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Abstract: Voltage source converter (VSC) based HVDC systems are one of the most promising
technologies for high voltage bulk power transmission. The reliability and stability of a VSC-based
HVDC system greatly depends on the design of a proper controller for the inner decoupled d-q
current loop. One of the major causes of instability in a properly tuned controller is due to system
parameter variation. This paper presents the design of a fixed parameter robust controller for the
inner decoupled d-q current loop for a VSC-based HVDC system to deal with the uncertainties due
to system parameter variations. The method of multiplicative uncertainty is employed in the robust
design to model the variations in the system parameters. The robust control design was realized
through a graphical procedure known as the loop-shaping technique. The graphical loop shaping
technique is a much simpler and more straightforward method compared to the traditional H∞-
based algorithms for robust controller design. The designed robust controller was experimentally
verified using a real-time hardware in loop (HIL) system and was tested on a VSC HVDC system.
The performance of the designed robust controller is compared to that of a traditional PI controller.
It has been observed that a classical PI controller is effective for a given operating point, and its
performance deteriorates when the operating point changes or when the system parameters change.
The studies conducted using real-time hardware in the loop (HIL) system prove that the designed
loop-shaping-based robust controller provides very good performance and stability for a wide range
of system parameter variations, such as changes in resistance and the inductance of the VSC HVDC
system compared to the PI controller tuned using conventional methods.

Keywords: VSC; HVDC; d-q vector control; robust controller; graphical loop-shaping; H∞ controller;
PI controller; real-time HIL

1. Introduction

High Voltage Direct Current (HVDC) transmission is used to transmit bulk power
over long distances or to connect two asynchronous AC networks. Traditionally, line
commutated converters (LCC) based on thyristor technology have been employed for
HVDC transmission systems [1]. Modern HVDC systems are based on voltage source
converters (VSC) and use fast-acting Insulated Gate Bipolar Transistor (IGBT) switching
technology. IGBT switches that constitute the building blocks of the VSC-based HVDC
system enable the independent and fast control of active and reactive power. Additionally,
the voltage source converters show good dynamic performance over a wide range of
operating points. The world’s first VSC-based HVDC system was installed in 1997 and since
then, many more have been installed worldwide [2]. VSC-based HVDC systema employ
converter topologies that are either two-level or multi-level. Important future application
fields that are best met by using VSC-based HVDC systems are power transmission to oil
or gas platforms from land, power transmission and distribution from offshore wind farms
to land, and as an improved and upgraded power supply for megacities [3,4] In these
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applications, the converters must be able to stabilize an AC-grid of relatively low short
circuit power through the fast and independent control of the active and reactive power
flow [5].

The control topologies used for VSC-based HVDC systems can be broadly classified
into the Direct Power Control (DPC) and the Vector Oriented Control (VOC). DPC is simple
to implement compared to VOC but exhibits varying switching frequency ripples in the
output power [6]. Vector control based on the d-q reference frame model is the widely
used in closed-loop control methods for VSC-based HVDC systems because of its good
steady-state performance, constant switching frequency, and quick response [6]. In this
paper, the VOC strategy is employed. This approach uses two cascade controllers—inner
current controllers and outer voltage or reactive power and DC bus voltage or active
power controllers. The inner and current controllers will be fast-acting to achieve the
desired dynamic response. Many studies have been conducted by several authors to design
controllers for VSC-based HVDC systems. Normally, these control strategies employ PI
controllers tuned by pole-zero cancellation techniques based on a simplified single order
model of the system. Multivariable optimal control of HVDC transmission links with
network parameter estimation for weak grids is proposed by Beccuti et al. [7]. The First
Order Plus Time Delay (FOPTD) model is used to develop a quasi-optimum PI control
tuning algorithm for controlling the loops in VOC is presented by Taha et al. [8]. The
authors Faisal et al. proposed a time-domain particle swarm optimization approach to
design PI controllers for VSC-based bi-directional HVDC light systems [9]. The authors
Jatin K. Pradhan et al. designed a multi-variable PI controller for a VSC-based HVDC
transmission link [10]. These methods are simple, but the controller operates best at the
designed operating point and does not guarantee robust performance.

Even though the PI controller is simple to tune and easy to implement, it only guaran-
tees stability in the vicinity of a small operating region. However, the large-scale integration
of renewable resources in a modern power system has the added extra uncertainty to the
power system. As stipulated by the CIGRE B4-70 working group (Guide for Electromag-
netic Transient Studies involving VSC converters [11]), the HVDC must be stable for large
disturbances and wide changes in system parameters. As such, controllers need to be ro-
bust. A robust nonlinear controller for a VSC–HVDC transmission link using input–output
linearization and a sliding mode control strategy is presented by Moharana et al. [12].
The authors Tang et al. propose a robust sliding mode controller for the active power
modulation of a multi-terminal HVDC transmission system [13]. The major drawback of
these methods is the chattering problem, and the implementation is also complex.

Several research papers have been reported in the literature for designing robust
controllers based on the H∞ approach for a VSC-based HVDC system [14–16]. Robust
nonlinear control strategies employing the H∞ approach are investigated and a state
feedback robust H∞ controller is designed for transient stability enhancement of a VSC–
HVDC system by Nayak et al. [15]. The H∞-based robust control design approach is an
appealing technique, as it addresses the problem of model uncertainty. However, this
method is mathematically too complex and involves non-linear modeling. Robust and
generic control of full-bridge modular multilevel converter HVDC transmission systems
is presented by Adam et al. [16]. The other attempts to design robust controllers for the
VSC-based HVDC have been reported in the literature, but most of these approaches have
been tested at a system level and not on the device level for tuning the inner decoupled
d-q current loop of the VSC converters [16].

This article presents the design of a robust controller for the inner decoupled d-q
current loop of a VSC-based HVDC system. The graphical loop-shaping technique is
used to design a robust controller. Unlike H∞-based approach, this method is simple and
intuitive. An uncertainty profile of the perturbed plant transfer functions was created
by considering the degradation of the system parameter values from a nominal case,
and the worst-case scenario of losing one transmission line for maintenance was also
considered during the design procedure. In this scenario, the total system resistance and
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the total system inductance change, hence changing the system transfer function. For
the first time, a robust controller design for VSC-based HVDC using the loop-shaping
technique is presented. Additional contributions are variations in the switching frequency
were also taken into account while building the uncertainty profile. Even though the
proposed method can be applied to any grid-connected AC/DC converter and also to
DC/AC converter, in this paper, the HVDC system is taken for study, as the HVDC system
represents the most general case of a VSC system in which both AC/DC and DC/AC
VSC converters are present with bi-directional power flow. The proposed robust controller
is implemented on a dSpace platform in MATLAB/Simulink (Control Desk 7.3, 2020,
dSpace GmbH, Germany) and is tested on a bi-directional HVDC system built on Typhoon
real-time simulator (HIL-604, ver 2021.1 sp 1, Typhoon HIL GmbH, Baden, Switzerland).
The system description and system model are presented in Section 2. A robust control
design employing the graphical loop-shaping technique is discussed in detail in Section 3.
The robustness of the system is verified through simulation, and the simulation results
are presented in Section 4. The experimental results conducted on the Typhoon real-time
simulator are given in Section 5. Finally, the conclusions are given in Section 6.

2. VSC HVDC System

The VSC HVDC system shown in Figure 1 comprises a DC link, two converter stations,
and two AC grids on either side. Each of these converters is a bi-polar VSC with neutral
grounding. The AC transformers and grid filters form a connection between the grid
and the DC link. The main purpose of the grid filters is to facilitate the transfer of power
between the grid and the converters. The grid filters also help in suppressing the high-
frequency harmonics in the line currents. The power from one AC grid to the other is
transferred through the DC link. The role of the capacitors on the DC side of the converters
is to provide voltage support and to attenuate the DC voltage harmonics. The VSC-based
HVDC system shown in Figure 1 is capable of bi-directional power flow. When the power
flows from Grid-1 to Grid-2, converter-1 acts as a rectifier, whereas converter-2 acts as an
inverter, and vice versa. Under normal operation, the ground conductors carry no current,
thereby preventing corrosion in the ground conductors. In case of an outage of one of the
two poles, the system can still be operated as a mono-polar system with reduced capacity.
The detailed mathematical model of the VSC HVDC system and the control loops of the
inverter and rectifier stations are discussed in the following sections.

Figure 1. Schematic representation of VSC HVDC system.
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2.1. Mathematical Model of the System in d-q Reference Frame

The rectifier and the inverter stations of the VSC HVDC system of Figure 1 comprise of
three-phase, three-level, six pulse bridge converters. The power electronic devices used in
each converter are self-commutating IGBT switches with anti-parallel diodes. The nominal
parameters of the VSC HVDC system are given in Table 1. The system parameters of Tabel 1
are adapted from Pradhan et al. [10]. Both the rectifier and inverter station are connected to
the AC grids via equivalent impedances Z1 = R1 + jωL1 and Z2 = R2 + jωL2 respectively.
R1 and R2 represent the total resistance of the transmission line and the filter, and L1 and L2
represent the total inductance of the transmission line and the filter. In Figure 1, subscript 1
refers to Converter 1 (rectifier), and subscript 2 refers to converter 2 (inverter). It is assumed
that R1 = R2 = R and L1 = L2 = L. Both the converters are assumed to be tied to strong
AC grids, so any coupling arising from the dynamics between the PLL and control loops is
not considered during the modeling of the VSC HVDC system. The dynamic equations
governing the rectifier and the inverter stations of the system shown in Figure 1 in the
rotating d-q reference frame are given by authors Faisal et al. [9]:

Table 1. * VSC HVDC System Parameters.

Parameter Symbol Value

System rating S 50 MVA
System frequency f 50 Hz
Grid Line voltage Vs 110 kV
Transformer voltage Vt 110 kV/33 kV
Transformer reactance Xt 9%
Transformer X/R ratio Xt/Rt 6.63
Grid filter L 15 mH
DC-link voltage Vdc ±200 kV
DC capacitor C 200 µF
DC line resistance Rdc 0.1 Ω/km (100 km)
Switching frequency fsw 2850 Hz

* Superscript * refers to Converter 1 (rectifier) and subscript 2 refers to Converter 2 (inverter).For this study, it is
assumed that both the converter stations have identical parameters.

Rectifier Station:[
Vsd1
Vsq1

]
= R1

[
id1
iq1

]
+ L1

d
dt

[
id1
iq1

]
+ ωL1

[
−iq1
id1

]
+

[
Vcd1
Vcq1

]
(1)

Inverter Station:[
Vsd2
Vsq2

]
= R2

[
id2
iq2

]
+ L2

d
dt

[
id2
iq2

]
+ ωL2

[
−iq2
id2

]
+

[
Vcd2
Vcq2

]
(2)

In the synchronous reference frame, Vsd1, Vsq1, Vsd2, Vsq2, id1, iq1, id2, and iq2 are d
and q axis components of instantaneous source voltages and currents, and Vcd1, Vcq1, Vcd2,
and Vcq2 are converter voltages along the d and q axes;ω is the angular frequency of the
AC grid, R1 and R2 represent the total line resistance, and L1 and L2 represent the total
line inductance from the converter to the AC grid. P1, P2, Q1, and Q2 are the active and
reactive power flowing from the AC grid to the converter stations, VDC1 and VDC2 are the
dc bus voltages, and IDC is the DC link current.

Aligning the d-axis of the reference frame with the voltage of the AC grid results in
constant d-axis and zero q-axis voltage components. Therefore, Equations (3) and (4) give
the instantaneous AC active and reactive powers, respectively,

P1 =
3
2
(
Vsd1id1 + Vsq1iq1

)
=

3
2

Vsd1id1 (3)

Q1 =
3
2
(
Vsq1id1 −Vsd1iq1

)
= −3

2
Vsd1iq1 (4)
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The two converter stations are connected via a DC link. To simplify the DC circuit
analysis, the effect of line inductance on the DC side is neglected. The DC power balance
equation for the DC link is given by:

Pdc1 = Vdc1idc = Vdc2idc + 2Rdci2dc (5)

Assuming that there is no power loss at the converter stations, the AC power is equal
to the DC power as given by:

P1 = Pdc1 =
3
2

Vsd1id1 = Vdc1idc1 (6)

The dynamics of the vdc1 are given by:

idc1 = C
dvdc1

dt
+

vdc1
Rload

(7)

where Rload is the Thevenin equivalent load resistance of the load seen from the DC
terminals of the rectifier, and C is the DC link capacitance.

Substituting (6) in (7), the vdc1 dynamics can be written in terms of id1 as they are in (8)

3
2

Vsd1
Vdc1

id1 = C
dvdc1

dt
+

vdc1
Rload

(8)

2.2. Control Loops of the VSC HVDC Light System

For the case study in this paper, a Vector Oriented Control (VOC) approach is used.
VOC utilizes the decoupled d-q control scheme, has two nested control loops, a relatively
faster inner loop that controls the d-q components of the current, and a slower outer
loop. The coupling terms (L1ωiq1, L1ωid1, L2ωiq2, and L2ωid2,) in Equations (1) and (2) are
decoupled through feed-forward inputs as seen in Equations (9) and (10).[

Vxd1
Vxq1

]
= R1

[
id1
iq1

]
+ L1

d
dt

[
id1
iq1

]
(9)

where,
[

Vxd1
Vxq1

]
=

[
Vsd1
Vsq1

]
−ωL1

[
−iq1
id1

]
−
[

Vcd1
Vcq1

]
[

Vxd2
Vxq2

]
= R2

[
id2
iq2

]
+ L2

d
dt

[
id2
iq2

]
(10)

where,
[

Vxd2
Vxq2

]
=

[
Vsd2
Vsq2

]
−ωL2

[
−iq2
id2

]
−
[

Vcd2
Vcq2

]
The dynamic Equations (9) and (10) are first-order systems and can be compensated

using the linear compensator design techniques.
The block diagrams showing the decoupled d-q control scheme for the rectifier and

the inverter stations are shown in Figures 2 and 3, respectively. The outer control loop
provides the setpoints to the inner current control loop. In this paper, the control objective
is active power (P) control, reactive power (Q) control, and DC link voltage (Vdc) control.
For power flow from Grid 1 to Grid 2, the P, Q, and Vdc control are realized using the
classical PI controllers, as shown in Figures 2 and 3. The inner decoupled d-q current loop
is realized using a robust controller.
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Figure 2. Control scheme at the rectifier station showing the robust controller for the inner d-q current loop, * reference input.

Figure 3. Control scheme at the inverter station showing the robust controller for the inner d-q current loop, * reference input.
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3. Robust Controller Design by Graphical Loop Shaping

The robust control design problem for the inner d-q current loop for the VSC HVDC
system can be stated as: given a set of Equations (9) and (10), design a controller that will
stabilize the nominal system following a disturbance. If the designed controller can also
stabilize the VSC HVDC system for the other operating conditions in the vicinity of the
nominal conditions, then the design objectives for robust control are met.

The VSCH VDC system of Figure 1 must be stable over a wide range of operating
conditions, as disturbances of differing extents of severity could happen during the normal
operations, and the topology of the system could change over time. The existence of
uncertainties requires good robustness of the control system. The changes in the system
parameters of the VSC HVDC system can be viewed as changes in the coefficients of the
system nominal plant transfer function GN and are considered as model uncertainty. In this
paper, these changes are modeled as multiplicative uncertainties, and the robust design
procedure is applied to arrive at a robust controller.

The robust controller design starts by obtaining the nominal plant transfer function
GN by rewriting the Equations (9) and (10) for the inner d-q current loop as

[
Vcd1
Vcq1

]
=

 (
R1id1 + L1

did1
dt

)
−ωL1iq1 −Vsd1(

R1iq1 + L1
diq1
dt

)
+ ωL1id1

 (11)

where the terms in normal brackets in Equation (11) are treated as state equations between
the voltage and the current for the d-q axes current control loops, whereas the terms outside
the normal brackets are treated as compensation terms. A similar equation can also be
written for converter 2.

Hence, the id and iq controller is designed based on the nominal plant transfer function
GN given by

GN =
id

Vxd
=

iq
Vxq

=
1

Ls + R
(12)

where Vxd = Vcd + ωLiq + Vsd and Vxq = Vcq − ωLid and R and L are the equivalent
resistance and inductance of the grid and filter, respectively. Thevinin’s equivalent circuit
realization for the inner d-q current loop for the VSC HVDC system is shown in Figure 4.

Figure 4. Thevinin’s equivalent circuit for inner d-q current loop.

The changes in the system operating conditions and the system parameters can
be considered as variations in the coefficients of the plant transfer function and can be
represented by multiplicative uncertainties. The robust controller can then be designed
for the ranges of perturbations or variations in the plant transfer function. The following
subsections give a brief theory of uncertainty modeling, the robust stability criterion, a
graphical designed technique termed loop-shapingand, and finally, the graphical loop-
shaping algorithm is presented.
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3.1. Uncertainty Model

Suppose GN belongs to a bounded set of transfer functions and consider that due
to changes in the system the perturbed plant transfer function G̃N parameters can be
expressed in the form

G̃N =
(

1 + ∆W f 2

)
GN (13)

where W f 2 is a weight function, and ∆ is a variable transfer function satisfying ‖∆‖∞ < 1.
The infinity norm (∞-norm) of a function is the least upper boundary of its absolute value,
also written as ‖∆‖∞ = supω |∆(jω)|, is the largest value of gain on a Bode magnitude
plot. The uncertainties, which are the changes in the system parameters or the operating
points are thus modeled through G̃N in (13). The feedback loop with uncertainty model
representation is shown in Figure 5.

Figure 5. Feedback loop with uncertainty model representation.

Equation (13) represents the multiplicative uncertainty model, and ∆W f 2 is the nor-
malized plant perturbations away from 1. If ‖∆‖∞ < 1 then∣∣∣∣∣ G̃N(jω)

GN(jω)
− 1

∣∣∣∣∣ ≤ ∣∣∣W f 2(jω)
∣∣∣∀ω (14)

Therefore,
∣∣∣W f 2(jω)

∣∣∣ provides the uncertainty profile, and in the frequency plane, it is
the upper boundary of all of the normalized plant transfer functions away from 1.

3.2. Robust Stability and Performance

Considering the multi-input control system of Figure 6a, a controller GC provides
robust stability if it provides internal stability for every plant in the uncertainty set. If
GO denotes the open-loop transfer function (GO = GNGC ), then the sensitivity function is
written as

Se =
1

1 + GN
(15)

Figure 6. (a) Unity feedback plant with controller and (b) feedback loop in standard reduced form.
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The complementary sensitivity function or the input–output transfer function is given by

Te = 1− Se =
1

1 + Go
=

GNGC
1 + GNGC

(16)

For a multiplicative perturbation model, the robust stability condition is met if and
only if ‖W f 2Te‖∞ < 1. This implies that∣∣∣∣W f 2(jω)GO(jω)

1 + GO(jω)

∣∣∣∣ < 1 for all ω (17)

or ∣∣∣∆(jω)W f 2(jω)GO(jω)
∣∣∣ < |1 + GO(jω)| for all ω and ‖∆‖∞ < 1 (18)

The block diagram of a typical perturbed system, ignoring all inputs, is shown in
Figure 5. The transfer function from the output of ∆ to the input of ∆ is equal to W f 2Te.
The properties of the block diagram can be reduced to those of the configuration given in
Figure 6b.

The maximum loop gain −‖W f 2Te‖∞ is less than 1 for all allowable ∆ if and only if
the small gain condition ‖W f 2Te‖∞ < 1 holds. The nominal performance condition for
an internally stable system is given as ‖W f 1Se‖∞ < 1 , where W f 1 is a real–rational, stable,
minimum phase transfer function, also called a weighting function. If GN is perturbed to
G̃N =

(
1 + ∆W f 2

)
GN , and Se is perturbed to

S̃e =
1

1 + (1 + ∆W f 2GN)
=

Se

1 + ∆W f 2Te
(19)

The robust performance condition can therefore be written as

‖W f 2Te‖∞ < 1, and ‖
W f 1Se

W f 2Te
‖

∞
< 1 for all ‖∆‖∞ < 1 (20)

Combining the above equations, it can be shown that a necessary and sufficient
condition for robust stability and performance is

‖W f 1Se + W f 2Te‖∞ < 1 (21)

To summarize the above sections, it can be said that for a control function GC in
cascade with the plant GN , the robustness measures are,

a) The nominal performance measure is ‖W f 1Se‖∞ < 1;

b) GC provides robust stability iff ‖W f 2Te‖∞ < 1;

c) The necessary and sufficient condition for robust stability and robust performance is
given by Equation (21).

3.3. The Loop-Shaping Technique

The loop-shaping technique is a graphical process to design a controller GC fulfilling
the robust performance and stability conditions given in Equations (20) and (21). The
main idea of the loop shaping technique is to construct an open-loop transfer function,
GO = GNGC, to satisfy the criteria given by Equations (22) and (23) and then to obtain the
robust controller, GC = GO /GN . The internal stability of the plant and the properness of
GC constitute the constraints of the method. During the design process, care must be taken
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such that GNGC should not have any pole-zero cancellation. An important criterion for
robustness is that either or both

∣∣∣W f 1

∣∣∣, ∣∣∣W f 2

∣∣∣ must be less than 1.

|GO| >

∣∣∣W f 1

∣∣∣
1−

∣∣∣W f 2

∣∣∣ at low frequencies (22)

|GO| <
1−

∣∣∣W f 1

∣∣∣∣∣∣W f 2

∣∣∣ ≈ 1∣∣∣W f 2

∣∣∣ at high frequencies (23)

At high frequencies, the dB magnitude of the open-loop function GO should roll off at
least as quickly as the dB magnitude of the plant transfer function GN . This ensures the
properness of the closed-loop system. The gain of the open-loop transfer function GO at
low frequencies should be large enough, and the dB slope of GO should not be very steep
near the crossover frequency to avoid internal instability [17–21].

3.4. Graphical Loop Shaping Algorithm

The general algorithm for the graphical loop-shaping design process can be summa-
rized as:

Step1: Construct the dB-magnitude plot for the nominal as well as perturbed plant transfer functions.
These dB magnitude plots can be constructed by using Equations (12) and (13) respectively;

Step2: Construct W f 2 satisfying the constraint given in Equation (14). It is to be noted here
that W f 2 provides the uncertainty profile of the perturbed plant transfer functions;

Step3: Fit a graph of the dB magnitude of the open-loop transfer function GO, satisfying
the constraints given in Equations (22) and (23);

Step4: For the open-loop transfer function GO, constructed in step 3, ensure that GO
is a stable minimum-phase transfer function and GO(0) > 0. The latter condition
guarantees negative feedback;

Step5: Obtain the robust controller GC from the relation GO = GNGC;
Step6: Check that the nominal stability and robust stability criteria of Equations (20) and (21)

are satisfied;
Step7: Verify that the closed-loop system with the controller is internally stable by direct

simulation for pre-selected disturbances or inputs;
Step8: Iterate through step 3 to step 7 until acceptable GO and GC are obtained. Note that a robust

controller may not exist for all nominal conditions, and if it does, it may not be unique.

The steps of the graphical loop-shaping algorithm are illustrated in detail in the
following section.

3.5. Implementation of Graphical Loop-Shaping Algorithm to VSC HVDC System

In this section, the graphical loop-shaping algorithm discussed in the previous section
is implemented to design the robust controller for the inner decoupled d-q current loop of
the VSC HVDC system of Figure 1. The control loop can be represented by a general block
diagram, as shown in Figure 7. The plant output to be fed back to the robust controller
GC is chosen as the d-q current components of the grid. The system parameters shown in
Table 1 are considered as the nominal system parameters.

Figure 7. General block diagram for inner current loop.
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The first step in the graphical loop-shaping algorithm is to construct the nominal and
the perturbed plant transfer functions. The nominal plant transfer function considering the
system parameters given in Table 1 can be constructed from Equation (12) and is given as

GN =
id

Vxd
=

iq
Vxq

=
1

Ls + R
=

37.46
(s + 26.17)

(24)

Equation (24) is used to construct the dB magnitude plot of the nominal plant transfer
function, and the perturbed plant transfer functions are constructed by considering the
degradation of system parameter (R and L) values due to aging and are considered as off-
nominal system parameter variations. Variations between 100% and 150% were considered,
and the worst-case scenario of one transmission line outage for maintenance was considered
to create the dB magnitude plot of the perturbed plant transfer functions. The dB magnitude
plots of the perturbed plant transfer functions are shown in Figure 8.

Figure 8. Magnitude plots of perturbed plant transfer functions.

The next step in the design process is to obtain the transfer function W f 2. The quantity
given by Equation (14) for each perturbed plant is constructed, and the uncertainty profile
is fitted to the function given by

W f 2 =
0.0065s2 + 20.16s + 10.08

s2 + 24.85s + 12.6
(25)

The uncertainty profile of the perturbed plant transfer functions and the fitted weight
function W f 2 are shown in Figure 9.
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Figure 9. Uncertainty profile of the perturbed plant transfer functions and W f 2.

The next step is to construct an open-loop transfer function GO to satisfy the constraints
given in Equations (22) and (23). The open-loop transfer function GO that satisfies these
constraints is fitted to the equation given by

GO =
5.12× 104(s2 + 251.9s + 12960

)
(s3 + 126s2 + 3875s + 3750)

(26)

Once the open-loop transfer function Go is constructed, the desired robust controller
GC is then obtained from the relationship GO = GNGC and is given by

GC =
1.37× 103(s2 + 251.9s + 12960

)
(s + 26.17)

(s3 + 126s2 + 3875s + 3750)
(27)

A filter transfer function W f 1 is to be chosen to check for the nominal stability and
the robust stability criteria of Equations (20) and (21). A third-order Butterworth filter that
fulfills all of the properties for W f 1(s) is chosen as

W f 1 =
Kd f 2

c

s3 + 2s2 fc + 2s f 2
c + f 3

c
(28)

where Kd = 10−5 and fc = 300. The nominal stability and robust stability criteria of
Equations (20) and (21) are to be tested in the next step. The dB-magnitude plots relating
W f 1, W f 2, and GO, which were employed to arrive at this controller, are shown in Figure 10.
It is evident from Figure 10 that the fitted open-loop function GO satisfies the bounds set
by Equations (22) and (23). The plots for the nominal and robust performance criteria are
shown in Figure 11. It is clear from Figure 11 that the condition of (21) is satisfied for all of
the frequencies of interest. The nominal performance measure W f 1Se is also well satisfied.
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Figure 10. Loop shaping plots showing W f 1, W f 2, and GO.

Figure 11. The nominal and robust performance criteria.

The final step in the robust control design using the graphical-loop shaping technique
is to verify whether the closed-loop system with the designed robust controller is internally
stable or not. This is tested by direct simulation for pre-selected disturbances or inputs.

The performance of the designed robust controller is compared to the classical PI con-
troller tuned using the modulus optimum method. The following section describes a brief
tuning method for the conventional PI controller using the modulus optimum method.
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3.6. PI Controller Tuning Using the Modulus Optimum Method

The Modulus Optimum (MO) method is a popular technique used to tune the con-
ventional PI control loops for grid-connected VSC [21,22]. A system with one large time
constant and many small-time constants can be tuned using the MO method. An Equiva-
lent time constant can be obtained by adding small-time constants. More details on tuning
the PI controllers using the MO method for grid-connected VSC are givenin [22,23]. The
design steps are briefly described as follows: if the transfer function of a system consists of
one large time constant, TL, and three small-time constants, T1, T2, and T3, the open-loop
transfer function can be given by

Gol =
K

(1 + TL)(1 + T1)(1 + T2)(1 + T3)
(29)

where K is the system gain. The small-time constants can be added into one equivalent
time constant as

Teq = T1 + T2 + T3 (30)

Equation (30) can then be written in a simplified form as

Gol =
K

(1 + TL)
(
1 + Teq

) (31)

The open-loop transfer function with the conventional PI controller can be given as

Gol = Kp

(
1 + sTi

sTi

)
K

(1 + TL)
(
1 + Teq

) (32)

where Kp and Ti are the proportional gain integral and the time constant, respectively. Ki

can be obtained from Ti as Ki =
Kp
Ti

.
Using the MO method and upon applying the pole-zero cancellation of the dominating

pole of the system and optimizing the absolute value for the closed-loop system with the
PI controller to unity, the PI parameters than can be written as

Kp =

(
TL

2KTeq

)
and Ti = TL (33)

The performance of the designed robust controller for the VSC HVDC system is
compared to the classical PI controller tuned by the MO method and is tested usingMAT-
LAB/Simulink software in the next section.

4. Simulation of the Designed Robust Controller in MATLAB/Simulink

To verify the performance of the designed robust controller using the graphical loop-
shaping algorithm and compare its performance with that of a classical PI controller,
simulations were conducted for the switched VSC HVDC system in the SimPowerSystem
environment of MATLAB/Simulink. The physical model of the VSC HVDC system is given
in Figure 1. To simulate the system under parameter uncertainty, nominal and off-nominal
cases were considered in the simulation study. The MATLAB/Simulink model of the VSC
HVDC system is shown in Figure 12. For simulation study, it was assumed that 40 MW
of real power (i.e., P1 =P2 = 40 MW) at unity power factor (i.e., Q1 = Q2 = 0 Mvar) was
flowing from Grid 1 to Grid 2. The control loops given in Figures 2 and 3 are modeled in
MATLAB/Simulink to generate the reference signals for the sine PWM switching algo-
rithm. The switching frequency Fsw used for the sine PWM algorithm was 2850 Hz. The
system parameters for the nominal case are given in Table 1, and the classical PI controller
parameters, Kp and Ki, obtained using the MO method discussed in Section 3.6, were found
to be Kp = 25.3650 and Ki = 190. The transfer function for the robust loop shaping controller
is given by Equation (27).
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Figure 12. MATLAB/Simulink model of VSC HVDC system.

For the simulation study, a real power of 40 MW (i.e., P1 = P2 = 40 MW) at unity power
factor (i.e., Q1 = Q2 = 0 Mvar) flowing from Grid-1 to Grid-2 is commanded. A comparison
of the results between the robust controller and conventional PI controller tuned using the
modulus optimum methods is shown in Figures 13–16. The nominal system parameters
used in the study are shown in Table 1. Under these conditions, the system is considered
to be running under nominal conditions (nominal case). When one of the lines is taken
out for maintenance for both the converter stations, this system condition is considered
as an off-nominal case. In this case, the total system resistance (R) and the total system
inductance (L) change. The change in the the value of L is reflected in the decoupled control
loop of Figures 2 and 3 by switching to the new value of L in the decoupled loop. The
d-q current response Id1 and Iq1 for the nominal and the off-nominal cases for a 50% step
change in the active power is shown in Figures 13 and 14, respectively. Figures 15 and 16
demonstrate the response of currents Id2 and Iq2 for the nominal and off-nominal case when
the system is subjected to a 50% step change in active power. It is clear from the responses
that the robust controller and the traditional PI controller give an identical performance for
the nominal case but that the PI controller gives an unstable response for the off-nominal
case. The response of the classical PI controller for the off-nominal case is degraded because
the variations in the system parameters change the open-loop transfer function of the VSC
HVDC system, and the tuned Kp and Ki values are no longer valid for the off-nominal case.

Figure 13. Id1 and Iq1 for the nominal case for a 50% step change in active power.
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Figure 14. Id1 and Iq1 for the off-nominal case for a 50% step change in active power.

Figure 15. Id2 and Iq2 for the nominal case for a 50% step change in active power.
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Figure 16. Id2 and Iq2 for the off-nominal case for a 50% step change in active power.

The designed robust loop-shaping controller gives superior performance even for the
off-nominal case. This is expected as the traditional PI controller is tuned to give the best
performance at the nominal case, but for the proposed robust controller, the variations in
the system uncertainties are considered during the design steps.

Since the perturbations only affect the inner loop variables and the designed robust
controller can stabilize the inner loop, the outer loop is tuned using the classical PI con-
troller. The simulation results show that the designed robust loop-shaping controller shows
excellent performance for both nominal and off-nominal cases.

5. Experimental Validation of Robust Controller

The performance of the designed robust loop-shaping controller is also verified ex-
perimentally. The robust controller designed through the graphical loop-shaping tech-
nique in Section 3 is implemented in the lab on a dSPACE digital controller on the MAT-
LAB/Simulink platform. A Typhoon real-time hardware in the loop (HIL) 604 simulator
was used to build the model of the VSC HVDC system shown in Figure 1. The nominal
system parameters used for the real-time simulation are given in Table 1, and the robust
controller transfer function is given by Equation (27). The presence of hardware in the
real-time simulation process helps in the proper prediction of the behavior of the control
system before the implementation on the actual system [24]. The schematic and the picture
of the experimental implementation of the designed robust controller in the lab are shown
in Figure 17. In this setup, the VSC HVDC system is modeled in the Typhoon schematic
editor. A very small simulation Step of 2 µsec is used to guarantee the behavior of the
modeled system close to the actual VSC HVDC system. The designed robust loop-shaping
controller and the control loops of Figures 2 and 3 are programmed in MATLAB/Simulink
environment, and the control scheme is implemented on a dSPACE-based digital controller,
a MicroLabBox (Control Desk 7.3, 2020, dSpace GmbH, Paderborn, Germany) with 25 µsec
sampling time. The actual feedback signals are input into the controllers as shown in
Figure 16. The experimental results are shown in Figures 18–21.
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Figure 17. (a) Schematic; (b) picture of the experimental setup.

Figure 18. (a): Experimental results for the nominal case for Id1, Iq1 of Station 1 for a 50% step change
in active power; (b): experimental results for the nominal case for Vs1 (three phase votlages) and Is1

(three line currents) of Converter Station 1 for a 50% step change in active power.
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Figure 19. (a): Experimental results for the off-nominal case for Id1, Iq1 of Converter Station 1 for a 50% step change in
active power; (b): experimental results for the off-nominal case for Vs1 (three phasevotlages) and Is1 (three line currents) of
Converter Station 1 for a 50% step change in active power.
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Figure 20. (a): Experimental results for the nominal case for Id2, Iq2 of Station 2 for a 50% step change in active power;
(b): experimental results for the nominal case for Vs2 (three phase votlages) and Is2 (three line currents) of Converter Station
2 for a 50% step change in active power.
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Figure 21. (a): Experimental results for the off-nominal case for Id2, Iq2 of Station 2 for a 50% step change in active power;
(b): experimental results for the off-nominal case for Vs2 (three phase votlages) and Is2 (three line currents) of Converter
Station 2 for a 50% step change in active power.

The d-q currents, Id1, Iq1, and the grid voltage and current Vs1 (three phase votlages)
and Is1 (three line currents) for the Converter Station 1 for a 50% step change in active
power at t = 2.18 s. are shown in Figure 18. It is clear from Figure 18a that the d-q currents
reach the steady-state within 18 ms. Additionally, as it can be seen from Figure 18b, the
grid current stabilizes within two cycles.

Figure 19 shows the experimental results for the off-nominal case (when one of the
transmission lines is taken out for maintenance) for a step change in active power at
t = 2.056 sec. It is evident from Figure 19a that the d-q currents Id1 and Iq1 are stable even
in this worst-case scenario and that the designed robust controller can achieve the d-q
quantities of the Conv-1 to steady-state value very fast, within 8 m sec. The grid voltage,
Vs1, and the grid current Is1 for the off-nominal case for Conv-1 are shown in Figure 19b, and
as evident from Figure 19b, which also shows thatthe grid current reaches steady within
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1.5 cycles. The grid integrity is maintained by the robust controller for the off-nominal case
as well.

The experimental results for the Conv-2 for the nominal case are shown in Figure 20.
The considered distburbance is a 50% step change in the active power at t = 2.07 sec.
Figure 20a shows the d-q currents Id2 and Iq2. The robust controller that was designed
using the loop-shaping algorithm demonstrates a fast response, and the system stabilizes
within 18ms. The grid current response for the nominal case is shown in Figure 20b. The
transients in the grid current Is2 reach the steady-state value within 2 cycles.

The response for the off-nominal case for Conv-2 is shown in Figure 21. The experi-
mental results demonstrate the effectiveness of the designed robust loop-shaping controller
in stabilizing the system not only for the nominal case but also for the off-nominal case.

6. Conclusions

A robust controller for the internal d-q current loops of a VSC HVDC system has
been designed through a graphical loop-shaping procedure. Unlike the H∞ approach,
the graphical loop-shaping used in this paper is a simple technique avoiding complex
minimization procedures. In the loop-shaping method, uncertainty is addressed indirectly
using the perturbed plant transfer functions. The shaped plants are chosen based on
the graphical loop-shaping concept, wherein both the necessary as well as the sufficient
conditions of the robust performance are applied. This method is more intuitive for the
designer, as the controller can be directly extracted from the open-loop transfer function of
the shaped plant. The design yields a fixed parameter controller making its implementation
straightforward. The designed controller is tested both using simulations in MATLAB
and also experimentally verified using a real-time simulator. Simulation and experimental
results show that the proposed robust controller not only achieves good performance
under nominal cases but also achieves superior performance under plant perturbations
considered during the design procedure. Extending this work for other systems such
as grid-connected renewable systems, variable speed AC drives, and electric vehicles to
include uncertainty in the switching frequency and grid parameter uncertainty will be
interesting work for the future.
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