.
Each site has at least eight AC charging points with a charging rate between 11 and 22 kW
and more than ten vehicles. In total, we analyze more than 1000 charging events and
provide comprehensive insights into the plug-in behavior of these EV fleets as well as the
temporal and power-specific flexibility of the charging events. Additionally, we visualize
the charging flexibility by using FlexBars [4]. The results are of significant importance for
several stakeholders and smart-charging providers when it comes to the evaluation of the
economic potential of controlled charging strategies and the provision of system services
under real-world conditions.

The remainder of this paper is structured as follows: In Section 2, we provide an
overview of related work in the field of charging flexibility and data analysis of EV charging
data. More information about the real-world input data and the data preparation steps
is given Section 3. Section 4 provides insights into the plug-in behavior on different sites
and the resulting flexibility potentials. Finally, Section 5 concludes the paper with a short
summary and an outlook on future work.

2. Literature Review
2.1. Electric Vehicle Charging Data Analysis

The analysis of real-world EV charging data is becoming increasingly important to
gain a better understanding of user behavior. For instance, in order to develop accurate
prediction models for the plug-in duration or the amount of energy needed for a trip,
a comprehensive understanding of user behavior is essential. There are some recently
published studies that focus intensively on the charging behavior of EVs in the area of
workplace or residential charging.

Gerritsma et al. [5] analyzed the simultaneity of charging events in a residential
area in the Netherlands by utilizing the real-world data of 21 charging stations. The
time-dependent flexibility of the resulting EV demand is used to simulate the charging
behavior of future EV fleets. Interesting insights of the charging behavior of 20 EVs on the
Portuguese island of Porto Santo are shown in Strobel et al. [6]. The given data analysis
points out that drivers prefer home charging rather than away charging and that flexible
charging events occur mostly overnight. Because the users of the EV fleet changed over
the project period, there are no general user group-specific statements about the charging
flexibility possible. ACN-Data [7] provides a comprehensive dataset of charging events at
JPL and CalTech campuses, which is updated in real-time. For each charging event, the
plug-in time, the plug-out time and the amount of energy charged is logged. This dataset
provides the basis for many other publications [8,9] in this area, for instance, in the work of
Khan et al. [8] to predict user behavior, or in the paper of Venegas et al. [9] to analyze the
grid integration of renewable energies in more detail. The ElaadNL data platform contains
aggregated data from public, private and workplace charging stations distributed over the
entire Netherlands [10–12]. The dataset shows important key figures, such as the time of the
charging event or the idle time [10]. In Lahariya et al. [13], the authors develop a synthetic
data generator for EV-charging sessions based on the ElaadNL dataset. For the synthetic
data generator, the authors assume that the EV inter-arrival time follows an exponential
distribution. The departure time is represented by a conditional probability density function.
The synthetic data generator can be shared without violating the confidentiality constraints.
Xydas et al. [14] use real-world charging data from the U.K. to develop a data-mining model
for the EV charging demand. The model is used to analyze the characteristics of EV charging
demand in a geographical area. An EV charging dataset that is more focused on the user
behavior in residential areas is provided by Sorensen et al. [15,16]. The authors analyze
the charging habits and electricity load profiles of EV charging in apartment buildings in
Norway. Results show that there is a big charging flexibility in residential areas as long
as private parking spaces are utilized with EV charge points. Rauma et al. [17] analyze
over 80,000 real-world charging sessions from various commercial charging sites. There
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findings indicate that residential and office charging sites offer a great potential for load
reduction.

2.2. Charging Flexibility

As mentioned above, the analysis of real-world EV charging data provides useful
insights into the charging behavior of individual users or bigger EV fleets. This knowledge
can be used to describe the charging flexibility in greater detail and to better understand
possible application areas, such as load balancing or auxiliary service provision.

For the description of flexibility by consumers in general, i.e., not specifically for an
application, the model of FlexOffers [18,19] is often used. FlexOffers were introduced to
specify supply-side and demand-side flexibility and create an approach to use as much
of the available flexibility as possible in real-time. The results show the better integration
of RES and peak demand reduction [20]. Pederson et al. [21] provide a good overview of
the principle of FlexOffer. Basically, FlexOffers are divided into time and energy flexibility,
and the application takes place as follows: (1) collection of the data of the flexible loads; (2)
preparation of the data (elimination of “outliers”, and filling of data gaps); (3) flexibility
forecasting using a model; (4) generation of the FlexOffers—time and energy flexibility;
(5) aggregation/disaggregation of the FlexOffers (for easier marketing); (6) trading the
flexibility in the market and creating a schedule; and (7) the schedule is given back to the
flexible loads for compliance. The objective of the FlexOffer method is to achieve easy
management, control and market integration of flexibility. The providers of the flexibility
can be versatile, ranging from power plant operators to large consumers to prosumers. The
disadvantages of the FlexOffer model are, first, the loss of flexibility along the process chain
and, second, the lack of real-time use of flexibility. In addition, other grid parameters, such
as voltage and frequency are not considered in the model. Schlund et al. [4] further develop
the FlexOffer system by providing a general model for determining guaranteed currently
available flexibility through flexible distributed loads. The model takes into account energy,
power and time. In addition, the authors present the possibility of bidirectional power
flexibility in the presence of unidirectional charging EVs. The model is evaluated by means
of simulation of EVs in which a realistic mobility behavior is emulated, and, thus, no
real data of EVs are used. In principle, the FlexAbility model introduced here allows a
description of flexibility through distributed loads while respecting important energy
constraints. Contributing to the auxiliary services, such as the frequency containment
reserve, is feasible with this model. The possibility of visualizing the charging flexibility
through FlexBars is taken up in this work and used to illustrate the temporal and power
dependence of charging operations for different vehicle fleets. Another approach for the
description of charging flexibility is provided by Li et al. [22].

Grid-serving charging strategies under the consideration of mobility needs are in-
vestigated by Sundstrom et al. [23]. The authors demonstrate the flexibility potential
of EV fleets by studying load-shifting mechanisms. Pertl et al. [24] conclude that smart
charging can save necessary grid expansion costs and better integrate RES into the grid.
Therefore, they implement a so-called time-variant energy storage model consisting of
many EV batteries. In this way, the forecast errors can be better absorbed. In the absence
of the time dependence of power and energy, the implementation of system services is
also possible in this model. Sperstad et al. [25] examine the impact of flexibility on energy
system security. They identify the possible rebound effect from incentive-based load shifts
as a negative impact. The growing dependence of system stability on the flexibility built
on forecasts and models as well as the increasing risk of sabotage and cyber attacks, due to
the necessary use of Information and Communication Technology, are additional negative
factors. The latter is also discussed in Amini et al. [26]. They argue that, with the use of
flexibility, the utility network can be used more efficiently. On the other hand, however,
also the utilization increases, which increases the susceptibility of the network to faults.
Spitzer et al. [27] study the impact of uncontrolled charging on a residential low-voltage
network. The authors come to the conclusion that uncontrolled charging leads to peak
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loads in the evening hours that cause voltage fluctuations in the grid. To overcome these
problems and to better utilize the charging flexibility, smart charging strategies based
on dynamic electricity tariffs are implemented, using mixed-integer linear programming.
The results show that cost savings of up to 30% are possible, showing the great flexibility
potential of overnight charging in residential areas. The impact of flexible charging of
EVs is also discussed by Bons et al. [28]. In their work, the authors present the results of a
demonstration project called Flexpower. They indicate that the EV contribution to the grid
peak load can be reduced by 1.2 kW per charging station, whereas the impact on the user is
quite low.

The objective of this work is to provide a general method for analyzing the market
and flexibility potential of an electric-powered vehicle fleet based on real-world data. The
temporal and power-specific flexibility of charging events from different areas of electric
mobility usage is analyzed and quantified. For visualization and simplified estimation of
the flexibility potential, FlexBars according to Schlund et al. [4] are used.

3. Input Data

The data used as input for our study were extracted from the charging and energy
management system, ChargePilot, developed by The Mobility House. Inter alia, it covers
the entire EV fleet of three different sites discussed in this paper. In this section, we first
describe the data preparation steps in general. Secondly, we discuss the input data in
more detail.

3.1. Data Preparation

In this work, we use real charging data from three different vehicle fleets as input data.
Therefore, the raw dataset is only available in an aggregated way, representing the grid
connection point of each site. In order to generate insights into the charging flexibility of
individual charging events on each charging station of a specific site, we have to perform
several data preparation steps.

In the following, a charging event refers to the period of time during which a vehicle
is physically connected to a charging point—consequently, the time span between plug_in
and plug_out time. The term charging process is used to describe the actual duration of the
energy consumption, i.e., the time during which the battery is charged. Hence, idle times
where the vehicle is connected to the charging point but no electrical energy is drawn are
only included in the charging event.

Figure 1 shows the toolchain of the data preparation process. The data preparation pro-
cess can be divided into four steps: disaggregation, discretization, addition and aggregation.
Each step is described in more detail in the following.

Raw Data
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• Site to charge
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• Listing 

charging

events
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Figure 1. Toolchain: from raw data to flexibility analysis.

3.1.1. Disaggregation

Generally, each site has more than one charging point, meaning that simultaneous
charging events at different charging points overlap in the raw dataset. The disaggregation
of individual charging points has the advantage that the data cleaning process can be
performed more accurately, and the boundary conditions of charging events can be identi-
fied more precisely. This is very helpful to quantify the flexibility potential of individual
charging events.
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Each individual charging event can be described by specific parameters given in Table 1.
Some of the parameters can be extracted directly from the raw data, e.g., the plug-in time
Tk,plug_in for the charging event k. Other parameters can be derived by simple calculations
or assumptions. For instance, the plug_out time of a charging event is not recorded in the
raw data. Therefore, we assume that the time stamp of the last available log-entry defines
the plug_out time of the related charging event. Please note, that each charging event is
represented by a number of log-entries in a resolution of 20 s, including several measurements,
such as the time of measurement or the offered and demanded current per phase. Calculated
parameters are marked with * in Table 1.

Table 1. Parameters of individual charging events.

Parameter Meaning Format/Unit

h Index; indicates the h-th charging event of the
charging point -

k Event-ID of the charging event; k ∈ Ω, where Ω
describes the set of charging events -

Tk,plug_in plug_in time of charging event k HH:MM:SS dd.mm.YYYY

T∗k,plug_out plug_out time of charging event k HH:MM:SS dd.mm.YYYY

t∗k Duration of the charging event k HH:MM:SS

t∗k,charging
Duration of the charging process of the charging
event k HH:MM:SS

P∗k,max Maximum charging rate of the charging event k W

P∗k,mean Mean charge power of the charging event W

P∗k,charging,mean Mean charge power of the charging process W

E∗k Charged energy of the charging event k W h

For the following data preparation steps, we only consider charging events that fulfill
the following three requirements:

• Duration must be greater than or equal to five minutes (t∗k ≥ 5 min.).
• Charging rate must be greater than zero Watts (P∗k,max > 0 W).
• Charged energy must be greater than or equal to 100 W h.

Please note that we choose a minimum duration of five minutes to exclude charging
events with communication errors between charging stations and the backend.

3.1.2. Discretization

For the flexibility analysis of the individual charging points, we discretize the data
into a resolution of fifteen minutes. This corresponds to the smallest possible temporal
product size on the German spot market.

The discretized data set ensures that we have the same number of log entries for each
charging point. However, due to the discretization, we may obtain so-called blank entries
because data are only measured and transmitted when an EV is plugged in. These can
occur within a single charging event or between two charging events at the same charging
point. In order to obtain a complete time series, we fill blank entries by interpolating
between adjacent log entries.

3.1.3. Addition

In order to guarantee a continuous time series, we add missing log-entries. In the case
of the flexibility analysis of charging events, we do not consider the missing entries.
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3.1.4. Aggregation

In order to conduct a detailed site-wide analysis of charging flexibility, we finally
aggregate the prepared and cleaned data from the individual charging points. A tabular
listing of all charging events of a site can be obtained by linking the corresponding charging
events of the individual charging points and sorting them by the plug_in time. Therefore,
we introduce a charging point ID CPn.

Subsequently, we create discrete time series for each parameter (e.g., E∗k ), which
represent the sum of the related parameters of the individual charging points for each time
step. For instance, Equation (1) shows the total charged energy for each discrete time step t.

E(t) =
Ω̃

∑
k=1

N

∑
n=1

Ek(t, n), (1)

where N represents the number of charging points at a site and Ω̃ the number of charging
events. Please note that Equation (1) can also be formulated for other parameters shown in
Table 1.

3.2. Data Set and Characteristics

This section describes the analyzed data set in more detail and discusses the data
selection process as well as certain characteristics.

3.2.1. Data Set

We analyze the following three EV fleets from different sectors and, thus, with different
charging behavior:

(a) Office site: The fleet consists of fifteen battery electric vehicless (BEVs), including five
company pool vehicles and ten private-owned vehicles of employees. The office site is
located in an urban region. An urban depot is where mainly company and employee
vehicles are charged. Eight charging points are available.

(b) Logistics site: The EV fleet consists of twelve delivery vans (Mercedes e-Vito). Twelve
charging points are available.

(c) Agency site: The vehicle depot of the public agency solely consists of twelve company
vehicles of different types. Twelve charging points are available.

The data basis of our analysis is given in Table 2. Whereas the data for the office site
are given for more than one year, the time period for the logistics site and agency site
amounts to two months. Hence, the total charged energy and the number of charging
events differ significantly. Table 2 also provides an overview of some key performance
indicators, such as the average charging power per charging event or the average plug-in
duration per charging event. These parameters allow a comparison between different sites.

Table 2. Data basis of the analysis.

Office Site Logistics Site Agency Site

Time period 09/2019–08/2020 01–02/2020 01–02/2020
Number of charging points 8 12 12
Number of EVs 15 12 12
Total charged energy [kW h] 8179.22 5563.05 3151.23
Number charging events 509 268 374
Average charged energy per event [kW h] 16.47 20.81 8.61
Average charging power per event [kW] 7.89 10.28 9.47
Average plug_in duration per event 09:29:00 22:02:24 14:30:09
Average charging process duration per
event 02:30:04 03:23:12 01:20:12

First, we note that the average charged energy per charging event at the logistics site
is the highest. This fact results from the use of the fleet vehicles. Electric delivery vans have
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high mobility needs during workday hours because of daily parcel delivery. Therefore,
the mobility requirements in terms of distance traveled is higher than those for employee
and company pool vehicles. On the other hand, however, delivery vans have a very high
average plug-in duration of more than 22 h per event. This is due to the fact that vehicles
at the logistics site are also connected to the charging point over weekends. The average
plug-in duration at the office site is mainly limited by usual working times. In contrast,
the public authority site solely has service vehicles that can be connected to the charging
station overnight, which leads to a higher average plug-in duration.

3.2.2. Data Selection and Characteristics

For a realistic representation of the charging flexibility of a site, we only use coherent
charging events, meaning that we do not use charging events with missing log entries.

Since individual charging events of the sites deviate strongly from the average, we
additionally filter the data with regard to their plug-in duration. For this purpose, we only
consider charging events with a plug-in duration within an interval of 5 % to 95 % around
the plug-in duration mean value. This eliminates charging events with a particularly short
or long plug-in duration. For instance, a short plug-in duration results from a double-
started charging process due to changing the charging point, whereas a long plug-in
duration does not reflect the general plug-in behavior. This procedure contributes to a
more robust database for the analysis. Removing charging events with missing log entries
and filtering the data by plug-in duration reduces the number of charging events analyzed
for the sites as follows: office site—509→ 400; logistics site—268→ 226; agency site—374
→ 273.

By filtering the data, it is also possible to investigate the homogeneity of the user
group of the respective site. The lower the number of charging events filtered out, the
more homogeneous the user behavior and the better an average charging event represents
ordinary charging events. The logistics site represents the greatest homogeneity in its
charging behavior. The plug-in duration of the charging events at the office and agency
sites shows a wider spread, which leads to a more inhomogeneous charging behavior.

In addition to homogeneity, the simultaneity of the charging processes plays a decisive
role. High simultaneity with simultaneous uncontrolled charging leads to characteristic
load peaks. Figure 2 shows the probability of simultaneously active charging points.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

S
im

u
lt

a
n

e
it

y
 i
n

 %

Linked charging points

Office

Logistic

Agency

Figure 2. Probability of simultaneously active charging points of the analyzed sites.

The plot confirms the previously obtained findings that the simultaneity in the office
site is lower than in the sites dominated by company vehicles, due to high heterogeneity.

For the analysis of characteristic load peaks, a weekly profile is created for each site,
which represents the average power consumption caused by the charging processes. The
resulting profiles of the sites are shown in Figures 3–5.
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Figure 3. Weekly charging profile for the office site.
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Figure 4. Weekly charging profile for the agency site.
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Figure 5. Weekly charging profile for the logistics site.

From Figure 5, we can see that the power profile of the logistics site is the most charac-
teristic one. The curves show that homogeneity in combination with high simultaneity and
uncontrolled charging leads to a very characteristic charging profile with significant load
peaks. Decreasing homogeneity and a lower number of simultaneously active charging
points leads to less distinctive curves, which becomes clear from the plots of the agency,
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but especially from the office site, depicted in Figure 3. The profiles of all sites indicate the
usage behavior of the respective user group. The load peaks of the office site are mainly
located in the weekday mornings, and thus, indicate the charging of private vehicles of the
employees during working hours. At the agency site, but especially at the logistics site, the
load peaks in the late afternoon hours indicate charging after work and confirm the use of
company vehicles.

4. Analysis of the Charging Flexibility

In general, the flexibility of EV charging can be divided into three dimensions: time
flexibility, power-specific flexibility, and energy flexibility [4]. In the following, we discuss
the time and power-specific flexibility in more detail.

In the analysis of charging flexibility used in this work, the measured boundary condi-
tions of the individual charging events are not changed. In particular, these parameters
include the plug-in and plug-out time, the amount of charged energy and the maximum
charging rate, which is defined as the maximum possible charging rate of the respective
charging event.

In the following, we discuss the idle time and time flexibility for the investigated
sites. Additionally, we also discuss FlexBars, which is a visualization method for charging
flexibility defined by Schlund et al. [4].

4.1. Idle Time

The idle time is defined as the time during which a vehicle is plugged in to the charging
station but no energy is being charged. Thus, it indicates the time flexibility potential of
the charging processes and is calculated from the difference between the charging duration
(t∗k ) and plug-in duration (t∗k,charging):

tk,idle = t∗k − t∗k,charging k ∈ Ω. (2)

A high idle time allows to shift charging processes in time in order to avoid overload-
ing the grid. In addition, the idle-time reflects the ability to shift charging to time periods
with lower electricity prices. Thus, it is directly related to the smart sourcing potential
without impairing the mobility requirement. This flexibility can be used economically by
the end user, among other things, by using § 14a EnWG [29] or smart charging. This feature
is already included in grid-optimized charging—an add-on module of the ChargePoint
offered by The Mobility House.

For a simplified analysis of the impact of a charging event on mobility demand,
we determine for each site the idle time and the probability that it exceeds two hours.
Please note that if the idle time exceeds the maximum interruption time of two hours,
the EV user does not experience any disadvantages in the mobility demand when using
§ 14a EnWG. This is consistent with most office buildings and multi-family housing in
urban environments.

Figures 6–8 show boxplots of the idle times from all charging events for the office,
agency and logistics sites. It can be seen that both the office site as well as the agency site
have a wide range in the behavior of the charging events. In comparison, in the case of the
logistics site, the interquartile range of the idle time is significantly smaller. Overall, the
median value of the idle time for the logistics fleet is significantly higher than in the other
two cases, i.e., the flexibility to postpone charging processes is noticeably greater for the
logistics fleet.
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Figure 8. Idle time for the logistics site.

4.2. Time-Shift-Flexibility

Time-Shift-Flexibility is the ability to change the charging process within a charging
event without affecting the amount of charged energy. Flexshift,k,P (3) shows the Time-Shift-
Flexibility potential as a function of different charging rates and indicates how often a
charging process would be feasible in terms of time within the associated charging event.

Flexshift,k,P =
tk

tk,P
k ∈ Ω, (3)

where tk describes the duration of the charging event and tk,P represents the duration of
the charging process if the real amount of charged energy Ek is charged at charging rate
P. For instance, Flexshift,k,P = 1 indicates that the whole duration of the charging event
is needed to charge the required amount of energy of the corresponding charging event
at charging rate P. The charging rate P essentially determines the duration of a charging
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process. Under a constant amount of charged energy, a higher charging rate leads to a
shorter duration of the charging process, whereas a lower charging rate results in a longer
duration. If the duration of the associated charging event remains the same, this results in
different key figures. In this work, we analyze three different charging rates in more detail:

• Fixed charging rate: Pfix = 3680 W
• Maximum measured charging rate of the associated charging event: Pk,max
• Average charging power of the associated charging process: Pk,charging,mean.

The duration of the charging process can be calculated by using Equation (4):

tk,P =
Ek
P

k ∈ Ω. (4)

Figures 9–11 show the Time-Shift-Flexibility of the individual charging events of the
different sites as a boxplot.

The wide dispersion of the Flexshift of the office site is due to the heterogeneous
charging behavior of the site. The range of values of the Flexshift spans from 0 to 75. Only
slight differences in the temporal shift flexibility factor between the average and maximum
charging power indicate mainly uncontrolled charging. The fundamentally lower temporal
shift flexibility, compared to the other sites, decreases again significantly by the choice of a
fixed charging power of 3.68 kW.
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Figure 9. Flexshift potential for the office site.
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Figure 10. Flexshift potential for the agency site.



Energies 2021, 14, 4961 12 of 16

Pfix Pk, charging, mean Pk, max

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

Fl
ex

sh
ift

 [h
]

Figure 11. Flexshift potential for the logistics site.

The Time-Shift-Flexibility factor of the logistics site shows only a small deviation when
considering the different charging powers. From this, it can be concluded that the charging
processes at this site are carried out with almost maximum charging power. This suggests
uncontrolled charging behavior. The Time-Shift-Flexibility factor shows significantly fewer
outliers compared to the office site and turns out to be twice as high. Here, there is a direct
correlation to the charging station usage and uninterrupted vehicle pairing overnight and
on weekends. The long plug-in duration of the vehicles offers a lot of potential to shift
the charging processes within the charging event, which was also shown by the idle time.
Due to the lower variation in times, a prediction of the potential shift flexibility at this
site can be made with a higher degree of reliability. When using the low charging power,
the Time-Shift-Flexibility decreases. However, there is still the possibility to perform an
average charging operation four times within the corresponding charging event.

The agency site has the greatest Time-Shift-Flexibility. Again, this can be attributed to
the lower energy levels, with a longer plug-in duration. When charging with maximum
charging power of the charging event, 50 % of the events have a flexibility factor between 3
and 15. The dispersion of the results is higher than that of the logistics site, but smaller than
that of the office site. Again, this suggests a diversified user group, with the heterogeneous
usage behavior of employee vehicles and homogeneous behavior, due to the company
vehicles being combined. The Flexshift potential at Pfix is, on average, equal to that of the
logistics site.

The Time-Shift-Flexibility of the different sites is shown in Table 3. These clearly show
that, even for charging with a low charging power (Pfix), an average charging event has a
time shift factor of greater than 2. If the charging power is increased within the range of
the physically possible bandwidth, Time-Shift-Flexibility factors of more than 10 can even
be achieved. This reflects the enormous potential for controlled charging.

Table 3. Results of the analysis of the Time-Shift-Flexibility of sites at different charging powers.

Office Logistic Agency

Events 400 260 273

Pfix in kW 3.68 3.68 3.68
∅tk,Pfix

in h 04:17:37 05:50:43 02:34:53
∅Flexshift,k,Pf ix

in h 2.29 4.14 4.47

Pk,charging,mean in kW 7.69 6.54 6.57
∅tk,Pk,charging,mean

in h 02:06:44 03:29:22 01:30:06
∅Flexshift,k,Pk,charging,mean

in h 4.35 7.33 6.8

Pk,max in kW 10.08 7.18 9.29
∅tk,Pk,max

in h 01:42:12 03:06:03 01:08:17
∅Flexshift,k,Pk,max

in h 6.21 8.22 11.24
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4.3. FlexBars

Based on Schlund et al. [4], the flexibility of EV charging using FlexBars is visualized
below. In the visualization, both the temporal and power-related components are consid-
ered. This allows to evaluate the flexibility of a charging event or the average of aggregated
charging events of a site at a glance.

FlexBars are constructed as follows: In the horizontal plane, the time is plotted, and the
complete width of a FlexBar represents the duration of the charging event. In the vertical
direction, the power of the charging event, limited by the maximum possible power, is
plotted. The rectangle spanned by the duration of the charging event and the maximum
charging power indicates the total possible energy of the charging event. In most cases,
this value exceeds the value of the amount of energy to be charged, which results in the
flexibility of the charging event.

To consider the flexibility of a site, an average value is calculated over all charging
events of the selected analysis period. Figures 12–14 show the FlexBars of the analyzed
sites. The dark gray colored areas represent the charged energy amount of the real charging
event, each depending on the charging power. The area outside these areas shows the
flexibility of the charging—in a horizontal direction in terms of time, and in a vertical
direction in terms of charging power.

The FlexBars allow the previously obtained findings of idle time and Time-Shift-
Flexibility to be visualized in one figure. In doing so, estimates can be made of both the
temporal and power-specific flexibility of the site’s average charging event.

The flexibility potential, in both time- and power-specific terms, is enormous for all
three sites. The amount of energy charged in real terms is only a small fraction of the
amount of the energy possible during the charging event. Furthermore, it becomes clear
that, even by lowering the charging power to P = 3.68 kW, the mobility demand of an
average charging event is not affected, and there is still enormous time shifting potential.

tk

P

Ek, Pfix

Ek, Pk, charging,mean

Ek, Pk,max

Figure 12. FlexBars for the office site.
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Ek, Pk, charging,mean
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Figure 13. FlexBars for the agency site.
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Figure 14. FlexBars for the logistics site.

5. Conclusions

This work addresses the analysis of the charging flexibility behavior of three different
electric vehicle fleets. The used input data are based on real-world measured charging
events provided through ChargePilot by The Mobility House for a common vehicle fleet of
an office, a public authority and a logistics company.

Firstly, we prepared the data accordingly. This included, in particular, the decomposi-
tion of the charging events for individual charging points and the subsequent creation of
consistency before the charging events could be combined again.

The subsequent analysis shows that the mobility behavior of the three fleets varies
greatly, which is also reflected in the charging behavior. Compared to the other fleets, the
logistics fleet has a particularly high average plug-in duration and charged energy quantity,
while, at the same time, having a low dispersion in the charging events. For all sites, the
power curves show characteristic features during uncontrolled charging. For the office
and public authority fleet, some of these overlap strongly with common commercial load
profiles. Thus, the charging events additionally increase the load peaks and can lead to
problems in the supply network. Further investigations would have to be carried out here
in future work.

Our analyses of the idle times and shift potential provide important insights into the
three vehicle fleets mentioned. Here, we see that the logistics fleet in particular meets the
legal requirements in order to be able to exploit the flexibility, accordingly.

In future work, the information gained will be used as a basis for the development of
smart energy system services. This helps in exploiting the charging flexibility of different
vehicle fleets. For instance, by combining several fleets, it will be possible to participate in
control markets.
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Abbreviations
The following abbreviations are used in this manuscript:

RES renewable energy sources
EV electric vehicle
BEV battery electric vehicles
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