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Abstract: A high-speed on/off valve (HSV) is generally the core component of a digital hydraulic
transmission system. Therefore, its dynamic characteristics often restrict the overall performance of
the digital hydraulic system. Most of the current studies focus on the optimization on the dynamic
characteristics or the energy characteristics, few studies have comprehensively considered the two
characteristics of the valve together. In this paper, a pre-existing control algorithm (PECA) is proposed
to improve the dynamic characteristics of the HSV, and simultaneously optimize the power losses
of the HSV to improve its energy conversion efficiency. The results show that, compared with the
traditional single-voltage driven strategy, the opening time of the PECA decreases by 29.4%, the
closing time decreases by 59.6%, and the energy conversion rate increases by 7.9%.

Keywords: power loss; solenoid valve; dynamic response; temperature rising; multiphysics methodology

1. Introduction

A HSV is widely used in hydraulic transmission control systems because of its fast
response, small size and strong antipollution ability, especially in high frequency hydraulic
control systems [1–3]. The response speed and control accuracy of the HSV control system
is largely determined by the dynamic response characteristics of the HSV itself [4,5]. On the
other hand, with the successive reduction of traditional energy and the serious problems
of environmental pollution and global warming, the energy-saving problem of hydraulic
systems needs to be solved urgently [6–8]. As a basic component of hydraulic transmission
controlling system, the energy loss of the HSV affects the energy efficiency of the whole
system. Therefore, the dynamic characteristics and energy characteristics are the two
important performance indexes of the HSV. It is of great significance to optimize two
performances simultaneously.

At present, there are many studies focused on improving the dynamic characteristics of
the HSV by optimizing the driving strategy. Li et al. [9] proposed a double voltage driving
strategy to a generate larger driving current and smaller maintenance current, which
effectively improved the response characteristics of the HSV. On this basis, multivoltage
source circuits [10,11] have been studied, which can shorten the closing time of the HSV by
generating reverse voltage. Zhong et al. [12] proposed the PWM (pulse width modulation)
control method, which used current feedback to achieve adaptive adjustment of the duty
cycle, and finally improved the working frequency of the HSV. In addition, Zhong et al. [13]
proposed an adaptive oil pressure method that can make the driving current change
adaptively according to the oil pressure, and then reducing the switching time of the
HSV. With the increase in the switching frequency of the HSV, its input power and energy
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loss also greatly increased. To explore the power loss law of the HSV, Tan et al. [14]
analyzed the energy characteristics of the HSV at different operating frequencies, and their
results indicated that with the increase in operating frequency (the working frequency
of the HSV), the maximum temperature (the maximum temperature of the HSV in the
working process) of the HSV increased, which greatly increased the power loss of the HSV.
However, the above researches mainly focus on improving the dynamic characteristics and
switching frequency of the HSV; the influence of the energy field and the thermal field on
its performance is rarely considered.

The power losses of HSV are mainly divided into core loss, stranded loss and solid
loss [15]. Many scholars have studied the influence of electrical parameters on power
losses of HSV. Zhao et al. [16] studied the influence of different boosting on the dynamic
characteristics and power losses of HSV: they found that an increase in the driving voltage is
conducive to the rapid opening action of the HSV, but it would greatly increase the core loss.
Cheng et al. [15] explored the influence of the driven voltage on the power loss of the HSV,
which showed that the driving strategy is the key factor affecting the power losses of the
solenoid injector. Zhao [17] studied the influence of different driving currents on the power
losses of the HSV. With the decrease in driving current, the opening response characteristics
of the HSV becomes worse, but the power loss ratio decreases, and the energy efficiency of
the HSV is improved. These studies explored the relationship between the valve’s electrical
parameters and power losses, considering the dynamic characteristics in detail. However,
they only gave the general trend of the dynamic characteristic, electrical parameters and
energy losses, and did not focus on how to improve the dynamic characteristics of the HSV.
The general law of dynamic characteristics–energy loss change cannot obtain the precise
driving strategy to optimize the dynamic characteristics of the HSV.

Due to the fact that the power losses of the HSV are dissipated in the form of heat,
it is difficult to accurately measure the power losses of the HSV in experimental settings.
Therefore, it is necessary to build an accurate thermodynamic model of the HSV to effec-
tively achieve thermal field analysis. In the prior art, the lumped parameter method [18,19],
the semi-analytical method [20–22], and the numerical method [23] are often used for
thermodynamic model design and analysis.

To sum up, in the above research, few strategies can both improve the dynamic
characteristics of the HSV and also optimize its energy loss characteristics. Therefore,
the contribution of this paper is to propose PECA to improve the dynamic characteristics
of the HSV and its energy conversion efficiency. The purpose is to make HSV take into
account the advantages of high performance and green energy saving. To optimize the
dynamic characteristics and power losses of the HSV simultaneously, in this paper, a
multi-physical field coupling model is established to analyze the coupling relationship
between motion state, dynamic characteristics and power losses. The change rule of the
dynamic characteristics and the power consumption loss of the HSV are obtained. The
proposed algorithm is used to optimize the dynamic characteristics of the HSV, and at the
same time make the HSV conserve energy, thereby making it environmentally friendly.

2. The Mathematical Model of the HSV
2.1. Structure and Operating Principle of the HSV

The researched HSV in this paper is a two-position two-way HSV, which adopts the
structure of normal-closed internal flow poppet valve. Its main components are coil, valve
core, valve body, return spring, end cover, as shown in Figure 1.

The switching action of the HSV is realized by an H-bridge circuit, as shown in Figure 2.
When the rising edge of the control signal occurs, the Q1 and Q4 tubes are opened and the
Q2 and Q3 tubes are closed; the HSV will be loaded by the positive voltage—it generates
electromagnetic force to attract the valve core to the right, and the HSV is opened. Similarly,
when the failing edge of the control signal occurs, the Q2 and Q3 are opened and the Q1 and
Q4 are closed; the HSV is loaded with negative voltage and the current of the coil will drop to
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0 rapidly, as will the electromagnetic force. When the coil is powered off, the return spring
pushes the core valve to the left, and the HSV is closed.
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2.2. The Motion Characteristic Model of the HSV

The HSV is affected by the mechanical field, the electromagnetic field and the thermal
field [24]. To analyze its performance effectively, the key is to establish an accurate multi-
physical field coupling model. Each physical model is derived as follows.

When the valve core of the HSV moves, it is mainly affected by electromagnetic force
Fm, hydraulic force PsA, spring return force Fr, steady flow force Fs, transient flow force Ft
and damping force Fv. The transient motion equation of the spool is obtained:

m
d2x
dt2 = Fm − (Ft + Fs)− Fr − c

dx
dt
− Ps A (1)

where m is the mass of the moving parts of the HSV, x is the displacement of the valve core,
t is the time, c is the damping coefficient, Ps is the pressure of the oil inlet, and A is the
effective cross-sectional area of the oil inlet.

The damping force can be expressed as:

Fv = c
dx
dt

(2)

Considering the magnetic field parameters, the electromagnetic force of the HSV can
be expressed as:

Fm =
φ2

2µ0S
(3)

where µ0 is the air permeability, φ is the magnetic flux, S is the section area of the air gap.
Flow force is one of the main axial forces acting on the valve core, which is composed

of steady flow force and transient flow force. The steady-state hydrodynamic force can be
expressed as:

Fs = Ps A− ρqv · (v2 cos α− v1) (4)

where ρ is the fluid density, qv is the flow rate of the HSV, v2 is the oil flow rate at the outlet
port, and v1 is the oil flow rate at the inlet port, α is the half cone angle of the valve seat.
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The transient flow force can be expressed as [25]:

Ft = CdwLd
√

2ρ∆P
dx
dt

(5)

where Cd is the flow coefficient, w is the area gradient, Ld is the damping length, ρ is the
density of oil, and ∆P is the pressure difference through the orifice.

Without considering the influence of the temperature on the resistance, the dynamic
equation of the coil circuit of the HSV can be expressed as follows:

U = IR + L
dI
dt

= IR +
dψ

dt
(6)

The relationship between inductance and magnetic flux is as follows:

L =
dψ

dt
= N

dφ

dt
(7)

Therefore, the coil excitation voltage can be expressed as:

U = IR + L
dI
dt

= IR + N
dφ

dt
(8)

where U is the excitation voltage of the coil, I is the coil current, R is the coil resistance, ψ is
the coil flux, L is the coil inductance, N is the number of coil turns.

2.3. The Energy and Temperature Field Model of the HSV

In the working process of the HSV, the coil is electrified to produce a magnetic field,
which produces an electromagnetic force to attract the valve core to move. In this process,
a large amount of energy is lost and finally dissipated in the form of heat, and only a small
portion of the energy is converted into kinetic energy. The power loss of the HSV mainly
includes core loss, stranded loss and solid loss.

The power loss caused by materials during current conduction is called stranded loss,
and the material resistivity is the cause of it. Stranded loss is also known as the Joule Lenz
effect, and it can be expressed as follows [26]:

Ps =
1
σc

∫
vol

J2dVw (9)

where J is the current density, σc (Siemens/s) is the conductivity of copper and V is the
winding volume.

When the HSV works, an eddy current will be generated in the valve core and cause
the core loss. Bertotti [27] separated core loss into three parts: hysteresis loss Ph, classical
eddy current loss Pc and excess loss Pe. According to Bertotti’s energy loss theory, the loss
of these three parts can be expressed by the following three formulas [15]:

Ph = kh f B2
m (10)

Pc = kc f B2
m (11)

Pe = ke f B2
m (12)

where, kh is the hysteresis loss coefficient, kc is the classical eddy current loss coefficient, ke
is the excess loss coefficient, f is the operating frequency of the driving signal, and Bm is
the amplitude of magnetic induction.

Therefore, the total core loss can be expressed as:

Pi = Ph + Pc + Pe = kh f B2
m + kc f 2B2

m + ke f 1.5B1.5
m (13)
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Solid loss represents the loss of bulk soft magnetic materials due to induced current [26]:

Ps =
1
σs

∫
vol

J2dVs (14)

where σs is the conductivity of bulk soft magnetic materials and V is the volume of bulk
soft magnetic material.

All these losses will eventually release to the outside in the form of heat. Part of the
heat will be transferred along the radial direction and finally radiate to the outside by
convection between the body shell and the air. The other part of the heat will be transferred
along the axial direction of the valve core, which will transfer to the positioning bolt and
finally radiated to the outside by convection.

According to the equivalent heat circuit method [28], the heat flow in the HSV can be
equivalent to the vector combination of axial x and radial r. Therefore, heat transfer models
are established for the two directions.

The axial heat transfer equation, initial conditions and boundary conditions can be
expressed by the following formula:

d2T
dx2 = − qv

λ

T|t=0 = T0
−λS dT

dx = q0, T|x=L = TL

(15)

where T is the temperature, x is the axial coordinate point, qv is the heat source, λ is the
thermal conductivity, S is the effective cross-sectional area of heat transfer, q0 is the heat
flow in the HSV.

The radial heat transfer equation, initial conditions and boundary conditions can be
expressed by the following formula:

dT
dr = − 1

2λ qvr
T|r=0 = T0
qvr0

2 = α(T0 − Tx), T|r=r0 = TL

(16)

where r is the radial coordinate point, α is the thermal conductivity of the heat transfer sur-
face, T0 is the temperature of the heat dispersing surface, and Tx is the medium temperature
around the heat dispersing surface.

3. Simulation Results and Analysis

Using Maxwell and workbench, the mechanical field, magnetic field, temperature
field and other multi field coupling analysis of the HSV are carried out.

3.1. Simulation Analysis of Dynamic Characteristics of the HSV

Figure 3 shows the PECA and conventional single-voltage driven strategy. The
traditional single-voltage driven strategy uses a 24 V voltage square wave to drive the HSV,
and PECA is divided into five stages, and a multivoltage phase strategy is used to drive
the HSV.

Figure 4 shows the dynamic characteristics of the HSV excited by the traditional
single-voltage driven strategy at the operating frequency of 20 Hz. In these conditions,
the opening delay time of the HSV is 0.6 ms, the opening moving time of the HSV is
1.1 ms, closing delay time of the HSV is 4.6 ms, the closing moving time of the HSV is
2.4 ms. Figure 5 shows the dynamic characteristics of the HSV excited by PECA at the
operating frequency of 20 Hz. At this point, the opening delay time of the HSV is 0.1 ms,
the opening moving time of the HSV is 1.1 ms, the closing delay time of the HSV is 0.5 ms,
and the closing moving time is 1.4 ms. Compared with the traditional single-voltage driven
strategy, PECA can reduce the opening time (consisting of the opening moving time and
the opening delay time) of the HSV by 29.4% and the closing time (consists of the closing
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moving time and the closing delay time) of the HSV by 72.6%, greatly improving the
dynamic characteristics of the HSV. Table 1 records the dynamic characteristics of the HSV
under the two strategies.

Energies 2021, 14, x FOR PEER REVIEW 6 of 14 
 

 

0

v

0 0

v 0
0

1

2
|

( ), |
2

r

x r r L

dT
q r

dr
T T

q r
T T T T










 





   


 (16) 

where r is the radial coordinate point,   is the thermal conductivity of the heat transfer 

surface, T0 is the temperature of the heat dispersing surface, and Tx is the medium tem-

perature around the heat dispersing surface. 

3. Simulation Results and Analysis 

Using Maxwell and workbench, the mechanical field, magnetic field, temperature 

field and other multi field coupling analysis of the HSV are carried out. 

3.1. Simulation Analysis of Dynamic Characteristics of the HSV 

Figure 3 shows the PECA and conventional single-voltage driven strategy. The tra-

ditional single-voltage driven strategy uses a 24 V voltage square wave to drive the HSV, 

and PECA is divided into five stages, and a multivoltage phase strategy is used to drive 

the HSV. 

  

Figure 3. The two driven strategies. 

Figure 4 shows the dynamic characteristics of the HSV excited by the traditional sin-

gle-voltage driven strategy at the operating frequency of 20 Hz. In these conditions, the 

opening delay time of the HSV is 0.6 ms, the opening moving time of the HSV is 1.1 ms, 

closing delay time of the HSV is 4.6 ms, the closing moving time of the HSV is 2.4 ms. 

Figure 5 shows the dynamic characteristics of the HSV excited by PECA at the operating 

frequency of 20 Hz. At this point, the opening delay time of the HSV is 0.1 ms, the opening 

moving time of the HSV is 1.1 ms, the closing delay time of the HSV is 0.5 ms, and the 

closing moving time is 1.4 ms. Compared with the traditional single-voltage driven strat-

egy, PECA can reduce the opening time (consisting of the opening moving time and the 

opening delay time) of the HSV by 29.4% and the closing time (consists of the closing 

moving time and the closing delay time) of the HSV by 72.6%, greatly improving the dy-

namic characteristics of the HSV. Table 1 records the dynamic characteristics of the HSV 

under the two strategies. 

Figure 3. The two driven strategies.

Energies 2021, 14, x FOR PEER REVIEW 7 of 14 
 

 

  
(a) (b) 

Figure 4. The dynamic characteristics’ curve in single voltage strategy: (a) Opening process; (b) Closing process. 

  
(a) (b) 

Figure 5. The dynamic characteristics’ curve in PECA: (a) Opening process; (b) Closing process. 

Table 1. Dynamic characteristics of the HSV in the two driven strategy. 

 Single Voltage PECA 

ODT (ms) 0.6 0.1 

OMT (ms) 1.1 1.1 

CDT (ms) 4.6 0.5 

CMT (ms) 2.4 1.4 

For clarity, the opening delay time, opening moving time, are simplified to ODT, OMT, respec-

tively, and the closing delay time, closing moving time are simplified to CDT, CMT, respectively. 

Under the same simulation conditions, the amplitude–frequency characteristics of 

the traditional single-voltage driven strategy and PECA are analyzed, and the phase–fre-

quency characteristics of the HSV in the closing phase under the two algorithms are ana-

lyzed. The simulation results are shown in Figure 6. 

Figure 4. The dynamic characteristics’ curve in single voltage strategy: (a) Opening process; (b) Closing process.

Energies 2021, 14, x FOR PEER REVIEW 7 of 14 
 

 

  
(a) (b) 

Figure 4. The dynamic characteristics’ curve in single voltage strategy: (a) Opening process; (b) Closing process. 

  
(a) (b) 

Figure 5. The dynamic characteristics’ curve in PECA: (a) Opening process; (b) Closing process. 

Table 1. Dynamic characteristics of the HSV in the two driven strategy. 

 Single Voltage PECA 

ODT (ms) 0.6 0.1 

OMT (ms) 1.1 1.1 

CDT (ms) 4.6 0.5 

CMT (ms) 2.4 1.4 

For clarity, the opening delay time, opening moving time, are simplified to ODT, OMT, respec-

tively, and the closing delay time, closing moving time are simplified to CDT, CMT, respectively. 

Under the same simulation conditions, the amplitude–frequency characteristics of 

the traditional single-voltage driven strategy and PECA are analyzed, and the phase–fre-

quency characteristics of the HSV in the closing phase under the two algorithms are ana-

lyzed. The simulation results are shown in Figure 6. 

Figure 5. The dynamic characteristics’ curve in PECA: (a) Opening process; (b) Closing process.



Energies 2021, 14, 4901 7 of 12

Table 1. Dynamic characteristics of the HSV in the two driven strategy.

Single Voltage PECA

ODT (ms) 0.6 0.1
OMT (ms) 1.1 1.1
CDT (ms) 4.6 0.5
CMT (ms) 2.4 1.4

For clarity, the opening delay time, opening moving time, are simplified to ODT, OMT, respectively, and the
closing delay time, closing moving time are simplified to CDT, CMT, respectively.

Under the same simulation conditions, the amplitude–frequency characteristics of the
traditional single-voltage driven strategy and PECA are analyzed, and the phase–frequency
characteristics of the HSV in the closing phase under the two algorithms are analyzed. The
simulation results are shown in Figure 6.
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As can be seen from Figure 6a, under the traditional single-voltage driven strategy,
when the duty ratio is 50%, the maximum operating frequency that can achieve the whole
switching action is 120 Hz. The operating frequency corresponding to the 90◦ lagging
phase angle in the closing phase is 65 Hz. When the operating frequency is less than
65 Hz, the HSV can achieve the whole switching action. When the operating frequency
is 65 Hz~120 Hz, although the HSV can complete the switching action, the lagging phase
angle is greater than 90◦, which will reduce the real-time performance of the control system.
When the frequency is greater than 120 Hz, the HSV cannot complete the switching action.

As can be seen from Figure 6b, under the PECA, when the duty ratio is 50%, the
maximum operating frequency that can achieve the whole switching action is 250 Hz. At
the same time, the operating frequency corresponding to the 90◦ lagging phase angle in
the closing phase is more than 250 Hz, so, the lagging phase angle cannot be used as a
condition to limit the movement of the HSV. When the operating frequency is greater than
250 Hz, the valve cannot complete the switching action. Compared with the traditional
single-voltage control strategy, the range of the controllable frequency is increased by 108%.

3.2. Simulation Analysis of Energy Characteristics of the HSV

To describe the power loss of the HSV more accurately, the transient three-dimensional
field simulation analysis of the HSV is carried out. Figure 7 shows the power loss curves of
the HSV under two strategies. Although the loss curve in Figure 7a is different from that in
Figure 7b, the change trend of each loss in the two figures is consistent. It can be found that
the trend of the stranded loss is same as current. Core loss and solid loss mainly occur in
the opening and closing phases, and are related to the change rate of the current.
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Figure 6 shows that under the traditional single-voltage driven strategy, the HSV
can complete a switching action within the operating frequency at 0~65 Hz, while under
PECA, the range of operating frequency is 0~250 Hz, this determines the range of the
operating frequency in the simulation. Figure 8 shows the energy ratio of the HSV at
different operating frequencies under the traditional single-voltage driven strategy. It can
be seen form Figure 8 that stranded loss accounts for the largest proportion, followed by
core loss, while solid loss and mechanical energy are relatively low. With the increase
in the operating frequency, the stranded loss ratio gradually decreases, while the other
three kinds of energy ratio gradually increase. It is worth noting that under the traditional
single-voltage strategy, the energy conversion efficiency (mechanical energy ratio) of the
HSV is very low.
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As the operating frequency rises from 20 Hz to 60 Hz, the mechanical energy ratio
increases from 0.4% to 1.2%. A large amount of input power is dissipated in the form of
energy loss.

As can be seen from Figure 7a, under the traditional single-voltage driven strategy,
the current is maintained at the maximum value for a long time, which generates a large
amount of stranded loss. Increasing the operating frequency can effectively reduce the
time when the current is maintained at a high value and reduce stranded loss. However,
under the traditional single-voltage strategy, the range of the operating frequency of the
HSV is narrow (0~65 Hz). The operating frequency of the HSV limits the effect of energy
consumption optimization.

The PECA is proposed to optimize the defects of the power loss and the low energy
consumption ratio of the HSV. Figure 9 shows the current curves for both the two strategies.
The peak current and average current under PECA are less than those under conventional
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single-voltage driven strategy. This reduces the total input power of the HSV and reduces
the power loss of the valve.
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Figure 9. The current curve in two driven strategies.

Under the PECA excitation, the power losses ratio of the HSV at different operating
frequencies are shown in Figure 10. With the increase in the operating frequency, the
stranded loss gradually decreases, while the other energy ratios increase. Stranded loss
declined by 22.2% while core loss increases by 13.8%. In addition, solid loss accounts
for a low proportion and increases by 3.5%. The proportion of mechanical efficiency was
improved, increasing from 3.0% to 7.9%. The results show that the operating frequency has
a great influence on stranded loss and core loss, but the influence on solid loss is not obvious.
Moreover, the PECA can improve the energy conversion rate of the HSV, compared with the
traditional single-voltage driven strategy, the maximum energy conversion rate increases
from 1.2% to 7.9%.
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According to the simulation results above, the PECA can effectively improve the
dynamic characteristics of the HSV and expand the range of the operating frequency of the
HSV. At the same time, PECA can effectively improve the energy loss of the HSV, greatly
reduce the stranded loss, and improve the energy conversion efficiency.

4. Experimental Results and Analysis

Due to the power losses dissipating into the air in the form of heat, the value of power
losses directly measured in experiment is not accurate enough to be used for analysis. As
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the power losses of the HSV will be eventually converted into heat energy and cause the
temperature of the valve body to rise, the temperature rise can indirectly measure the
power loss of the HSV [13]. In this paper, the temperature measurement method is used
to indirectly measure power loss, and to verify the ability of PECA to optimize the power
losses of the HSV.

Figure 11 shows the temperature rise diagram of the HSV under the two driven
strategies. The results show the valve temperature is stabilized at 121 ◦C at 18 min under the
traditional single-voltage driven strategy, while the valve temperature stabilized at 62 ◦C at
8 min under the PECA, with a 48% drop in temperature, which means a lower value of the
power loss. In addition, under PECA excitation, the slope of the temperature rise curve of
the HSV is lower, which indicates that the power losses of the HSV are smaller in unit time.
Moreover, PECA enables the HSV to reach a stable working state in a shorter time.
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Figure 11. The temperature rise curve in two driven strategies.

Figure 12 shows the temperature of the HSV rises significantly at the coil area. When
the HSV starts to operate, the temperature of the coil area is the highest, and with the
increase in time, the temperature of other parts also increases gradually, but the coil still
has the highest temperature area. This shows that the stranded loss is the main reason for
the temperature rise of the HSV. According to Figure 9, the PECA effectively reduces the
peak current and average current, so the stranded loss is greatly reduced, and then the
maximum temperature increases.
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In conclusion, the experimental results show that PECA can effectively optimize the
power losses of the HSV, and verify the effectiveness of energy simulation.

5. Conclusions

Dynamic characteristics and energy characteristics are two important performance
indicators of the HSV. With the aggravation of energy and environmental problems, re-
search on energy loss of the HSV is becoming more and more important. In the existing
studies, there are few driving strategies that can optimize two performance indicators
simultaneously. In this paper, the PECA is proposed to simulate and experimentally verify
the dynamic characteristics and power losses of the HSV, and finally optimize the two
performances indexes simultaneously.

The main conclusions are as follows:

(1) The PECA proposed in this paper can effectively improve the dynamic characteristics of
the HSV, reducing the opening time by 29.4% and closing time by 59.6%. In addition,
the PECA extends the range of the controllable frequency of the HSV by 108%.

(2) The stranded loss ratio is the largest in the HSV. The stranded loss will decrease with
the increase in the operating frequency, while the core loss, solid loss and mechanical
energy will increase.

(3) The PECA can significantly increase the energy conversion rate of the HSV from 1.2%
to 7.9%.

Core loss is the main portion of the power losses of the HSV, which is affected by many
factors. The change law of core loss was not considered deeply in this study. In future
studies, we will explore the influence of the frequency, temperature, material properties
and other factors on core loss, and further improve the energy efficiency of the HSV.
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