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Abstract: The World Energy Council, in its 2019 World Energy Scenarios Report, advised policy-
makers to identify innovative opportunities for the integration of renewable energy resources into
existing electrical power systems to achieve a fast and affordable solution. However, large-scale
industries with cogeneration units are facing problems in handling the higher penetration levels of
intermittent renewable energies. This paper addresses large-size photovoltaic power integration
problems and their optimal operation. This work considers the case of a chemical industry having
both cogeneration power and solar photovoltaics. Here, a modified firefly algorithm and a hybrid
power resource optimization solver are proposed. The results of the proposed method are compared
with other benchmark techniques, to confirm its advantages. The proposed techniques can be used in
industries having cogeneration power plants with photovoltaics for better optimization and to meet
the guidelines specified in IEEE 1547. The voltage ramp index is proposed to determine the voltage
ramp up and down with intermittent solar irradiance. Additionally, a machine learning technique is
used to predict the cogeneration plant efficiency at different loads and the solar irradiance under
varying weather conditions. Finally, this paper proposes the effectiveness of the modified heuristic
technique and certain guidelines, including solvers for industrial use.

Keywords: cogeneration; hybrid power resource optimization solver; integration guidelines; machine
learning; modified firefly algorithm; photovoltaics; voltage ramp index

1. Introduction

The 2019 World Energy Scenarios Report has predicted an increase in the share of
renewable power from the present 26 % of total power generation in 2020 to 33% in 2040 [1].
The radical shift in the electrical power industry is due to the three ‘D’s of decarburization
(with renewable energy resources), decentralization (with distributed generation) and
digitalization (artificial intelligence) [2]. First, decarburization is demanding for harness-
ing renewable energy resources (RERs) such as solar, wind, geothermal, tidal, etc. The
traditional vertically designed power systems are being replaced with the latest distribu-
tion generations. Second, this type of shift from centralized generation to decentralized
generation or distributed generation (DG) has made the existing distribution networks
more complicated due to two-way power flows. Various benefits and challenges, including
their classification, are mentioned in [3]. The classification is mainly based on the type of
technology such as renewables (PV, wind, etc.) and non-renewables (gas turbines, recipro-
cating engines, etc.). Additionally, there are other classifications based on their size, and
some of them only inject active power. Hence, there is a need for proper integration of DGs
into existing distribution networks. This also demands standard microgrid structures and
controllers [4]. Third, the evolution of digital technologies has made complex operations
somewhat simpler. Digital tools are helping in better management and optimization of
various power resources, especially RERs. The artificial intelligence (AI) techniques such
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as machine learning (ML) are emerging in the power sector for better RE prediction, which
is mostly intermittent. Industries should be able to predict hour- or a day-ahead power
with varying weather conditions to rely on RERs for their optimization and better control.
For this purpose, a more useful solution with machine learning is also proposed.

The optimal operation of industries with cogeneration facilities is becoming difficult
due to the integration of solar photovoltaic (SPV) power. The major integration problems
are maintaining the stability, voltage profile and efficiency of cogeneration power plant
(CGPP) generators with intermittent PV power. Additionally, maintaining the synchronism
and applicable codes of utility grids is a major problem of concern. Various heuristic
techniques exist for the optimal utilization of highly stochastic RERs with a special mention
of SPV. However, little work on optimum power allocation problems in industries with
cogeneration power plants has been performed. Hence, there is a need for a modified
heuristic to cater to the needs of industries having CGPPs with SPP integration. With the
above-cited practical insights and evolution of AI techniques in electrical power systems,
the authors have collected data from a large chemical process industry having both CGPP
and SPP and conducted the study on the impacts of integration and the operational
strategies of the industry. With these motivations from this problem, a heuristic technique
for the optimal operation of a cogeneration plant is developed.

2. Literature Survey

A detailed literature survey was conducted to determine the RE integration problems,
the various techniques adopted and the gaps therein. The installation of RERs in the
form of DG in the existing power distribution network may be attributed to the reduced
line losses and enhanced power transfer capacity. Conventional and metaheuristic algo-
rithms are being used to solve short-term power scheduling, such as hydrothermal power
scheduling, but sometimes they may lead to premature convergence [5]. Additionally, IEEE
1547–2018 [6] with its amendment-1, noted as 1547a–2020 [7], has given certain guidelines
on RE integration but not on cogeneration integration problems. According to the 2/3
rule [8] in a radial feeder, 2/3 of the capacity of the incoming distributed capacity should
be installed at 2/3 of the length of the distribution system. However, this has certain opera-
tional impacts such as regularity requirements, voltage profiles, and operational modes.
However, their optimum utilization along with existing utility grids and cogeneration
power systems can be ensured using either analytic or heuristic techniques. Optimization
techniques are mainly classified into analytical (such as the Newton–Raphson method and
linear programming) and heuristic methods (such as particle swarm optimization). The
authors in [9] mentioned that energy management should consider operational constraints
and suggested the optimal utilization of PV power and other resources. The authors sug-
gested caution due to the premature failure of electrical equipment due to rapid changes in
RE power and suggested short-term forecasting of PV power and stochastic scheduling
of various power resources. The impact of RESs as cogeneration power plants on power
system networks is discussed with an example of a 6.3 MW cogeneration power plant
in [10]. This work was performed using a small cogeneration plant and suggested man-
aging the reactive power requirements. The authors in [11] reviewed the integration of
PV into electricity grids and suggested grid forecasting to improve the grid’s health in
real-time and timely intervention with intelligent technologies to correct the problems.
An expert group of the International Energy Agency (IEA) on recommended practices for
wind and PV integration [12] provided information on how to perform integration studies
with main points such as load scheduling and dispatch, reactive power and transients for
future studies. Furthermore, they mentioned that RE integration methods would continue
to evolve with real-time studies and suggested the development of flexible tools for use in
different time periods.

The authors in [13] reviewed the RE policies in India and the barriers to PV generation
such as lack of awareness and an absence of adequate energy management systems. To
enable reactive power capability in PV inverters, the authors in [14] suggested installing



Energies 2021, 14, 4935 3 of 28

suitable capacitors when the power factor of the SPP is assumed to be unity. Additionally,
the reactive power capability of PV inverters can be actively controlled without incurring
much burden on the inverters, subsequently increasing the hosting capacity of renewable
energy in microgrids [15]. The authors in [16] performed a case study on the reactive
power management of a PV integrated cogeneration power plant to determine the effects
of higher PV integrations and protection issues [17] and suggested certain guidelines for
RE integration. The authors in [18] have studied the challenges with high RE penetration
of Croatia and confirmed that even a 30% RE penetration itself will cause voltage and
frequency problems. They have suggested to adopt novel methodologies to mitigate the
higher RE penetration effects. The authors of [19] examined grid operators’ experience in
handling high penetration of RERs of up to 100% and suggested some new technologies
for such higher penetrations. The effects of PV penetration on a distribution system with
100 feeders were statistically studied in [20], and it was concluded that 20% PV penetration
requires strengthening the existing system to avoid voltage problems. The work also recom-
mended conducting field studies as further work in this area. In [21], a prototype microgrid
with PV, wind and a battery storage system seeking to achieve proper energy management
was developed. In this experiment, the authors conducted tests by varying irradiance and
wind speed levels without knowing the actual weather conditions. The authors in [22]
also reviewed the effects of PV integration on both active and reactive powers. They have
also discussed the curtailment of active power during over-voltages and reactive power
management during low voltage conditions and suggested PV forecasting for voltage
stability management. In [23] the authors reviewed various machine learning techniques
such as regression analysis and metaheuristic techniques for PV power forecasting. It
was mentioned that this work can be used for future improvements. The authors in [24]
discussed the higher RER penetration effects, introduced a hybrid irradiance forecasting
technique and mentioned further improvements in the future using past field data.

The authors of [25] reviewed various RER integration models, optimization techniques,
etc., and introduced the monarch butterfly algorithm. After discussing various algorithms
such as the GA and PSO, the authors stressed the need to address the modeling of the
uncertainty of RERs, the load demand, etc. The authors in [26] discussed the energy
transition to 2050 and projected the share of RERs at 63% compared to 15% in 2015. They
have indicated the need for new technological innovations and new business models.
Further research and the findings are mentioned in the respective sections. The literature
review indicates that there are many gaps in the existing system, and there is a need to
bridge the gaps with new technologies, optimization and integration methods. Hence,
there is a need to have a more suitable optimization method for hybrid resources, especially
industries with cogeneration power plants integrated with large solar PV plants. It is also
required to validate the power prediction and energy optimization techniques, including
the technical validation of optimization results with any well-established power system
analysis software.

The contributions of this work are given below:

• All the components of the power distribution network were modeled with LinDistFlow
branch equations.

• The field data and machine learning were used to find the relation function between
the percentage load to forecast the CGPP efficiency for field operator use, and field
data were used for validation.

• Field and online available weather data and linear regression analysis were used to
obtain the relation function between site weather conditions and irradiance. The same
has been validated with field data, and the method can be used to predict site-specific
time PV generation for varying weather conditions to achieve better load management.

• A hybrid power resources optimization solver for industrial use, which can avoid the
expert requirement of GAs, was developed and demonstrated.
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• Firefly algorithm (FA), a metaheuristic algorithm that generally has better performance
than other methods, was implemented in the operation of industries with cogeneration
plants having PV power and connected with utility grids.

• A modified firefly algorithm (MFA) for the above-mentioned industries was developed
and demonstrated, and it achieved further improved performance when compared
with the base case of the FA.

• The results obtained were technically validated using the solver with E-Tap software.
• The integration guidelines given in the standards such as IEEE 1547–2018 with its

amendment 1as 1547a–2020 were fully followed.

The remainder of this work is organized in the following way. Starting with the
literature survey in Section 2, brief details of the industry under study are mentioned in
Section 3. Sections 4 and 5 addresses forecasting CGPP efficiency at different loads and
solar irradiance under varying weather conditions. In Section 6, the modeling of various
components of the power network and problem formulation with constraints are given.
The development of various simulation models suitable for the case study industry with
the firefly algorithm and E-Tap software is given in Section 7. Section 8 highlights the
simulations of different cases and the results with their brief interpretations. The results and
discussions are mentioned in Section 9. Finally, conclusions with certain RES integration
guidelines are drawn in Section 10.

3. Description of Industry under Case Study

In this paper, the differentiation of the proposed heuristic method compared with
similar works is established. In support of this work, the case study of a known large-scale
continuous process chemical industry; KCR Oxygenated Chemical Complex situated in
Andhra Pradesh of India with location latitude of 17.90 N and longitude of 80.80 E. The
industry has basically two units of the main process plant which has a big water treatment
plant, electrolysis units and the cogeneration power plant. It has both CGPP and SPP
and is used for modeling and optimization. This section describes the power distribution
network, the CGPP setup, and the details of the solar photovoltaic power plant (SPP).

The process plant requires high-pressure steam of 32 kg/cm2 at higher temperatures
of 240 ◦C for which a coal-fired steam boiler is installed. The surplus or waste steam is
used to run a turbine-generator set to generate power. The total power requirement of
the process plant is 36 MW, of which a process load demand of 30 MW is required during
normal operations of the industry. The remaining 6 MW is always necessary to support
base loads such as water systems, vacuum system and ventilation in plants. When the
CGPP is off, the base loads of 6 MW are supplied by the utility grid with the help of a
demand management controller, which is used to curb the unwanted demand spike due
to the sudden turn-on and turn-off of the large induction motors. Since the industry is
continuously operated, the net load of the plant is almost constant. Moreover, some of the
loads that run-in daytime are turned off during the nighttime. However, the lighting load
offsets the net load during the night. Hence, the load profile of a full day is constant. For
reactive power compensation, a shunt capacitor with a rating of 10.6 Mvar is connected to
a 6.6 kV bus.

CGPP with operational problems: a CGPP with two steam boilers and turbo generators
(TGs) is installed in the considered industry. The steam generator consists of a radiant
boiler with integral superheaters, a forced flow section and a tubular air heater with two
forced draft fans and two induced draft fans. The turbines are extraction condensing type
with turbo generators (TGs). The TGs are 2-pole, 3-phase, air-cooled and connected to the
steam turbine directly. Their maximum output is rated at 30 MW (35.294 MVA at a power
factor of 0.85) at 6.6 kV. Additionally, the CGPP is connected to a utility grid for startup
purposes. It is worth noting that from an operational point of view, the minimum power
output of each turbine would be at least 60% of the 30 MW (i.e., 18 MW) [27]. Hence, both
TGs together supply 36 MW, which is the exact active power requirement of the industry.
Later, the industry installed a 12 MW peak capacity SPP to meet the statutory requirements
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and to encourage renewable energy (RE). Furthermore, during the SPP generation time
(approximately five to six hours a day), the operation of the CGPP is kept running at a
lower output of approximately 26 MW (i.e., 13 MW from each TG), and the SPP supplies
the rest to satisfy the power balance. Thus, this lowering of the CGPP’s output decreases
the overall efficiency of the steam turbine from 34% to 32%, and even the extraction of
steam into the process system becomes complex. The generation cost of energy is INR
5.6 per kWh. SPP with operational issues: a few years ago, a 12 MW SPP was installed
in the industry. The total SPP was divided into two divisions with each 6 MW. A total of
47,060 PV modules with a peak power rating of 255 W; open circuit and nominal voltages
of 37.6 V and 30.5 V, respectively; short circuit and nominal currents of 8.95 and 8.42,
respectively; a panel efficiency of 15.5% and an annual power derating of 4% [28] were
installed with the required inverters. Power evacuation was performed at the 6.6 kV level.
The levelized energy cost was estimated to be USD 0.09 or INR 6.5 (INR is Indian rupees in
April 2021).

The following operational interlocks that are necessary for the joint management of
the CGPP and SPP are presented next. If any TG of the CGPP is tripped, the industry
continues to run with support from the utility grid and SPP when it is available. Suppose
the process load is reduced suddenly due to any abnormality in process operations. In that
case, there arises a situation of islanding of the CGPP during which the SPP is kept ‘off’
to avoid unauthorized power from being exported to the grid and to prevent a sudden
voltage rise at plant buses. For this purpose, an additional mechanical interlock is provided
in circuit breakers (CBs). The moment that the CGPP does not generate power, the SPP trips
within a maximum time of 0.08 s (i.e., the trip time of CBs at the CGPP and SPP together).
This is well within the limits of 0.16 s prescribed by [6]. Even though this type of local
PV integration reduces the power losses by 3% to 9% [29], this scenario indicates a certain
curtailment of renewable energy, i.e., PV in the present case, for the efficient and secure
operation of power systems that are integrated with grids [30]. The design efficiency of
the CGPP is 34% up to 16 MW, which decreased to 32% if the load on the CGPP is 14 MW.
This is primarily due to the operation of the SPP. With the abovementioned operational
problems of the CGPP and SPP, there is a need to determine an optimal solution for such
types of industries. It is also necessary to study the forecasting techniques of the irradiance
and efficiency of CGPP.

4. Forecasting the Efficiency of CGPPs

In CGPPs, estimating the overall efficiency is a complex problem for researchers and
system engineers since there are many dependent and independent variables such as the
steam extraction rate, heat rate and actual system load. The overall efficiency of the CGPP
can be obtained either with the heat rate or percentage load as in (1) [31].

The overall efficiency of CGPP = Heat equivalent of electrical output/input energy from fuel combustion

Overall efficiency of CGPP=f ((a*% load) + b)

where a is a multiplication factor of load and b is a constant.
For CGPPs, no standard function of the relationship between the percentage load and

overall efficiency is available except either performance curves of the steam generator and
turbines in relation to the heat rate, temperature, etc., by manufacturers or approximate
estimations by researchers. New techniques are developed by the researchers for lower
coal consumption in steam boilers but it was observed that the coal consumption rate is too
low at lower loads and suggested for further studies [32]. Hence, there is a need to develop
a function for this, which can help field operators conduct better load management. The
field data show that there is the possibility of obtaining a relation function based on an
independent variable, with the help of regression analysis tool box in matlab. The statistical
and Machine Learning Toolstrip facilitates nonparametric regression for prediction of
responses to the new variables with the help of a trained model.
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4.1. Terms Used in Regression

Some of the metrics used in regression analysis are briefly explained here, with the
equations taken from the standard literature.

a. MAE: mean absolute error (MAE) is the absolute difference between the true values
and the predicted values, as in (1). Since it is absolute, any negative sign in the result
is to be ignored. It takes the average of error from each sample.

MAE = True values − Predicted values

MAE = Σ | yi − ŷi | /n (1)

where, y is true value, ŷi is predicted value and n is number of observations. It is
generally used for continuous variable data and the lower value of MAE gives a
better regression model.

b. MSE: mean squared error (MSE) is estimated by considering the averages of the
squares of the difference between the true values and the predicted values of the
dataset, as in (2).

MSE = Σ(yi − ŷi)
2/n (2)

Here by squaring the difference between the true values and the predicted values,
the higher error value can be penalized. It is the most widely used metric when the
dataset contains too high or too low values, but not useful when the data contain
huge noise.

c. RMSE: root mean squared error (RMSE) is the square root of MSE, which gives better
accuracy of the regression model, as given in (3).

RMSE =

√
Σ(yi − ŷi)

2/n (3)

It is more useful when large errors are present in the dataset. It is also the standard
deviation of errors.

d. R-Squared: it is the co-efficient of determination and indicates the qualitative infor-
mation of a dataset and is shown in (4).

R2 =
SSEM− SSER

SSEM
(4)

where, SSEM is the sum of squared errors by mean line and SSER is the sum of
the squared errors by regression line. Here the amount of error is reduced since a
regression model is used instead of the mean line. Its value lies between 0 and 1
where the value 1 or close to 1 gives a better performance regression model, i.e., a
perfect model and a value equal to zero indicates that the model does not fit for the
given data.

e. p-value: it indicates the statistical significance of coefficients relationship of a model.
A lower valuer value of less than 0.05, i.e., 5% indicates a meaningful addition to
the dataset. It tests the null hypothesis of each term of coefficients. A lower p-value
means a significant change in prediction value for a change in response variable. It
gives a direction of which term to be retained in a regression model.

f. Intercept: it is a constant and it is the value of dependent variable when all the
independent values are zero.

g. Standard error (SE): it is the estimate of standard deviation (SD), as in (5).

SD =
σ
√n

(5)

where σ is the SD and n is the number of samples.
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h. t stat: t statistic is the coefficient divided by its SE and is preferred when the sample
size is small. It is used in statistics to take a decision of rejecting a null hypothesis.

4.2. CGPP Efficiency Estimation

For estimation of CGPP efficiency with respect to percentage load on it, the real-time
field data method is used. The available data points of the % load and % overall efficiency
is shown in Table 1, which also includes the prediction results. These details are used for
training regression analysis to predict the overall efficiency of the CGPP and to obtain the
relation function. The linear regression–linear model results are as follows:

Table 1. % Load vs. % efficiency.

% Load % Efficiency (Real-Time
Field Value) (a)

% Efficiency
(Predicted) (b)

Relative Error (%)
= (100 ∗ (a − b/a))

100 38.50 38.54 −0.10

92 37.60 37.82 −0.59

84 37.20 37.09 0.30

76 36.60 36.37 0.63

68 35.80 35.64 0.45

60 34.90 34.92 −0.06

52 34.00 34.20 −0.59

MAE is 0.2018, i.e., lowest, MSE is 0.2313, R-squared is 0.98 which is higher, MSE is
0.05351, and p-value is 5.2336× 10−6 for the load and 4.1566× 10−9 for the intercept which
are very low. All the regression results are shown in Figure 1. The prediction plot, along
with derived plot that shows the intercept at zero loads, is shown in Figure 2.

The coefficients obtained in the linear regression analysis are used for predictions, and
the related function for the overall efficiency of the CGPP is shown in (6).

ηoverall = (0.0906 ∗ % Load) + 29.4839 (6)

The linear regression–linear model results of the RMSE of 0.2313, R-squared of
0.98, MSE of 0.05351, MAE of 0.2018 and p-values of 5.2336 × 10−6 for the load and
4.1566 × 10−9 for the intercept indicate that the regression model is perfectly fit for this
problem. The obtained function is validated with the available real-time field data of the
CGPP and confirms that the relative error is less than 1%, as shown in Table 1, which is a
highly encouraging result. Hence, this function is more accurate and can be used for the
CGPP in further analysis and to design suitable controllers for its optimum operations,
up to the lowest acceptable load of 50%. For operations below 50%, most CGPPs cannot
operate efficiently and are not advisable.
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5. Forecasting of Solar Irradiance with Different Weather Conditions

For satisfactory operation of electrical power systems with DG, optimization is gener-
ally performed using prior information on the load profile and weather forecasting data.
The prediction of SPV generation either an hour or a day ahead from weather forecasts can
greatly help power system operators plan their generation and dispatch. The prediction
should be automatic and more accurate by considering seasonally varying weather con-
ditions, which is possible with the help of the machine learning technique used by many
researchers. Although, beta distribution is used for solar irradiance modeling, authors
in [33] used Weibull distribution to compute hourly PV power output. However, every
model has limitations, and some deviations exist. In the present case study, the PV data is
not validated with any of distributions, as pointed out in literature since the data is readily
available for machine learning training purposes. The dataset of 122 available points, both
from the field and online, for the case study location (latitude of 17.90 N and longitude
of 80.80 E) is shown in Figure 3a–f which have mixed correlation and inter dependent
with GHI. The ambient temperature, relative humidity and precipitation have a greater
impact on GHI, mostly direct proportional up to 40 ◦C and starts falling beyond this point.
The dew point is directly proportional to GHI, whereas the wind speed has some inverse
relationship and mostly no concluding relation to the sky cover. Hence it can be concluded
that the correlation between GHI and other parameters has a mixed relation. Some of the
sample values are shown in Table 2. These details are used for training regression analysis
to predict the solar irradiance, i.e., the dependent variable.

The results of the trained model are shown in Table 3.
The coefficients obtained show that the ‘p’ value of sky cover is 0.601, which is higher

than the acceptable limit of 0.05 [34], i.e., it is not significant at the 5% significance level
and indicates that this parameter does not have a significant effect on irradiance. Hence,
the regression model is retrained without sky cover. The results are shown in Table 4, and
the prediction plot is shown in Figure 4. In this final regression model, the ‘p’ values of
the parameters are less than 0.05 and indicate that the selected model is suitable for the
location under study and may require adding sky cover to other locations based on the
field data and geographical conditions.
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Table 2. Sample data of site weather conditions.

Ambient
Temp (◦C)

Relative
Humidity (%)

Dew Point
(◦C)

Wind Speed
(m/s)

Sky Cover
(%)

Precipitation
(%)

Global Horizontal
Irradiance (W/m2)

36.41 54.73 34.80 0.83 39.00 6.20 914

37.81 52.09 35.70 1.39 38.50 6.00 1031

39.32 45.80 35.80 1.39 38.50 5.00 753

38.40 44.14 35.60 1.39 38.50 4.00 597

31.46 64.14 34.10 0.83 38.00 6.00 564

33.74 58.85 34.90 0.83 38.00 6.00 821

35.44 55.24 35.80 1.39 37.00 6.00 929

36.74 50.37 35.90 1.39 37.00 5.50 894

27.42 79.34 31.00 0.83 35.50 6.00 286
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Table 3. Initial regression results for irradiance prediction.

Statistics Estimate SE t Stat p Value

(Intercept) −5795.85 282.91 −20.48 3.52 × 10−40

Ambt. temp (◦C) 39.06 4.95 7.891 1.93 × 10−12

Rel. humidity (%) 8.13 1.34 6.04 1.90 × 10−08

Dew point (◦C) 111.22 5.57 19.94 3.89 × 10−39

Wind speed (m/s) −13.14 5.68 −2.31 0.022

Sky cover (%) −0.24 0.45 −0.52 0.601

Precipitation (%) 157.96 7.67 20.57 2.40 × 10−40

Table 4. Final regression results for irradiance prediction.

Statistics Estimate SE t Stat p Value

(Intercept) −5810.60 280.63 −20.70 9.13 × 10−41

Ambt. temp (◦C) 39.75 4.75 8.35 1.65 × 10−13

Rel. humidity (%) 8.22 1.33 6.17 1.02 × 10−8

Dew point (◦C) 110.61 5.43 20.35 4.37 × 10−40

Wind speed (m/s) −13.39 5.64 −2.37 0.019

Precipitation (%) 158.27 7.63 20.73 8.02 × 10−41
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Figure 4. Prediction plot for irradiance, obtained from linear regression analysis.

The mathematical function model is shown in (7).

Solar irradiance = f (Am. Tempe., Rel. humidity, Dew point, Wind speed, Precipitation)

G = (39.75 ∗ Amb. temp.) + (8.22∗Rel. humidity) + (110.61 ∗ Dew point +−13.39∗Wind speed)
+(158.27 ∗ Precipitation–5810.6)

(7)

The regression results of the RMSE of 38.797, R-squared of 0.97, MSE of 1505.2, MAE
of 28.749 and p-value of less than 0.05 indicate that the regression model is perfect. The
obtained function is validated with real-time field details of the SPP and confirms that the
relative error is between 16% and −26%, with the majority of values being less than 5%.
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The results also confirm a mixed relationship between GHI and other varying parameters.
However, there is no confirmative relationship between GHI and sky cover, which is also
confirmed from the Figure 3. Hence, this function is more accurate and can be used for solar
irradiance prediction in the field, especially for integrated power systems with CGPPs. This
can help CGPPs be prepared to maintain the stability of turbo generators under varying
weather conditions.

6. Modeling the Power Network

Figure 5 depicts the power schematic diagram or One Line View (OLV) of the in-
dustry whose operational philosophy is described in subsequent sections. The following
guidelines are considered in modeling industrial power networks with PV generation.
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• In the OLV and E-Tap, even though a single-phase system is shown for three-phase
networks, the calculations and simulations are performed for a three-phase system
only.

• The branch flow equations of the distribution network are formulated with the help
of LinDistFlow equations proposed in [35] since the case study distribution network
is radial.

• Transmission lines or cables have nominal voltages, line currents and impedances.
• Shunt capacitors act as an impedance device to have the effect of voltage squared.
• PV generation depends on the solar irradiance, which in turn depends upon various

weather conditions, as mentioned in the preceding sections.
• Simulations are carried out for 24 h with a one-hour time grading.
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The modeling of the various components of the system is shown in (4) to (7). These
equations are developed based on the following conditions and objectives of the industry:

In CGPP, the active output power of each TG shall not be less than 16 MW for better
efficiency and not be more than the plant maximum load of 36 MW, unless there is a power
export agreement with either utility grid or other neighboring industries. This condition
shall also be followed by respective reactive power control for a better power factor and
voltage profile with the help of available capacitor banks. Additionally, the PV power has
certain limits of its maximum capacity beyond which it cannot generate. In addition, for
any additions to the existing PV plant, a further power export agreement is required as
stated above.

i. CGPP:

PCGPP
min ≤ PCGPP

t ≤ PCGPP
max (8)

QCGPP
min ≤ QCGPP

t ≤ QCGPP
max (9)

CCGPP
t = kCGPP

t PCGPP
t (10)

Here, kCGPP is 5.60 INR.
Here, Equation (8) describes the CGPP active power limits, Equation (9) formulates

the reactive power limits of CGPPs for time t, and (10) shows the total cost of CGPP energy.

ii. SPP:

PPv
t = dηpanel ApanelGt (11)

PPv
min ≤ PPv

t ≤ PPv
max (12)

Cpv
t = kpv

t Ppv
t (13)

Here, kPV is 6.50 INR per kWh.
Here, Equation (11) describes the SPP active power limits, Equation (12) formulates

the active power limits of SPP for time t, and (13) shows the total cost of SPP energy.

iii. Distribution Network Modeling:

PUG
t = P1

t = P2
t −

(
PCGPP

t − PL
t

)
(14)

QUG
t = Q1

t = Q2
t − (QCGPP

t −QL
t ) (15)

v2
t = v1

t − 2
(

r1P1
t + x1Q1

t

)
(16)

v1
t = 1 (17)

PUG
min ≤ PUG

t ≤ PUG
max (18)

QUG
min ≤ QUG

t ≤ QUG
max (19)

CUG
t = kUG

t PUG
t (20)

P2
t = P3

t −
(

PPV
t − PBL

t

)
(21)

Q2
t = Q3

t − (

(
Qsh

t v3
t

Vnominal

)
−QBL

t ) (22)

v3
t = v2

t − 2
(

r2P2
t + x2Q2

t

)
(23)

v2
min ≤ v2

t ≤ v2
max (24)

v3
min ≤ v3

t ≤ v3
max (25)

Here, kUG is 7.20 INR.
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Here, Equations (14) and (15) models the net UG power availability in which power is
either exported when there is a surplus during SPP peak generation or imported based
on plant demand. Equation (16) captures the net voltage at bus 2 (process load bus) after
allowing the line impedance drop. The voltage at bus 1 (UG input) is fixed at 1.0 p.u. since
there are no users here (17). Equations (18) and (19) describes the UG active and reactive
power limits, respectively. Additionally, Equation (23) captures the net voltage at bus 3
(base load bus) after allowing the respective line drop. Equations (24) and (25) stipulates
the voltage limits.

Boundary conditions:
Since there is no power flow going out of bus 3 (base load bus), the active and reactive

power going out from this bus are zero, as in (26).

P3
t , Q3

t = 0 (26)

In the OLV, P2 and P3 represent the net power at the respective node after consid-
ering the respective branch power loss. Various technical parameters and their bounds
considered in the case study industry are mentioned in Table 5. As shown in the table, the
CGPP runs with satisfactory efficiency with loads from 32 to 36 MW. The constraints of this
system extend 30 MW to process loads, i.e., process plant running conditions; an essential
load, i.e., a base load of 6 MW irrespective of the plant running status. Additionally, a
voltage of 100% is considered at bus 1, i.e., v1, since there are no loads on this bus. However,
the voltage limits specified in the IEEE Standard are applicable for v2 and v3 at buses 2
and 3, respectively, since loads are directly connected to these buses.

Table 5. Industry technical parameters.

Parameter Nominal Minimum Maximum Significance

PCGPP (MW) 32 32 36 Decision variable

QCGPP (Mvar) 15 0 18 Decision variable

PUG (MW) 1 −10 6 Decision variable

QUG (Mvar) 15 0.48 2.9 Decision variable

PPV (MW) - 0 12 Decision variable

PL (MW) 30 0 30 Constraint

P2, Q2 (MW, Mvar) - 3 36 Decision variable

QL (Mvar) 15 0 15 Constraint

PBL (MW) 6 6 6 Constraint

QBL (Mvar) 2.9 2.9 2.9 Constraint

r1 (ohms)-single line 0.081 - - -

r2 (ohms)-single line 0.0027 - - -

x1 (ohms)-single line 0.1165 - - -

x2 (ohms)-single line 0.0188 - - Constraint

V1 (%) 100 - - Reference

V2, v3 (%) 100 91 105 Decision variable

Alpha PV (%) - 0 30 Constraint

The optimal power flow with the lowest cost solution fulfilling the various constraints
above, such as the minimum and maximum power flow limits from the CGPP and SPP,
voltage limits and total operating costs, for the case study industry have to be tested. The
optimal power flow problem (OPF) (P1) of a cogeneration plant integrated with PV for the
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minimum total energy cost is formulated as in (27), subject to satisfying the parameters in
(8)–(26).

(P1)min
T

∑
t=1

(
CCGPP

t + CPV
t + CUG

t

)
(27)

Here, the main objective is to reduce the costs of CGPPs, PVs and UGs subject to the
conditions formulated in (8)–(26). Hence, the goal is to check the availability of power
over time and to utilize the lowest priced energy at that moment. Here, Problem P1
is linear since the objective and constraints are linear. Although the efficiency of the
CGPP is not considered in optimization, since it is linear, it can be easily included in the
optimization problem. We conducted a post-efficiency analysis after solving the problem.
Moreover, since the case study industry has no storage battery system, it is excluded
from the optimization. The details of real-time operating conditions with constraints,
decision variables and objective functions of the case study industry are mentioned in
subsequent sections.

7. Optimal Power Flow of PV Integrated CGPP Power System

To run the power distribution network efficiently with cost-effectiveness, a suitable
optimization technique is required. There are many optimization techniques such as ant
colony and artificial bee colony optimization for electrical distribution works. These meth-
ods are developed with inspiration from biological evolution and use the mechanisms of
(i) reproduction, (ii) mutation, (iii) recombination and (iv) selection. The ant colony tech-
nique is inspired by the foraging behavior of ants and is being used in large optimization
problems. Artificial bee colony optimization is being used for continuous optimization
work. Particle swarm optimization (PSO), which is a population-based optimization, suf-
fers from the disadvantages of easily falling into local optima with a lower convergence
rate. Concerning the widely used genetic algorithm (GA), even though there are some
advantages, such as complex problems and parallelism, they suffer from disadvantages,
such as the requirement of a careful selection of a new population and more time consump-
tion. In this work, optimization techniques such as the firefly algorithm (FA), the modified
firefly algorithm (MFA) and the Excel solver are used. These methods are described in
subsequent sections. Additionally, for simulations in this paper, a laptop with an x64-based
11th generation Intel core i5-1135G7 at 2.40 GHz CPU with 16.0 GB RAM and a 64-bit
operating system is used with MS Office 365-2019 and MATLAB 2018a.

i. Firefly algorithm (FA): this algorithm was developed by Xin-She Yang in 2008 [36] and
is inspired by the flashing patterns and movement of fireflies at night. There are three
basic rules in the FA: (i) fireflies are attracted to others irrespective of their sex, i.e.,
unisex; (ii) the firefly’s brightness is determined by the value of the objective function;
(iii) the attractiveness is proportional to the brightness, which is inversely proportional
to the distance between them. Therefore, a dimmer firefly always moves toward a
brighter firefly and moves randomly if there is no bright firefly. The FA is becoming
more popularly used due to its population subgrouping capability for local attraction.
The FA has been tested in the proposed code for the design of a compression spring to
determine the spring’s suitability in engineering applications [37]. The FA is governed
by Equations (28) and (29) [38].

Light intensity, I = I0e−γr2
(28)

Firefly attractiveness, β = β0e−γr2
(29)

Here, I0 is the initial brightness value at the source, i.e., distance r = 0; β is the original
light attractiveness between two fireflies at i and j, i.e., at rij = 0. The Cartesian distance
is used to estimate the distance between any two fireflies i and j (30).
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rij =
∣∣xi − xj

∣∣ =
√√√√ d

∑
k=1

(
xi,k − xj,k

)2
(30)

where ‘d’ is the number of dimensions, and xi,k is the kth component of firefly i. The
updated location of firefly i to a brighter firefly j is given by (31) [39],

xi+1 = xi + β0e−γrij
2(

xj − xi
)
+ ∝ ξ (31)

where α is the scaling parameter, which controls the step size, and rand is a random
number drawn from different distributions, such as Levy flights and the uniform
distribution. In the above equation, the first term indicates the present location of
the firefly, the second term controls the attractiveness and the third term describes
the random movement if there are no bright fireflies. We used penalized methods to
address the constraints as in (32) and (33) and denoted as x in (34).

(P1)min
T

∑
t=1

(
CCGPP

t + CPV
t + CUG

t

)
+ λ
(

At
eqxt − Bt

eq
)

(32)

s.t, lb ≤ xt ≤ ub, ∀t ∈ T (33)

where,

x =
[

Pt
1, Pt

2, Q1, Qt
2, Pt

CGPP, Pt
PV , Qt

CGPP, vt
2, vt

3, ∝tPV

]T
(34)

The matrices Aeq and Beq, ub and lb are described in Appendix A. Bound projec-
tion scheme:

If X < lb, X = lb. Otherwise, if X > ub, X = ub end

If the computed x from the algorithm is lower than lb, then we project x to be equal to
the lower band; conversely, if the computed X from the algorithm is greater than ub,
then we project x to be equal to the upper band.

ii. Modified firefly algorithm (MFA): even though the FA is preferred in most microgrid
applications due to its simplicity and good efficiency, it suffers from certain draw-
backs such as poor exploration and becoming trapped in the local minima. This
calls for an improvement with hybridization, which has been addressed by many
researchers [40,41]. In this paper, the FA is modified by augmenting it with the Levy
flight distribution and penalty approaches. Levy flight (LF): LF was introduced by
Paul Levy in 1937 for statistics [42] and is now being used in economic, physical, bio-
logical and engineering fields. Levy motion with characteristics of a long tail or many
small steps (i.e., flights) and frequent jumps leads to new clusters, i.e., generating
new generations at distances that are randomly distributed. The new generations are
closer to the previous optimum population, i.e., speeding up exploitation. Finally, the
new generation is evaluated for its best fit. An example of 1000 steps of an LF with
(0,0) as the starting point is shown in Figure 6.
The direction is uniformly distributed with a Levy distributed step size having values
of α = 1 and β = 0. Levy flight can be used to control firefly movement. The random
step length, drawn from a Levy distribution, is shown in (35) [43].

s = µ/v−τ (35)

where u and v are normally distributed as in (36) and (37).

µ ∼ N
(

0, σ2
u

)
, v ∼ N

(
σ2

v

)
(36)
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σu = { γ(1 + τ)Sin(πτ/2)
γ{[(1 + τ)/2] ∗ τ ∗ 2(τ−1)/2}

} −τ , σ v = 1 (37)

iii. HyPROS: This add-in MS Excel solver, having a what-if analysis facility, is being
used to determine either the maximum or minimum of a formula in a cell, subject
to its constraints. In this solver, three solution methods are available: (a) nonlinear
GRG (generalized reduced gradient), which is very fast and mostly used for smooth
equations to obtain a local solution in milliseconds; (b) LP (linear programming)
to solve global problems in moderate time; (c) the evolutionary method, which is
based on natural selection and is used to acquire a global solution of non-smooth
and nonlinear functions, which takes more time. In LP methods such as LinProg of
MATLAB or Excel solver’s GRG and LP, the main objective is to minimize a linear
objective function over certain decision variables and linear constraints. However,
there is no guarantee of obtaining a global solution with LP techniques, but the Excel
evolutionary method can give a good or adequate solution. Hence, researchers seek
other options for improved methods.
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8. Numerical Simulations and Results

The case study of industry with its OLV and technical parameters given in the preced-
ing sections is simulated with all the above referred methods for the objective function for
two irradiance values of nil and a maximum level of 100% (in the FA and MFA) and for
one in the solver.

Case 1—firefly method: here, the classical FA is implemented in the MATLAB software
for the case study industry for a 24 h day with a time gradient of one hour. The simulation
results are shown in Table 6. These results are in line with the objective function of the
industry concerning the power balance and meeting the voltage limits prescribed by IEEE
1547–2020. Additionally, the obtained results are better than existing industry practices.
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Table 6. FA results (-ve sign indicates the export of power).

Hour PUG (MW) QUG (Mvar) PCGPP (MW) PPV (MW) QCGPP (Mvar) v2 (kV) v3 (kV)

1 1.22 0.75 34.78 0.00 16.67 6.54 6.52

2 1.98 1.98 34.02 0.00 15.44 6.48 6.46

3 2.48 2.47 33.52 0.00 14.95 6.45 6.43

4 1.77 2.37 34.23 0.00 15.05 6.47 6.45

5 3.98 1.15 32.02 0.00 16.27 6.46 6.44

6 0.87 1.63 35.13 0.00 15.79 6.52 6.50

7 2.51 2.55 33.49 0.00 14.87 6.45 6.42

8 2.07 1.30 33.23 0.69 16.12 6.50 6.48

9 0.65 1.38 32.80 2.55 16.04 6.54 6.52

10 −4.37 2.84 35.65 4.72 14.57 6.61 6.59

11 −3.09 0.78 32.58 6.51 16.64 6.65 6.63

12 −3.73 2.33 32.07 7.66 15.09 6.61 6.59

13 −7.53 2.08 35.30 8.23 15.34 6.71 6.70

14 −4.34 2.09 32.07 8.27 15.33 6.63 6.62

15 −5.49 2.72 34.17 7.32 14.70 6.64 6.62

16 −5.54 1.33 35.34 6.20 16.09 6.69 6.67

17 −2.55 1.20 34.70 3.84 16.21 6.62 6.60

18 1.61 1.57 32.74 1.65 15.85 6.50 6.48

19 −0.54 0.94 35.90 0.64 16.48 6.58 6.56

20 0.34 0.99 35.66 0.00 16.43 6.56 6.54

21 1.91 2.29 34.09 0.00 15.12 6.47 6.45

22 1.93 2.26 34.07 0.00 15.15 6.47 6.45

23 0.06 1.12 35.94 0.00 16.30 6.56 6.54

24 0.04 0.78 35.96 0.00 16.63 6.57 6.55

Case 2—modified firefly method: here, the MFA is implemented in the MATLAB
software for the case study industry for a 24 h day with a time gradient of one hour, the
same as that of the FA simulations. The simulation results are shown in Table 7, and
the fitness curve is shown in Figure 7, which indicates perfect convergence reaching the
optimum solution within 100 iterations.
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Table 7. MFA results (-ve sign indicates the export of power).

Hour PUG (MW) QUG (Mvar) PCGPP (MW) PPV (MW) QCGPP (Mvar) v2 (kV) v3 (kV)

1 0.57 0.53 35.43 0.00 16.89 6.54 6.49

2 0.57 0.53 35.43 0.00 16.89 6.54 6.49

3 0.57 0.53 35.43 0.00 16.89 6.54 6.49

4 0.57 0.53 35.43 0.00 16.89 6.54 6.49

5 0.57 0.53 35.43 0.00 16.89 6.54 6.49

6 0.57 0.53 35.43 0.00 16.89 6.54 6.49

7 0.57 0.53 35.43 0.00 16.89 6.54 6.49

8 0.89 0.48 34.42 0.70 16.94 6.52 6.48

9 0.10 0.48 33.34 2.55 16.94 6.56 6.52

10 −1.03 0.52 32.32 4.72 16.90 6.61 6.58

11 −2.51 0.74 32.00 6.51 16.68 6.67 6.64

12 −3.66 0.80 32.00 7.66 16.62 6.72 6.69

13 −4.23 0.71 32.00 8.23 16.71 6.76 6.73

14 −4.27 0.70 32.00 8.27 16.72 6.76 6.73

15 −3.33 0.62 32.01 7.32 16.80 6.72 6.69

16 −2.54 0.57 32.34 6.20 16.85 6.68 6.65

17 −1.06 0.48 33.22 3.84 16.94 6.62 6.58

18 0.30 0.48 34.05 1.65 16.94 6.55 6.51

19 0.59 0.48 34.77 0.64 16.94 6.54 6.50

20 0.57 0.53 35.43 0.00 16.89 6.54 6.49

21 0.57 0.53 35.43 0.00 16.89 6.54 6.49

22 0.57 0.53 35.43 0.00 16.89 6.54 6.49

23 0.57 0.53 35.43 0.00 16.89 6.54 6.49

24 0.57 0.53 35.43 0.00 16.89 6.54 6.49

Case 3—solver: for the simulation, all three models of the solver method are used
with the maximum PV contribution. A summary of the results obtained with the MS Excel
solver, i.e., HypROS, for a particular time period of one hour, where the solar irradiance
was maximum, is shown in Table 8.

Table 8. Result summary of Excel solver methods in pu.

Solver Engine PUG PCGPP PPV v2 v3 Obje. Cell
(Min)-Total Cost

Solution
Time (s)

Nonlinear GRG −0.21 0.90 0.21 1.03 1.03 0.0049 0.02

Simplex LP −0.21 0.90 0.21 1.03 1.03 0.0049 0.03

Evolutionary (GA) −0.16 0.85 0.18 1.00 0.99 0.0048 1.20

To get the values of the real power in watts, the p.u. results of Table 8 were multiplied
with base MVA which is 40 here. Therefore, the results with nonlinear GRG and Simplex
methods for active power of UG is 8.4 MW (export to UG), CGPP is 36 MW and PV is
8.4 MW. Whereas the active power of UG is 6.4 MW (export to UG), 34 MW from CGPP
and 7.2 MW from PV plants with the evolutionary method; here the losses are more due
to reduced voltage. The voltages given in the table are multiplied with base kV of 6.6 to
get the real values; which is 6.798 kV with nonlinear GRG and Simplex methods and is
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6.534 kV with evolutionary method. Additionally, the time taken for simulation is 0.02,
0.03 and 1.2 s for nonlinear GRG, Simplex methods and nonlinear GRG and evolutionary
methods, respectively.

The results of the GRG and LP methods are the same whereas the evolutionary method
gives different results. The results of GRG and LP are very encouraging, and this technique,
mostly with LP, can be used by industries that do not have expertise in optimization
techniques. Hence, the method has been converted into a ready-reckoner type solver
under the name HyPROS (Hybrid Power Resources Optimization Solver) and shown in
Appendix B. The GRG or LP methods, which have given faster responses, can be adopted
by industries. In this paper, the words solver and HyPROS are interchangeably used.

9. Results and Discussions

The obtained results are discussed and tested for some of the known key performance
indicators as follows:

i. Power sharing and voltage profile: the results obtained for all the techniques used
in this work are summarized in Table 9. Here, sample PV penetration of zero and a
peak level of 100% are considered for comparison purposes. Additionally, the active
power sharing between different resources by the FA and MFA, along with the bus
2 voltage, is shown in Figure 8. The active power sharing curves show that the power
allocation and voltage profile is smooth without any rapid swells and sags in MFA
due to Levy flight when compared with the FA. Hence, the local CGPP cannot be
affected much and exhibits stable operation. The MFA curve is better than the FA
curve. Additionally, the voltage profile is comparatively better in the MFA model. It
shows that all the results are almost the same with a better voltage profile with the
MFA model. Additionally, the Excel solver results are equally comparable with other
optimization techniques and can be used in the field. The energy cost per hour of
the existing practice is INR 0.2304 million. However, the cost estimates are reduced
by 9–15% with various optimization techniques. Even though the best estimates are
obtained with the solver technique, the next-best MFA is the most useful for the field
due to its technical advantage of a better voltage profile. This saves approximately
INR 228 million, i.e., 11% savings annually with the MFA optimization model of the
energy mix.

ii. PV penetration ratio: here, we estimated the PV penetration ratio for a 6.6 kV system
to check for the penetration levels, as in (38).

PV Penetration ratio = SPV f eeder/nloads Speak (38)

where SPV feeder is the PV power installed for n loads with the estimated peak power of
Speak. In the present case study, the PV penetration ratio = 100 (12 MW)/(1*36) = 33.33%,
which is termed ‘high penetration’ [44,45]. However, from past field data, the maxi-
mum PV power output was 8.5 MW, i.e., at an average performance ratio of 70%. In
such cases, the PV penetration ratio is adjusted to 23.6%, which is marginal.

iii. Amount of energy imbalance (AEI): the authors in [46] proposed the AEI as in (39),
which represents financial amounts but can be used for power systems and indicates
the difference between the power supplied by and imported from grids.

AEI = (SA− SB) + (AP− BA) + (BDAM− SDAM) + (ALS− AIL) (39)

where SA is the settlement amount (power produced), SB is the settlement basis
withdrawal amount, AP denotes the amount of purchase with a bilateral agreement
(BA), BDAM is the buying from the day-ahead market (DAM), SDAM is the amount
of sales to the day-ahead market, ALS is the amount of load shedding, and AUL is
the amount uploaded. In the present case study, for the time period of 10 to 11 AM
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(Table 7), the PV generation was 6500 kWh with a load of 36,000 kWh, CGPP genera-
tion was 32,000 kWh and export to UG was 2510 kWh.

AEI = (36,000 + 6500) − 0) + (0 − 0) + (0 − 2510) + (0 − 36,000) = 3990

Here, the positive AEI indicated a power surplus and, hence, exporting. In the
case of a negative AEI, there will be a shortage of power and imports from the grid.
This calculation can help develop better control strategies since we cannot destroy
the energy.

iv. Validation with E-Tap: LinDistflow linearizes the power flow equations [47], and the
computed ‘X’ may not be feasible for actual nonlinear solvers, e.g., E-TAP. Therefore,
the results obtained in HyPROS, from FA and MFA are validated with E-Tap, the
power system analysis software [48], to determine the voltage performance at the
optimum power flow conditions. Here the optimum power flow conditions obtained
in those algorithms are used to simulate the power flow conditions in E-TAP. On
simulating these optimum power flow values in E-TAP, voltage and power factor at
various buses are checked for their validity in the system. The response from E-Tap
for v2 and v3 confirms that of the various optimization method results are well within
the limits prescribed in IEEE 1547–2018. A summary of the validation results is shown
in Table 10. An illustration of the E-Tap load flow result for the nonlinear GRG solver
is shown in Figure 9. Here, the single line diagram or OLV of the power network is
transformed into an E-Tap diagram. E-Tap estimations confirmed that the generator
was operating with the best power factor of 92.74%.

v. Voltage Ramp Index: it is a known fact that with the increased PV penetration, the
voltage stability of grid will be affected [49]. In addition to the abovementioned
performance parameters, we propose the ‘voltage ramp index (VRI)’ as in (40), to
determine the hourly or any step-time voltage variations or spikes in a power dis-
tribution system due to varying PV power output. In the selection of the maximum
value, the sign of either +ve or -ve should be ignored to obtain the index value.

Voltage Ramp Index (VRI) = maximum of {(vt+1 − vt), . . . , (vn+1 − vn)} (40)

where vt+1, vt, vn+1 and vn are the selected node voltages at t + 1th, tth, n + 1th and nth

hours, respectively. For explanation purposes, the FA results in Table 6 are reproduced
here in Table 11 with hourly voltage readings at bus 2. The step voltage or ramp
voltage is the change in voltage from the preceding hour to the present hour, e.g., for
the 14th hour, the step or ramp is v2

14 − v2
13 = 6.63− 6.71 = −0.08 kV per hour, which

indicates a voltage drop of 0.08 kV.

For the selected FA table,

VRI = max. of (0.00, −0.06, −0.03, 0.02, 0.02, −0.01, 0.06, −0.07, 0.05, 0.04, 0.07, 0.04, −0.04, 0.10,
−0.08,0.01, 0.01, 0.05, −0.07, −0.12, 0.08, −0.02, −0.09, 0.00, 0.09, 0.01) = −0.12.

Therefore, for the selected 24 h day, the VRI is 0.12, which is due to the PV power
being ‘off’ at 6 PM, i.e., at sunset. Such information is useful in selecting voltage regulators
or load tap changer adjustments. Additionally, the MFA results in Table 7 are reproduced
here in Table 12 with hourly voltage readings at bus 2. The step voltage or ramp voltage is
the change in voltage from the preceding hour to the present hour, e.g., for the 14th hour,
the step or ramp is v2

14 − v2
13 = 6.76− 6.76 = 0.00 kV per hour, which indicates no change

in voltage.
For the selected MFA table,

VRI = max. of (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, −0.02, 0.04, 0.05, 0.06, 0.05, 0.04, 0.00, −0.04,
−0.04, −0.06, −0.07, −0.01, 0.00, 0.00, 0.00, 0.00, 0.00) = −0.07.
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Therefore, for the selected 24 h day, the VRI is 0.7, which is due to the PV power being
‘off’ at 6 PM, i.e., at sunset. With MFA, it is seen that the number of zero voltage steps are
13 against two in FA, which indicates a smooth voltage profile in MFA and this model can
be adopted for industries having cogeneration power plant integrated with large size PV
power plants.

Table 9. Power flow results of all optimization techniques.

Optimization
Technique At PV Penetration GRG Solver LP Solver Evolutionary Solver FA MFA

PUG

(MW)

0% 0.00 −1.1 × 10-15 −0.72 0.87 0.57

100% −8.27 −8.27 −8.26 −4.34 −4.27

QUG

(Mvar)

0% 2.90 2.90 2.90 1.63 0.53

100% 2.90 2.90 2.90 2.09 0.70

PCGPP

(MW)

0% 36.00 36.00 35.98 35.13 35.43

100% 36.00 36.00 35.98 32.07 32.00

PPV

(MW)

0% 0.00 0.00 0.00 0.00 0.00

100% 8.27 8.27 8.25 8.27 8.27

QCGPP

(Mvar)

0% 14.52 14.52 14.47 15.79 16.89

100% 14.52 14.47 14.47 15.33 16.72

v2 (kV)
0% 6.50 6.50 6.50 6.52 6.54

100% 6.69 6.69 6.69 6.63 6.76

v3 (kV)
0% 6.48 6.48 6.47 6.50 6.49

100% 6.68 6.68 6.68 6.62 6.73

1-h average cost
(INR) 0% 0.1958 0.1958 0.1957 0.2080 0.2040

(-ve sign indicates the export of power and INR in million).

Table 10. Results of various optimization techniques.

PV Penetration 0% (or Nil) Day Peak

Method v2 (%) v3(%) v2 (%) v3(%)

Nonlinear GRG 98.44 98.11 103.00 102.80

E-Tap 99.61 99.53 101.70 101.90

Simplex LP 98.44 98.11 103.00 102.80

E-Tap 99.61 99.53 101.80 101.80

Evolutionary 98.46 98.10 100.00 99.00

E-Tap 100.10 100.00 101.80 101.80

FA 99.00 98.00 100.00 100.00

E-Tap 99.69 99.61 100.10 100.00

MFA 98.00 98.00 100.00 100.00

E-Tap 99.88 99.80 100.60 100.50
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Table 11. Hourly step voltage or voltage ramp in kV for FA.

Hour v2 Step Voltage Hour v2 Step Voltage

1 6.54 0.00 13 6.71 0.10

2 6.48 −0.06 14 6.63 −0.08

3 6.45 −0.03 15 6.64 0.01

4 6.47 0.02 16 6.69 0.05

5 6.46 −0.01 17 6.62 −0.07

6 6.52 0.06 18 6.50 −0.12

7 6.45 −0.07 19 6.58 0.08

8 6.50 0.05 20 6.56 −0.02

9 6.54 0.04 21 6.47 −0.09

10 6.61 0.07 22 6.47 0.00

11 6.65 0.04 23 6.56 0.09

12 6.61 −0.04 24 6.57 0.01

Table 12. Hourly step voltage or voltage ramp in kV for MFA.

Hour v2 Step Voltage Hour v2 Step Voltage

1 6.54 0.00 13 6.76 0.04

2 6.54 0.00 14 6.76 0.00

3 6.54 0.00 15 6.72 −0.04

4 6.54 0.00 16 6.68 −0.04

5 6.54 0.00 17 6.62 −0.06

6 6.54 0.00 18 6.55 −0.07

7 6.54 0.00 19 6.54 −0.01

8 6.52 −0.02 20 6.54 0.00

9 6.56 0.04 21 6.54 0.00

10 6.61 0.05 22 6.54 0.00

11 6.67 0.06 23 6.54 0.00

12 6.72 0.05 24 6.54 0.00
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10. Conclusions

The optimal operation of a grid-connected cogeneration power plant integrated with a
solar photovoltaic power plant was determined. For this work, a case study of a known con-
tinuous process chemical industry of a similar type was selected. Forecasting techniques for
cogeneration efficiency versus its operating load were proposed and obtained a satisfactory
relation between its efficiency and load, which is useful for cogeneration operators to run it
more efficiently. Additionally, solar irradiance forecasting techniques were proposed and
obtained a reasonable relationship between the irradiance and varying weather parameters
such as ambient temperature, wind speed, relative humidity, dew point, etc. They were
verified real time field results and found to be encouraging. This technique will be useful
for field operators to forecast the solar irradiance and in turn solar power, for any type of
seasonal weather conditions combination. To solve the optimization problem of various
energy resources, different optimization techniques, such as the solver, firefly algorithm
and modified firefly algorithm, were proposed and implemented. The simulation results of
the MFA method were compared with those of the FA method and confirm that the MFA
method is more effective and well suited for industries with grid-connected cogeneration
power plants along with locally integrated solar PV power systems. The set points which
were computed from the optimization were applied at the field and obtained a satisfactory
CGPP efficiency of above 34%, which is the lowest limitation given by the steam boiler
manufacturer. Additionally, a handy optimization solver was developed for industrial use.
This can be used by any technical person, not having knowledge of complex optimization
techniques, who can easily use the solver which basically requires experience in MS Excel.
The authors concluded that the MFA method, in addition to the solver, is more useful for
similar types of industries and maximizes the harnessing of solar energy.

The results obtained with various optimization techniques were validated with E-Tap,
a standard power system analysis software, for voltage profile and were found to be satis-
fying the voltage limits prescribed in the latest IEEE standard 1547. With this satisfactory
technical validation, the same can be comfortably implemented at the field level. Various
performance indicators were also used to confirm the suitability of the techniques adopted
and obtained encouraging confirmations. Additionally, a new performance indicator, volt-
age ramp index was proposed to know the voltage steps due to a varying mix of energy
resources. The voltage profile obtained with FA and MFA optimization techniques was
verified with the newly proposed voltage ramp index and useful information was obtained.
This work mainly focused on the optimal operation of PV integrated cogeneration plants
and integration problems. The other major integration problems of reactive power and
protection systems were addressed by the authors separately. Initially, there was some
comprehension that the higher penetration of RERs can disturb existing electrical networks.
However, continuous research on RE integration problems and advancement of artificial
intelligence techniques into the electrical power sector can comfortably address these
problems. In future works, nonlinear forecasting methods for a year of PV systems and
other improved versions of optimization techniques can be considered. The available
technologies, such as AI for forecasting demand–supply gaps and optimal utilization of
resources and peer-to-peer power trading with blockchain technology, are to be used by
industries for the smooth operation of electrical power systems.

Author Contributions: Data curation, B.K.R. and A.K.S.; formal analysis, B.K.R.; investigation,
B.K.R.; methodology, B.K.R.; project administration, A.K.S.; software, B.K.R.; supervision, A.K.S.;
validation, B.K.R. and A.K.S.; writing—original draft, B.K.R.; writing—review and editing, B.K.R.
and A.K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Energies 2021, 14, 4935 25 of 28

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Utility Grid (UG)
Tu

g active power (W)
Qt

UG reactive power (var)
kt

UG cost of energy per kWh (INR)
Ct

UG total cost of UG energy (INR)
Cogeneration Power Plant (CGPP)

Pt
CGPP active power (W)

Qt
CGPP reactive power (var)

kt
CGPP cost of energy per kWh (INR)

Ct
CGPP total cost of CGPP energy (INR)

Solar Power Plant (SPP)
Pt

PV active power (W)
d derating factor of PV modules
ηpanel efficiency of PV modules
Apanel area of PV module collector (Sq.m)
Gt solar irradiance of location (W/m2)
kt

PV cost of PV energy (INR)
Ct

PV total cost of PV energy (INR)
alpha_PV PV power curtailment factor
Optimization parameters
I0 initial brightness value at source
r distance
γ light absorption coefficient
α scaling (random) parameter
ub upper bound
lb lower bound
∆t time step (1 h)
τ shape for beta distribution
β light attractiveness
ξ random factor
Distribution Network (DN)
Qt

sh shunt capacitor var
Vbase base voltage (volts)
Sbase base VA
Zbase base impedance (ohms)
Ibase base current (amps)
Vnominal nominal voltage (volts)
PL process active load (W)
QL process reactive load (var)
PBL base active load (W)
QBL base reactive load (var)
v1, v2, v3 magnitudes of squared voltage
r1, r2 respective line resistance
x1, x2 respective line reactance
P2 power at base load bus
P3 power at base load bus
Statistical parameters (Regression analysis)
RMSE root mean squared error
R-Squared coefficient of determination
MSE mean squared error
MAE mean absolute error
p-value probability of obtaining a result
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Appendix A

A_eq = [ 1 −1 0 0 1 0 0 0 0 0;
0 0 1 −1 0 0 1 0 0 0;
0 1 0 0 0 1 0 0 0 0;
0 0 0 1 0 0 0 0 Qcap/Vnominal 0;
2*r_1 0 2*x_1 0 0 0 0 1 0 0;
0 2*r_2 0 2*x_2 0 0 0 −1 1 0;
0 0 0 0 0 1 0 0 0 0]

B_eq = [PL; QL; PBL; QBL; 1; 0; PPVmax];
lb = [−0.5; −0.5; QUG min; −0.5; PCGPPmin; PPVmin; QCGPPmin; v2min; v3min; 0];
ub = [PUGmax; 1; QUGmax; 1; PCGPPmax; PPVmax; QCGPPmax; v2max; v3max; 1]

Appendix B. HyPROS (Hybrid Power Resources Optimization Solver)
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