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Abstract: This article presents an innovative induction motor state observer designed to reconstruct
magnetic fluxes and the angular speed of an induction motor for speed sensorless control system
applications such as field-oriented control (FOC). This observer is an intermediate solution between
the proportional observer and the classical proportional-integral (PI) observer with respect to which
the order of the integrating unit is reduced. Additional modifications of the observer’s structure
have been implemented to ensure stability and to improve its functional properties. As a result,
two versions of the observer structure were produced and experimentally tested using a sensorless
FOC control system. Both structures resulted in correct control system operation for a wide range of
angular speeds, including low speed ranges.

Keywords: Luenberger observer; proportional-integral (PI) observer; induction motor; field oriented
control (FOC); speed sensorless control

1. Introduction

In electric drives with induction motors based on dynamic control methods such
as field-oriented control (FOC) [1–5], it is necessary to reconstruct motor state variables
such as components of magnetic fluxes coupled with the stator and rotor windings. The
Luenberger observer can be used for this task [1,6–8]. Additionally, the angular speed of the
motor rotor can be estimated from the state variables reconstructed in the observer [6,8,9].
This makes it possible to obtain a speed-sensorless control system where the angular speed
measurement is not required [1,10,11]. Removal of the mechanical angular speed sensor,
located on the motor shaft, simplifies the drive system and increases its reliability [12].
Another possibility is to use the angular speed reconstruction along with its measured
value. Combining these measurements can be used to develop fail-safe (fault-tolerant)
drives that switch to a sensorless mode in the event of an angular speed sensor failure [5,13].
There are also online diagnostic strategies for failure detection based on comparisons of
the measured angular speed measured with reconstructed values using an observer [3,8].
When a fault is detected, the drive may switch from the closed-loop mode (e.g., FOC) to
the open-loop control (e.g., scalar volts per hertz V/f) [14].

In all previously mentioned cases, the state variable reconstruction quality in the
observer had a crucial impact on the control system performance. Therefore, the search for
new and better observer structures remains ongoing. The most commonly used Luenberger
observer of induction motor state variable reconstruction is the proportional observer [6,15].
Due to the stronger feedback, the proportional-integral (PI) observer provides better
reconstruction quality [16,17]. However, this observer has a more complicated structure,
and the gain selection is much more difficult [18]. As such, PI observers are rarely used
to reconstruct the magnetic flux components for control and speed estimation purposes.
Instead, PI observers are typically used for rotor temperature estimation [19] or as a part of
a fault detection strategy [20]. Therefore, we propose the use of a PI observer with a reduced
integrating unit order (PIr) [21], which can be implemented more easily while offering
better reconstruction quality over the proportional observer. Until now, this observer has
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not been used in induction motor control systems for the reconstruction of magnetic flux
components. We report the first successful application of a PIr observer for magnetic flux
reconstruction in induction motor control systems along with the experimental results.

2. Methods

The induction motor state observer design process consists of several stages, which
are outlined in Figure 1. The starting point is the classical PI observer established by
systems and control theory [17]. To create a PIr observer, the feedback integrating unit
structure should be modified to limit the number of signals. At the same time, steps should
be taken to protect the observer from structural instability. The PI observer, along with
other types of non-proportional observers [7,22], can always be unstable for a certain class
of dynamic systems, regardless of the gain selection. Induction motors belong to this
system class. We proposed a solution to this problem [7,22] through replacement of the
integrator with a first-order inertia. A reduction in the integrating unit order should also
be performed in such a way to provide the observer with practical properties, resulting
directly from the mathematical model structure of the motor [7]. For this purpose, we
proposed the idea of combining component values in pairs to modify the observer gain
matrices. The introduction of this limitation leads to two possible integrating unit order
reduction methods and, finally, to two possible induction motor PIr observer forms.
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2.1. Mathematical Model of an Induction Motor

The basis for the observer design is the mathematical model of the induction motor
in the form of a linear dynamic system [6,23,24] described by the matrix differential state
equation and the matrix algebraic output equation:{ .

x = Ax + Bu
y = Cx

. (1)

The state vector x ∈ Rn, input vector u ∈ Rp, and output vector y ∈ Rq are defined
as follows:

x =


ψsα
ψsβ
ψrα
ψrβ

, u =

[
usα
usβ

]
, y =

[
irα
irβ

]
. (2)
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From Equation (2), it follows that, for an induction motor, the dimensions of con-
secutive vectors of the system in Equation (1) are as follows: n = 4, p = 2, and q = 2.
The vectors x, y, and u contain the variables describing the electromagnetic properties of
the induction motor, expressed in relative quantities p.u. (per-unit system). The per-unit
system is one of relative units widely used in electric drives theory [25,26]. Furthermore,
the quantities contained by the vectors x, y, and u are defined by the Cartesian stationary
coordinate system α-β. In Equation (2), ψ is the magnetic flux coupled with the winding,
u is the supply voltage of the winding, and i is the winding current. The subscripts s
and r denote the quantities related to the stator and rotor windings, respectively. The
subscripts α and β denote phasor components corresponding to the axes of the Cartesian
coordinate system.

The matrices in Equation (1) have a block structure displaying a particular type
of symmetry closely related to the motor properties. Namely, they are block matrices
composed of elementary 2 × 2 square matrices, the elements of which are related as
follows [15]:

J(u, v) =
[

u −ωv
ωv u

]
, (3)

where u and v are real constants and ω is the electrical angular speed of the motor.
The presence of angular speed in the matrices of the state in Equation (1) causes the

values of these matrices to vary over time. However, it follows from the motor properties
that the angular speed changes much more slowly than the electromagnetic quantities
contained in the x, y, and u vectors, so it can be considered constant (parameter) [27]. Thus,
the system in Equation (1) can still be treated as a linear system. The matrices have the
following forms:

A =

[
J(γRsLr, 0) J(−γRsLm, 0)

J(−γRrLm, 0) J(γRrLs, 1)

]
, B =

[
12

02×2

]
, C =

[
−γLr12 γLm12

]
. (4)

Matrices A, B, and C contain the parameters of the equivalent circuit describing the
motor [24]; Rs and Rr are the resistances of the stator and rotor windings; and Ls, Lr,
and Lm are the inductances of the stator winding, rotor winding, and magnetizing one,
respectively. Furthermore, 12 is a 2nd-order identity matrix, 02×2 is a 2× 2 zero matrix,
and γ =

(
Lm

2 − LsLr
)−1.

2.2. PI Observer and Integrating Unit Order Reduction Idea

In general, the Luenberger observer consists of a copy of the mathematical model
of the observed system and a corrective feedback loop. A copy of an observed system is
driven using the same input as the observed system. The difference between the outputs of
the system and its copy is a measure of state variable reconstruction errors and is used to
generate the correction signal. Corrective feedback can have a different structure [7]. The
most common is the simplest—proportional. However, proportional-integral (PI) feedback
is also popular. The classical PI [16,17] observer of the system Equation (1) is described by
the state equation:

.
^
x = A

^
x + Bu + KP

(
^
y− y

)
+
∫ t

0
KI

(
^
y− y

)
dt (5)

where
^
y = C

^
x.

In Equation (5), KP and KI are the gain matrices of proportional and integral units,
respectively. The state vector of the observed system, reconstructed by the observer,

is denoted by
^
x. From this point on, all quantities reconstructed in the observer are

distinguished with the circumflex (ˆ). In Equation (5), both the KP and KI matrices have the



Energies 2021, 14, 4906 4 of 12

same dimensions, so both units use all signals included in the difference
^
y− y, and their

output signals affect all signals included in the vector
^
x.

Due to the correction signal generated by the integrating unit, the value of which

increases with time so long as
^
y− y 6= 0, the PI observer attenuates the reconstruction

errors much more strongly than the proportional observer. However, in the case, for
example, when the y signal contains a significant amount of measurement noise, the strong
PI feedback may degrade the reconstruction quality of the state variables. In this case, a PI
observer with a reduced order of the integrating unit (PIr) may be used.

A general schematic describing the order reduction in the integrating unit [21] is
presented in Figure 2. Two additional matrices, G and H, were introduced into the mathe-
matical model of the PI observer:

.
^
x = A

^
x + Bu + KP

(
^
y− y

)
+ G

∫ t

0
KIH

(
^
y− y

)
dt. (6)

Assuming that G and H are initialized as identity matrices with appropriate orders,
the obtained model of the observer in Equation (6) is identical to Equation (5). The G and H
matrices are located at the input and output of the integrating unit. At this point, one of the
G matrix columns (Figure 2) can be removed. To reconcile the dimensions of the matrices,
the row of the gain matrix KI corresponding to this column can also be removed. In this
way, the integrating unit no longer has to correct the value of one of the signals contained

in the vector
^
x. Similarly, we can remove one row of the matrix H and the corresponding

column of the KI gain matrix. Thus, one of the signals used by the integrating unit from the

difference
^
y− y to generate the correction signal is eliminated. By continuing this course

of action, any degree of reduction in the integrating unit order can be obtained.
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PI and PIr observers and other observers with non-proportional feedbacks are prone to
constant component accumulation, leading to numeric errors [22]. This problem concerns
various estimation techniques applied for an induction motor [28]. Non-proportional
observers may also experience structural instability that cannot be corrected by selecting
the gains [22]. Both problems can be solved by replacing the integrator in the observer
feedback with a first-order inertia. After transforming the integral differential Equation (6)
into a system of ordinary differential equations,
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.
^
x = A

^
x + Bu + KP

(
C

^
x− y

)
+ Gh

.
h = −Ωh + KIH

(
C

^
x− y

) , (7)

the correction consists of introducing an additional term containing the matrix Ω where
Ω is a diagonal matrix containing the reciprocals of the inertia time constants τ greater
than zero.

The observer equation forms, Equations (6) and (7), contain two separate gain matrices
for KP and KI. To select the included gains in these matrices, these equations should be
transformed into a normal form single differential equation. To do this, a new vector of
observer state variables and gain matrix can be introduced:

xo =

[
^
x
h

]
, K =

[
KP

KIH

]
. (8)

After performing the appropriate transformations, Equation (7) takes the same form
as the proportional observer’s state equation [7]:

.
xo = Aoxo + Bou+K(Coxo − y). (9)

Based on Equation (9), the PIr observer gains in the K matrix can be selected using the
same methods used for the proportional observer’s gains. The forms of the matrices Ao,
Bo, and Co depend on the order reduction of the integrating unit. Therefore, it is difficult
to provide general forms that take all possible cases into account. Matrix forms limited to
the case of the induction motor state variable observer are provided in Section 2.3.

2.3. PIr Observer of an Induction Motor

The mathematical model of the induction motor described by Equations (1)–(2) is
characterized by the symmetry outlined by the general rule in Equation (3). From a
practical point of view, it is advantageous for the mathematical model of the observer to
fulfill this condition since the dynamic properties of the observer become independent of
the direction of the motor’s rotor rotation. To fulfill this condition, an appropriate reduction
in the observer’s integrating unit order is required. An analysis of Equations (1)–(3) shows
that the motor state variables, inputs, and outputs occur in pairs. Each pair contains two
phasor components for the α and β axes of the Cartesian coordinate system. Therefore,
when reducing the integrating unit order, the rows and columns of the G, H, and KI
matrices should also be removed in pairs to follow the rule in Equation (3).

In the case of an induction motor, n = 4 and q = 2. This means that G is a 4th-order
identity matrix and that H is a 2nd-order identity matrix before undergoing any order
reduction. In the case of the matrix H, no reduction is possible since even a single order
reduction would remove the integral unit completely. In the case of the G matrix, two
columns can be removed. Referring back to the rule in Equation (3), these can be the first
two or last two columns. Therefore, two forms of matrix G and one form of matrix H
are possible:

Gs =

[
12

02×2

]
, Gr =

[
02×2

12

]
, H = 12. (10)

Due to the fact that the matrix H is an identity matrix, it was omitted. Taking into ac-
count Equations (1)–(3) and (9)–(10), the PIr observer matrices in the proportional observer
form are as follows:

Ao =

[
A G

02×4 −Ω

]
, Bo =

[
B

02×2

]
, Co =

[
C 02×2

]
, K =

 J(a, b)
J(c, d)
J(e, f )

, (11)



Energies 2021, 14, 4906 6 of 12

where Ω = τ−112 and a, b, c, d, e, and f are the observer gains satisfying the symmetry
condition in Equation (3). The block diagram of the obtained observer is shown in Figure 3.
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Two versions of the induction motor PIr observer corresponding to the matrices Gs
and Gr were obtained by this process. An analysis of the observer’s structure shows that, in
the observer based on the Gs matrix, the correction signal generated by the integrating unit
directly affects the state variables related to the stator winding of the motor. When the Gr
matrix is applied, this signal directly affects the state variables related to the rotor winding.
The first of these observers is hereinafter referred to as PIrS and the second as PIrR.

Now, the obtained mathematical model of the PIr observer is compared with the
classical PI observer model. The matrices of the PI observer described by Equation (9) have
the following forms:

Ao =

[
A 14

04×4 −Ω

]
, Bo =

[
B

04×2

]
, Co =

[
C 04×2

]
, K =


J(a, b)
J(c, d)
J(e, f )
J(g, h)

, (12)

where Ω = τ−114.
The PIr observer has a simpler structure and fewer gains to be calculated, making it

easier to apply.

3. Results

For experimental purposes, an induction motor rated at 7.5 kW was used. The ob-
server’s mathematical model was based on relative p.u. values [25,26], using the following
base quantities:

Ub = Un, Ib =
√

3In, ωb = 2π fn, tb = ωb
−1,

Zb = Ub Ib
−1, Lb = Ub Ib

−1ωb
−1, ψb = Ubωb

−1, Tb = ppUb Ibωb
−1,

(13)

where subscript b denotes a base quantity. Specifically, Zb and Lb are the base impedance
and base inductance, respectively; Tb is the base torque; tb is the base time; and pp is the
number of motor pole pairs.

The motor parameters are listed in Table 1. All values in Table 1 are the same as
those in the simulation model attached to the article [7]. Therefore, the gain values of
the examined observers provided below can be used in the mentioned simulation model.
During the experimental tests, the motor operated in the sensorless field-oriented vector
control system (FOC). To provide sensorless control, the studied observers were equipped
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with an angular speed reconstruction mechanism (Figure 4), the same as that described by
Kubota at al. [6]. Additionally, the experimental setup used an optical encoder to measure
the speed, but this signal was not used by the FOC control system (Figure 4).

Table 1. Rated parameters of the applied induction motor.

Description Symbol Absolute Value Per-Unit Value

Rated parameters

Un 400 V 1 p.u.
In 14.6 A 0.577 p.u.
Pn 7.5 kW -
Tn 49.4 Nm 0.767 p.u.
nn

1 1450 rpm (pp = 2) -
fn 50 Hz -

Base quantities

Ub 400 V 1 p.u.
Ib 25.29 A 1 p.u.
ωb 314.2 rad/s 1 p.u.
tb 3.183 ms 1 p.u.
Zb 15.82 Ω 1 p.u.
Lb 0.05035 H 1 p.u.
ψb 1.273 Wb 1 p.u.
Tb 64.39 Nm 1 p.u.

Equivalent circuit
parameters

Rs 0.56 Ω 0.0354 p.u.
Rr 0.72 Ω 0.04552 p.u.
Ls 0.1226 H 2.435 p.u.
Lr 0.1226 H 2.435 p.u.
Lm 0.1183 H 2.35 p.u.

1 Nominal rotational speed nn is the mechanical one while angular speed ω is the electrical one.
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In the described experimental system, two observers were tested where the gains were
selected using an optimization method based on the genetic algorithm described in [7]. The
resultant observer gains obtained as a result of the selection process are listed in Table 2.

Table 2. Gains and inertia time constants of the tested observers (p.u.).

Observer a b c d e f τ

PIrS 0 −0.1406 0.0682 0 −0.02133 −0.03175 10
PIrR −0.1927 0.01944 −0.1063 0 0.033 0.1135 10

Two sets of tests were performed for each observer, each consisting of several consec-
utive transients. The first set of tests was performed for relatively high angular speeds,
with an initial reference angular speed ωref of 0.64 p.u. (1 p.u. corresponds to the rated syn-
chronous speed of the motor). During the transients, the reference angular speed changed
at a rate of 0.32 p.u. per second, decreasing to 0 followed by −0.64 and then returning
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to the initial value. This test was repeated three times, once for each of the following
conditions: the motor loaded with a constantly positive load torque (Figures 5a, 6a, 7a and
8a), zero load torque (idle-run, Figures 5b, 6b, 7b and 8b), and constantly negative load
torque (Figures 5c, 6c, 7c and 8c). Constant positive torque means that the torque direction
is the same as for the nominal torque of the motor, independent of the direction of the
angular speed. This was achieved through the use of an active load realized by a properly
controlled DC machine (Figure 4a). It should be noted that, when the speed has the same
sign as the torque, motor operation occurs.
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When speed and torque have opposite signs, the motor operates in a regenerative
mode (generator operation) and returns energy to the supply network. The results for the
PIrS and PIrR observers are shown in Figures 5 and 6, respectively. The graphs show the
courses of the reference angular speed of the FOC control system ωref, the speed estimated
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in the observer, and the measured speed. The course of the calculated electromagnetic
torque of the motor Te is also presented based on the magnetic fluxes reconstructed in the
observer and the measured currents of the stator winding.

The second set of tests was carried out for very low angular speeds with an initial
reference speed ωref of 0.0064 p.u. In transient states, the reference speed changed by
0.00064 p.u. per second. The test was also carried out three times for three different
load torques. The measurement results for the PIrS and PIrR observers are shown in
Figures 7 and 8, respectively.

4. Discussion

The graphs presented in Figures 5 and 6 show that both observers ensured correct
operation of the control system for a wide range of angular speeds. The PIrR observer fared
better in these tests than the PIrS observer, where strong oscillations in the reconstructed
angular speed, marked with arrows in Figure 5a–c, are visible. These oscillations, through
feedback from the control system, are reflected in the waveform of the electromagnetic
torque of the motor Te. Both observers show a visible offset in the measured speed (blue)
in relation to the reference and reconstructed speed (red and green, respectively). This
offset is due to the voltage drop at the inverter transistors and the PWM dead time. This
is evidenced by the constant value of this shift, regardless of the angular speed, and its
direction (up or down) depending on the direction of the electromagnetic torque Te. Due
to the constant value of this shift, it is most noticeable for very low rotational speeds
(Figures 7 and 8).

At very low speeds, significant oscillations in the reconstructed angular speed are
visible, the period of which decreases with increasing speed. This proves that they are
the result of deformation in the magnetic field distribution in the air gap of the motor.
The mathematical model of the motor (Equation (1)) is based on the assumption that this
distribution is sinusoidal, while in real-world conditions, the distribution is actually more
trapezoidal. These oscillations may also result from parameter shifts in the equivalent
circuit for the winding’s phases resulting from manufacturing tolerances. It should be noted
that, in Figures 7 and 8, the maximum measured (averaged) angular speed is about 0.015 p.u.
This corresponds to the time of one full revolution of the rotor trev = 2πppω−1 = 838 p.u.
(2.67 s). At such low angular speeds, the position of the magnetic field in relation to the
windings of respective motor phases has a significant impact on the results obtained for
parameter shifts in these phases. Therefore, ensuring the correct operation of the control
system is difficult under such conditions, and both observers succeeded in this task. The
PIrS observer performs better under load (Figures 7 and 8a,c), as evidenced by the lower
oscillation values of the reconstructed speed. In the case of idle-run (Figures 7b and 8b), the
transients of both observers are very irregular with a slight advantage in favor of the PIrR
observer. It should be noted that, during the idle-run, the stator winding currents are small,
meaning that the measurement noise in their waveforms is relatively high. This noise
hinders operation of the observer’s corrective feedback, which uses the current information
contained in the y vector. Therefore, from the observer’s point of view, idle-run of the
motor is a difficult operating condition that results in a lower quality of the reconstructed
speed waveforms.

5. Conclusions

Both proposed observer structures, PIrS and PIrR, guarantee correct operation of the
induction motor control system for a wide range of angular speeds. In terms of the quality
of the angular speed reconstruction, a slight advantage of the PIrR observer is visible.

The proposed observers have been tested in the FOC control system, but they can also
be used in other types of induction motor control systems, such as direct torque control
(DTC) or multiscalar control [18,22,24].
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