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Abstract: This paper presents a novel approach for estimating the parameters of the most frequently
used static load model, which is based on the use of meteorological variables and is an alternative
to the commonly used but time-consuming measurement-based approach. The presented model
employs five frequently reported meteorological variables (ambient temperature, relative humidity,
atmospheric pressure, wind speed, and wind direction) and the load model parameters as the inde-
pendent and dependent variables, respectively. The analysis compared the load model parameters
obtained by using all five meteorological variables and also when the meteorological variables with
the lowest influence are omitted successively (one by one) from the model. It is recommended based
on these results to use the model with the maximum accuracy, i.e., with five meteorological variables.
The model was validated on a validation set of measurements, demonstrating its applicability for the
estimation of load model parameters when the measurements of electrical variables for parameter
identification are not available. Finally, load model parameters of the analyzed demand were esti-
mated on the basis of only ambient temperature, and it was found that such a linear model can be
used with a similar accuracy as the models with up to four meteorological variables.

Keywords: load model; low voltage network; meteorological variables; static load characteristics

1. Introduction

Accurate modeling of supplied load is very important for the analysis of power supply
systems. Amongst the numerous static and dynamic load models [1], the most frequently
used load model in both steady state and dynamic power system studies is the exponential
static load model [2]. Generally, load models are identified by using component-based
approaches, measurement-based approaches, or a combination of these two [3,4]. In the
case of component-based approaches, load composition and models of individual load
devices are input data; for measurement-based approaches, field measurement data are
required.

During the last decade, measurement-based load modeling approaches have become
prevalent, as the characteristics of different field monitoring equipment became improved
and their costs are reduced. Field monitoring equipment can record voltage changes and
consequent changes in power demands, which then can be used for the determination
of load model parameters; recent improvements of recording devices include significant
internal memory, enabling users to perform long time measurements of relevant electric
variables [5]. The older monitoring equipment that was already installed can also be used
to record data that can be applied for the identification of load model parameters [6,7].

Many procedures for the measurement-based identification of load model param-
eters are previously developed, e.g., [8–10]. Typically, the implemented procedures for
the identification of the load model parameters use data on transient voltage changes
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and subsequent active and reactive power responses recorded during normal operating
conditions [5,9–12], or in specifically designed field experiments [13,14]. Most of the pre-
vious work deal with the determination of load model parameters in high and medium
voltage networks, while the results of identification of load model parameters in low
voltage (LV) networks are presented in a relatively small number of references. The main
reason is the strong influence of stochastic load changes on power responses to voltage
changes in LV networks [5,15–17]. In order to obtain reliable load model parameters in
LV networks, the measurements are performed over longer time periods, and results are
presented using a statistical analysis of the load model parameters. For example, the
authors in [5] and in [16] provided the load model parameters of one LV bus obtained for
one season and for the whole year, respectively.

The comprehensive research on load model parameters of LV-connected adminis-
trative buildings is presented in [17], where statistically processed parameters of static
exponential load model for administrative class of customers are presented on the basis of
measurements at different LV buses, in different seasons, on characteristic days of the week,
and for specific periods of considered days. Furthermore, polynomial fitting functions that
represent temporal changes of load model parameters during the characteristic days of the
week are introduced.

This paper is the continuation of the research in [17], but it differs from that research
and all previous work because it deals with the estimation of load model parameters by
using nonelectrical variables, i.e., it uses meteorological variables commonly included
in weather reports. As presented in [18], meteorological variables can be used for the
estimation of monthly and annual electricity consumption, e.g., during specific months and
for the whole year, but the main hypothesis in this paper is that meteorological variables can
also be applied for the estimation of load model parameters for much shorter periods: days
of the week and days in different seasons. The paper compares the results of parameter
estimation of the selected static load model when one to five meteorological variables were
used, in descending order from the largest number. On the basis of these comparisons and
of a validation of parameter estimation, the paper recommends the model that provides
the most accurate results. Furthermore, load model parameter estimation by using only
ambient temperature, as the most common meteorological variable available in all weather
reports, is presented and validated.

The structure of the rest of this paper is as follows: Section 2 introduces a procedure
for an estimation of the parameters of a static exponential load model using different
numbers of meteorological variables. Section 3 presents the results of the procedure from
Section 2, compares these results with the parameters of the same class of customers who
were determined on the basis of electrical variables, discusses the accuracy of the results,
suggests the best model for parameter estimation from the meteorological variable data,
and tests the applicability of the model when electrical variables are not available. Section 3
also presents the results of load model parameter estimation and their validation when
only ambient temperature is applied as the input variable, while Section 4 summarizes the
main conclusions of the paper and gives some recommendations for the future work.

2. Description of the Applied Procedure

All previously published procedures for load model parameter determination use
electrical variables as input data. Commonly, these variables are voltage, frequency, and
active and reactive power, since load models are expressed as active and reactive power
dependencies on both voltage and frequency [1–6]. However, in many studies (e.g., steady-
state analyses), dependencies on frequency can be omitted because frequency deviations
can be neglected in steady-state operation conditions. One such load model in which
dependencies on frequency are neglected is the static exponential load model:

P = P0

(
U
U0

)kpu

, (1)
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Q = Q0

(
U
U0

)kqu

. (2)

In (1) and (2), P and Q are respectively the active and reactive power at voltage U; P0
and Q0 are respectively the active and reactive power at the initial voltage, U0; while kpu
and kqu are the voltage exponents of active and reactive power, respectively. The voltage
exponents are unknown load model parameters that should be determined by using one of
load modelling approaches.

The application of measurement-based approaches for the determination of static ex-
ponential load model parameters in [17] also validates the results of the statistical analysis,
and these results are used for the verification of the new procedure for parameter estimation
presented in this paper. The new procedure is based on the application of meteorological
variables for the estimation of static load model parameters, acknowledging that weather
conditions influence customer activities in administrative buildings and therefore influence
the way how certain electrical devices are used by customers. The procedure assumes
linear relationships (i.e., linear model) between the dependent (response) variables kpu
and kqu, and the values of independent (explanatory) meteorological variables in the time
period in which related electrical variables are measured. These relationships are expressed
in the forms (3) and (4):

kpu = a1T + a2H + a3 Ap + a4Ws + a5Wd , (3)

kqu = b1T + b2H + b3 Ap + b4Ws + b5Wd , (4)

where a1, a2, . . . , a5, b1, b2, . . . , b5 are the parameters of the assumed relationships; T, H, Ap,
Ws and Wd are ambient temperature (in ◦C), relative humidity (%), atmospheric pressure
(mBar), wind speed (m/s), and wind direction, respectively. For the purpose of this paper,
the wind direction is expressed in degree clockwise, where zero corresponds to the north
direction. Wind direction is considered in model (3) and (4), since in examined geographical
area it indicates specific changes in weather, i.e., changes of the warm weather into the cold,
wet weather into the dry, and vice versa. All listed meteorological variables are applied
because they are frequently available in weather reports. Their values are taken from [19]
for considering the area of the town Leskovac (Republic of Serbia), where a measurement
campaign of electrical variables was performed in order to determine reliable load model
parameters. From the sets of values of meteorological variables, values corresponding to
the hour in which a voltage change (used for load model parameter identification) occurred
are identified and grouped with the corresponding kpu and kqu values. In that way, datasets
of meteorological variable values and load model parameter values were formed, and a
multiple linear regression [20–23] is performed to identify parameters a1, a2, . . . , a5, b1, b2,
. . . , b5 of the model in (3) and (4).

In the case when some meteorological variables do not influence the results signif-
icantly, such variables can be omitted from the analysis, and simplified forms of linear
relationships that do not include dependencies on these variables can be adopted. Since
meteorological variables in (3) and (4) are expressed in different units and scales/ranges,
the greater absolute value of the parameter does not necessarily denote the more significant
influence on the dependent variable, and vice versa. To gain insight into the relative
influence of independent variables on dependent ones, partial flexibility coefficients are
calculated. Each partial flexibility coefficient is the multiplication of the parameter that is
in front of the independent variable and the average value of the independent variable,
divided by the average value of the dependent variable [20]. For example, the partial
flexibility coefficient of relative humidity in (3) can be denoted as kpu_H and calculated by
this formula:

kpu_H =
a2Hav

kpu_av
, (5)

where Hav and kpu_av are the average values of H and kpu, respectively.
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Partial flexibility coefficients of different meteorological variables included in the
model (3) and (4) are mutually compared separately for both models, and the variable
with the smallest absolute value of partial flexibility coefficient is omitted from the model.
Therefore, simplified relationships between independent variables kpu and kqu and meteoro-
logical variables—which are similar to (3) and (4), but with one or more terms deleted—are
used in the next iteration of the procedure. The procedure continues until only one mete-
orological variable is left in the model. At the end, the best model is selected for kpu and
kpu among the available five models with different numbers of meteorological variables,
where the selection criterion is the highest accuracy of model results.

The existence of mutual correlations of the independent variables is also checked. For
the identification of multicollinearity between meteorological variables, variance inflation
factors (VIFs) are calculated for each pair of independent variables [20,21]. The variance
inflation factor between two variables, X and Y, is calculated according to this formula

VIFXY =
1

1 − R2
XY

, (6)

where RXY is the correlation coefficient between variables X and Y. In this paper, the
variance inflation factors, VIFs, are calculated for pairs of the following meteorological
variables: ambient temperature, T; relative humidity, H; atmospheric pressure, Ap; wind
speed, Ws; and wind direction, Wd. Variance inflation factors that are smaller than 4, and
especially those close to 1, mean that there are no multicollinearities. The values greater
than 4, especially those greater than 10, show that very strong multicollinearity exists. In
the latter case, one of two independent variables that take part in the multicollinearity
should be eliminated from the analysis, and the values of VIF should be examined again. In
this paper, the independent variable (that take part in the multicollinearity) with a smaller
absolute value of partial flexibility coefficient is eliminated, regardless of whether this
partial flexibility coefficient is the smallest one of all partial flexibility coefficients or not.

The procedure for the identification of the variables that are included in the relation-
ships between load model parameters and meteorological variables for a particular season
can be summarized as follows:

1. Set the iteration number, i, to one (i = 1), and assume the linear model with all five
meteorological variables included in the general relationships (3) and (4).

2. Multiple linear regressions are applied to datasets of average values of load model
parameters and corresponding the average values of 5-i + 1 meteorological variables.
The parameters of the linear model with 5-i + 1 independent variables are obtained.

3. If the iteration number is less than 5 (i < 5), i.e., if the number of meteorological
variables is greater than 1 (5-i + 1 > 1), go to Step 4. Otherwise, end the procedure.

4. Variance inflation factors are calculated for each pair of independent variables in-
cluded in the linear model from Step 2, as well as partial flexibility coefficients of all
independent (meteorological) variables.

5. If one variance inflation factor between two meteorological variables is greater than 4,
partial flexibility coefficients of these variables are mutually compared; the variable
with a smaller coefficient is then omitted from further analysis, and the procedure
continues to Step 8. Otherwise, the procedure continues to Step 6.

6. If two or more variance inflation factors between the meteorological variables are
greater than 4, the variables with the greatest variance inflation factors are selected,
and the partial flexibility coefficients of these variables are mutually compared. The
variable with a smaller coefficient is omitted from further analysis, and the procedure
continues to Step 8. Otherwise, the procedure continues to Step 7.

7. Partial flexibility coefficients of all meteorological variables included in linear model
from Step 2 are mutually compared, and the variable with smaller coefficient is
omitted from further analysis.

8. Increase the iteration number, i = i + 1, and go to Step 2.
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3. Results
3.1. Analysis of Meteorological Variables during the Year

For the analysis of the influence of each meteorological variable on load model param-
eters during the year, datasets of the values of load model parameters and meteorological
variables are firstly formed. They include the following: 1622 and 2002 identified kpu
and kqu values, respectively, obtained from the “basic set of measurements” (see [17]) in
different seasons, days of the week, and periods of the day; and the same numbers of
corresponding values of meteorological variables.

As these datasets include the data during the year, the lower and upper bounds are
specified for all considered meteorological variables. Thus, the temperature belongs to the
range from −5 to 40 ◦C, the range of atmospheric pressure is from 995 to 1040 mBar, the
upper and lower bounds of relative humidity are 18% and 100%, respectively, wind speed
is in the range from 0 to 8 m/s, and wind direction belongs to the full range from 0◦ to
360◦.

The analyses presented in the paper were performed separately for the winter,
spring/autumn, and summer seasons. Average load model parameters were calculated
in each 6 h time interval during three characteristic days, for every season. The same was
performed for the meteorological variables. In that way, datasets of average values of load
model parameters and meteorological variables were formed for winter, spring/autumn
and summer.

3.2. Results of Multiple Linear Regression

In order to obtain relationships between the load model parameters of the examined
demand of administrative buildings and five meteorological variables, at the beginning
of the procedure (as described in Section 2) multiple linear regressions were applied to
datasets of average values for different seasons. For example, the results (7) and (8) are
obtained for winter:

kpu = −0.11139T − 0.03392H + 0.00447Ap + 0.3137Ws − 4.173 × 10−4Wd , (7)

kqu = 0.08776T + 0.03534H + 9.0433 · 10−4 Ap − 0.89459Ws + 0.00556Wd . (8)

Table 1 presents the variance inflation factors between five meteorological variables
applied for kpu and kqu estimations according to (7) and (8), while Table 2 lists the partial
flexibility coefficients obtained in four iterations of the proposed procedure for an iden-
tification of the variables that are included in the relationships, for every season. The
comparison of values from Table 1 confirms that very strong multicollinearity between hu-
midity and atmospheric pressure exists, and one of these meteorological variables should
be eliminated from the model. In considering that the partial flexibility coefficients of these
variables relate to (7) and (8), it is thus reasoned that H and Ap should be omitted from the
model of kpu and kqu, respectively. After these assumptions are adopted, (9) and (10) are
obtained:

kpu = −0.01984T + 0.00135Ap + 0.14281Ws + 2.638 × 10−4Wd , (9)

kqu = 0.09035T + 0.03628H − 0.89194Ws + 0.00557Wd . (10)
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Table 1. VIFs between meteorological variables when kpu and kqu are calculated according to Equa-
tions (7) and (8).

VIFs
kpu kqu

T H Ap Ws Wd T H Ap Ws Wd

T 6.290 7.132 1.057 1.137 4.813 5.033 1.019 1.001
H 6.290 77.174 1.110 1.181 4.813 72.925 1.008 1.006
Ap 7.132 77.174 1.059 1.230 5.033 72.925 1.021 1.013
Ws 1.057 1.110 1.059 1.103 1.019 1.008 1.021 1.598
Wd 1.137 1.181 1.230 1.103 1.001 1.006 1.013 1.598

Table 2. Partial flexibility coefficients of the meteorological variables included in linear relationships (7)–(14), (17)–(24),
and (27)–(34).

Relationships Meteorological
Variable

Ambient
Temperature,

T

Relative
Humidity,

H

Atmospheric
Pressure,

Ap

Wind
Speed,

Ws

Wind
Direction,

Wd

(7) and (8)
(7) −0.17859 −2.05823 3.14858 0.12386 0.03904
(8) −0.04073 0.00634 −3.01167 −0.00171 −0.00725

(9) and (10)
(9) −0.03181 – 0.95091 0.05639 0.02468
(10) −0.00616 – 0.99392 −0.16851 0.18156

(11) and (12)
(11) 0.0314F7 – 0.96500 −0.06339 –
(12) – – 0.98814 −0.16592 0.17676

(13) and (14)
(13) −0.03447 – 1.03544 – –
(14) – – 0.92169 – 0.07845

(17) and (18)
(17) −0.15977 −0.27691 1.54975 0.04606 −0.16183
(18) 0.08436 0.26483 0.58218 −0.04528 0.11372

(19) and (20)
(19) −0.06358 – 1.10271 0.06779 −0.10461
(20) −0.02109 – 0.97328 −0.03067 0.07918

(21) and (22)
(21) – – 1.08036 0.05327 −0.13473
(22) – – 0.95836 −0.0287 0.06906

(23) and (24)
(23) – – 1.13997 – −0.13672
(24) – – 1.03896 −0.03882 –

(27) and (28)
(27) −1.38144 −1.07968 4.935022 −0.00111 0.295455
(28) −0.0659847 −0.059010 0.50132 −0.01118 −0.00487

(29) and (30)
(29) 0.01654 – 1.01446 −0.02531 −0.00461
(30) −0.07827 – 0.91955 −0.00619 0.16367

(31) and (32)
(31) 0.01581 – 1.00684 −0.026 –
(32) – – 0.84754 −0.02622 0.17933

(33) and (34)
(33) – – 1.02209 −0.02136 –
(34) – – 0.85584 – 0.14470

According to the values of partial flexibility coefficients from Table 2 that relate
meteorological variables included in (9) and (10), in the next iteration of the procedure, the
wind direction and ambient temperature are omitted from the linear regression model of
kpu and kqu, respectively, and (11) and (12) are obtained:

kpu = −0.01963T + 0.00137Ap + 0.16053Ws , (11)

kqu = 0.03612H − 0.91973Ws+0.0076Wd . (12)
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Further, Ws is eliminated from kpu and kqu model. For kpu, VIFAp_Ws is found to be large,
but the partial flexibility coefficient of Ws is smaller than the partial flexibility coefficient of
Ap, and Ws is omitted in further analysis:

kpu = −0.0215T + 0.00147Ap , (13)

kqu = 0.03366H + 0.00466Wd . (14)

In the final iteration of the suggested procedure, T and Wd are eliminated from linear
regression model of kpu and kqu, respectively:

kpu = 0.00142Ap , (15)

kqu = 0.03996H . (16)

Thus, the simplest model (15) and (16) represent the dependencies of kpu and kqu on
atmospheric pressure and relative humidity, respectively.

The relationships (7), (9), (11), (13), and (15), which express dependencies of kpu on
meteorological variables, are obtained with correlation coefficients, R [22,23], i.e., 0.998,
0.996, 0996, 0.996, and 0.995, respectively. These values indicate that there are strong
correlations between kpu and the meteorological variables in winter season. Similarly, the
correlation coefficients of kqu dependencies (8), (10), (12), (14), and (16) are 0.997, 0.997,
0.994, 0.993, and 0.990, i.e., kqu is also in strong correlation with weather conditions in
winter. Therefore, a question that arises is whether it is possible to estimate kpu and kqu
from meteorological variables in winter, and also in other seasons, in days of the week, and
day intervals, and if so, what are the accuracies of such estimations? The answers to these
questions are given in the next section. For this purpose, the results of determining the
linear relationships between the load model parameters and meteorological variables for
spring/autumn and summer are presented in next paragraphs.

For spring/autumn, the multiple regression analysis applied on average kpu and
kqu values and the corresponding average meteorological variables yields:

kpu = −0.02347T − 0.00485H + 0.00208Ap + 0.04397Ws − 0.00101Wd , (17)

kqu = 0.03078T + 0.01174H + 0.00195Ap − 0.07875Ws + 0.00191Wd . (18)

These two equations are obtained with R = 0.995 and R = 0.997, respectively. According
to the values of partial flexibility coefficients, the wind speed can be omitted from the
model of kpu and kqu. However, it was found that VIFH_Ap is large for both kpu and kqu,
and that the partial flexibility coefficients of H are smaller than those of Ap. Therefore,
H is omitted from the kpu and kqu model, and (19) and (20) are obtained, while further
analysis yields that T can be eliminated in the next iteration of the procedure, resulting in
(21) and (22):

kpu = −0.00934T + 0.00148Ap + 0.06472Ws − 6.529 × 10−4Wd, (19)

kqu = −0.00767T + 0.00326Ap − 0.05333Ws + 0.00133Wd , (20)

kpu = 0.00145Ap + 0.05086Ws − 8.409 × 10−4Wd , (21)

kqu = 0.00321Ap − 0.04991Ws + 0.00116Wd . (22)

Regarding the values of partial flexibility coefficient, Ws can be eliminated from the
model (21) and (22). However, in the case of (22), a large VIFAp_Wd is found, and Wd is
omitted from kqu model since its partial flexibility coefficient is smaller than partial flexibility
coefficient of Ap. After elimination of Ws and Wd from kpu and kqu model, respectively,
multiple linear regression yields:

kpu = 0.00153Ap − 8.533 · 10−4Wd , (23)
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kqu = 0.00348Ap − 0.06751Ws . (24)

Further analysis demonstrates that Wd and Ws can be omitted from (23) and (24),
respectively, and the simplest model represents the dependencies of kpu and kqu on atmo-
spheric pressure:

kpu = 0.00134Ap , (25)

kqu = 0.00335Ap . (26)

It should be noted that (19)–(26) are also obtained with large correlation coefficients.
Correlation coefficients of kpu dependencies on four, three, two, and one meteorological
variable are 0.995, 0.995, 0.994, and 0.993, respectively, while all correlation coefficients of
kqu dependencies are approximately 0.997.

The analysis of datasets for the summer yields relationships (27) and (28) between the
load model parameters and five meteorological variables:

kpu = −0.01133T − 0.00316H + 0.00181Ap − 0.02966Ws − 1.026 × 10−4Wd , (27)

kqu = −0.08436T − 0.02195H + 0.00647Ap − 0.00132Ws + 0.00232Wd . (28)

In the first iteration of the suggested procedure, H is eliminated from both the kpu and
kqu model due to the large VIFH_Ap value and the smaller partial flexibility coefficient of H
in comparison with the partial flexibility coefficient of Ap. Thus, Equations (29) and (30)
are obtained as the result of multiple linear regression:

kpu = 0.00101T + 0.00133Ap − 0.0301Ws − 3.620 × 10−5Wd , (29)

kqu = −0.01344T + 0.00332Ap − 0.01642Ws + 0.00345Wd . (30)

In next iterations, Wd and T, T and Ws, and Ws and Wd are omitted from the kpu
and kqu model, respectively, and the relationships with three (i.e., (31) and (32)), two (i.e.,
(33) and (34)), and one meteorological variable (i.e., (35) and (36)) are obtained:

kpu = 9.653 × 10−4T + 0.00132Ap − 0.03092Ap , (31)

kqu = 0.00306Ap − 0.06958Ws + 0.00378Wd , (32)

kpu = 0.00134Ap − 0.0254Ws , (33)

kqu = 0.00309Ap + 0.00305Wd , (34)

kpu = 0.00131Ap , (35)

kqu = 0.00361Ap . (36)

The equations that relate to the summer season are also obtained with large correlation
coefficients. For all five kpu models, R is approximately 0.999, and for the kqu models, R
is about 0.991. All correlation coefficients listed in this section indicate that load model
parameters are very closely correlated with meteorological variables.

3.3. Comparison of Multiple Linear Regression Results with the Results Obtained from
Electrical Variables
3.3.1. Comparison of the Results When Applying Five Meteorological Variables

In [17], the statistically analyzed parameters that are identified on the basis of the
electrical variables are presented in three seasons (i.e., winter, spring/autumn and summer),
in three characteristic days of the week (i.e., working weekday, Saturday and Sunday),
and in specific time intervals of each characteristic day (0 h–6 h, 6 h–12 h, 12 h–18 h, and
18 h–24 h). Moreover, the changes of the load model parameters during the working
weekday, Saturday, and Sunday (i.e., during a 72 h time interval) are fitted by seventh
order polynomials. A short overview of the results from [17] for each season is presented in
Table 3; it includes average kpu and kqu values in time intervals during three characteristic
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days (denoted as kpu_A and kqu_A), where the values inside the parentheses relate to the
“validation set of measurements” in [17], and the corresponding kpu and kqu values from
fitting curves (kpu_F and kqu_F).

Table 3. Average kpu and kqu values in 6 h time intervals during three days (kpu_A and kqu_A), and corresponding kpu and kqu

values from fitting curves (kpu_F and kqu_F), in three seasons.

Time Interval

Winter Spring/Autumn Summer

kpu kqu kpu kqu kpu kqu

kpu_A kpu_F kqu_A kqu_F kpu_A kpu_F kqu_A kqu_F kpu_A kpu_F kqu_A kqu_F

0 h–6 h 1.50 (1.69) 1.50 3.82 (3.90) 3.82 1.35 (1.32) 1.34 3.71 (3.49) 3.72 1.36 (1.30) 1.36 3.18 (3.41) 3.18
6 h−12 h 1.79 (1.66) 1.78 3.09 (3.13) 3.09 1.62 (1.56) 1.65 2.85 (3.02) 2.82 1.26 (1.42) 1.27 2.84 (2.97) 2.77
12 h−18 h 1.56 (1.53) 1.59 2.77 (2.92) 2.78 1.60 (1.75) 1.50 2.92 (2.86) 3.02 1.27 (1.26) 1.26 2.93 (2.84) 3.13
18 h−24 h 1.53 (1.34) 1.52 3.02 (2.73) 3.01 1.33 (1.43) 1.45 3.41 (3.33) 3.27 1.26 (1.37) 1.27 3.57 (3.98) 3.28
24 h−30 h 1.54 (1.68) 1.53 3.47 (3.94) 3.52 1.54 (1.63) 1.47 3.28 (3.66) 3.38 1.27 (1.20) 1.29 3.30 (2.87) 3.42
30 h−36 h 1.48 (1.52) 1.47 4.05 (3.52) 3.96 1.41 (1.31) 1.43 3.42 (3.23) 3.42 1.34 (1.20) 1.33 3.56 (3.73) 3.73
36 h−42 h 1.30 (1.24) 1.35 4.00 (3.52) 4.09 1.41 (1.51) 1.34 3.47 (3.19) 3.45 1.38 (1.59) 1.37 4.30 (4.19) 4.12
42 h−48 h 1.26 (1.44) 1.24 3.94 (4.46) 3.90 1.14 (1.13) 1.27 3.54 (3.63) 3.49 1.38 (1.34) 1.40 4.46 (4.37) 4.32
48 h−54 h 1.30 (1.28) 1.25 3.62 (3.54) 3.60 1.36 (1.21) 1.26 3.41 (3.77) 3.51 1.40 (1.46) 1.39 3.88 (3.46) 4.25
54 h−60 h 1.28 (1.23) 1.34 3.52 (3.93) 3.55 1.18 (1.33) 1.22 3.58 (3.81) 3.51 1.37 (1.52) 1.36 4.46 (4.06) 4.18
60 h−66 h 1.44 (1.64) 1.41 3.84 (3.37) 3.82 1.11 (1.03) 1.10 3.56 (4.11) 3.58 1.33 (1.49) 1.34 4.17 (4.15) 4.27
66 h−72 h 1.58 (1.67) 1.59 3.66 (3.34) 3.66 1.38 (1.43) 1.38 3.79 (4.03) 3.79 1.35 (1.28) 1.35 3.38 (3.72) 3.37

In order to compare these results of parameter identification from electrical variables
with the results obtained using the procedure from Section 3.2, average values of mete-
orological variables in following time intervals of three characteristic days of the week:
0 h–6 h, 6 h–12 h, 12 h–18 h and 18 h–24 h are determined, for three seasons (i.e., winter,
spring/autumn and summer), as seen in Table 4. This table also includes average meteoro-
logical variables in the listed time intervals and seasons obtained from the validation set of
measurements in [17]. These values are also inside parentheses, and used in Section 3.3.3
for checking whether the results presented in this paper can be used for the estimation of
load model parameters of the examined demand when electric variables are not available.

Table 4. Average meteorological variables in different seasons and day intervals of a working weekday, Saturday, and
Sunday listed in three successive rows for each day.

Season Day Interval 0 h−6 h 6 h−12 h 12 h−18 h 18 h–24 h

Winter

T [◦C]

−1.10 (−1.52) −1.61 (−1.97) 6.86 (7.12) 3.11 (4.50)

0.75 (−0.92) 1.13 (−1.29) 5.75 (4.15) 3.60 (3.51)

1.24 (0.12) 1.63 (0.23) 6.22 (6.02) 0.61 (2.61)

H [%]

98.12 (96.22) 97.23 (98.66) 72.20 (79.20) 89.68 (90.97)

95.19 (94.23) 92.79 (93.79) 79.51 (78.02) 90.75 (92.75)

94.91 (95.19) 93.63 (98.63) 77.05 (76.35) 86.00 (87.12)

Ap [mBar]

1031.72 (1033.72) 1032.10 (1033.10) 1029.60 (1031.01) 1032.42 (1033.02)

1031.26 (1033.26) 1032.85 (1033.85) 1030.58 (1033.85) 1030.78 (1029.61)

1032.81 (1033.81) 1031.51 (1033.51) 1030.75 (1030.05) 1032.10 (1033.09)

Ws [m/s]

0.26 (0.16) 0.94 (0.64) 0.48 (0.46) 0.65 (0.71)

0.75 (0.65) 0.84 (0.73) 0.58 (0.54) 0.48 (0.42)

0.36 (0.20) 0.79 (0.71) 0.52 (0.83) 0.29 (0.38)

Wd [◦]

98.62 (48.12) 92.61 (142.61) 80.58 (20.58) 156.32 (171.25)

142.69 (46.45) 291.50 (84.50) 170.00 (172.00) 25.00 (37.31)

99.09 (78.09) 99.09 (29.25) 188.24 (94.24) 200.00 (92.00)
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Table 4. Cont.

Season Day Interval 0 h−6 h 6 h−12 h 12 h−18 h 18 h–24 h

Spring/Autumn

T [◦C]

5.82 (14.42) 5.77 (14.77) 12.15 (17.01) 11.97 (17.88)

7.84 (12.84) 6.71 (12.90) 13.32 (16.03) 10.64 (16.76)

5.84 (13.84) 6.24 (13.92) 14.74 (15.81) 10.69 (16.51)

H [%]

86.80 (87.80) 99.02 (84.02) 60.21 (69.21) 73.58 (75.58)

81.68 (87.80) 89.91 (87.91) 61.14 (62.14) 56.60 (60.60)

86.47 (86.07) 98.27 (85.27) 65.33 (64.33) 78.10 (77.10)

Ap [mBar]

1021.95 (1015.95) 1021.06 (1017.06) 1015.52 (1015.07) 1019.92 (1014.92)

1019.79 (1015.91) 1020.81 (1015.43) 1022.00 (1013.37) 1015.67 (1016.37)

1017.70 (1016.70) 1021.20 (1018.20) 1014.60 (1014.60) 1018.91 (1013.91)

Ws [m/s]
0.67 (0.51) 1.56 (0.66) 2.23 (2.02) 1.75 (1.35)

0.59 (0.82) 1.03 (1.41) 1.90 (2.32) 1.45 (1.41)

2.59 (1.59) 0.90 (0.61) 1.20 (1.10) 1.33 (1.23)

Wd [◦]

264.00 (164.00) 146.73 (136.73) 193.57 (103.57) 196.17 (136.17)

152.40 (122.40) 229.10 (150.10) 350.60 (333.60) 354.85 (280.85)

143.16 (149.16) 170.55 (151.55) 211.23 (201.23) 217.50 (201.50)

Summer

T [◦C]

17.56 (17.88) 19.17 (19.84) 29.28 (28.28) 22.74 (22.68)

16.40 (16.94) 19.18 (19.81) 27.74 (27.45) 23.47 (23.66)

16.88 (16.98) 18.62 (18.98) 26.70 (28.17) 23.99 (23.45)

H [%]

87.84 (88.84) 79.41 (78.15) 39.88 (40.12) 63.87 (65.10)

86.31 (85.11) 65.17 (69.17) 43.28 (44.82) 56.00 (61.21)

87.85 (87.58) 78.72 (82.72) 42.90 (44.90) 54.93 (58.31)

Ap [mBar]

1016.65 (1016.95) 1016.37 (1015.12) 1014.37 (1015.24) 1014.25 (1015.25)

1019.21 (1019.01) 1011.63 (1014.25) 1017.87 (1016.19) 1018.50 (1017.45)

1017.54 (1017.44) 1016.63 (1017.44) 1015.60 (1015.16) 1012.30 (1012.45)

Ws [m/s]

0.64 (0.36) 0.72 (0.82) 1.55 (1.85) 1.48 (1.12)

1.46 (1.05) 0.79 (0.51) 0.69 (1.90) 1.77 (2.06)

0.63 (0.67) 0.87 (0.66) 0.86 (1.39) 0.99 (1.09)

Wd [◦]

144.80 (142.80) 133.14 (144.14) 202.31 (212.31) 200.00 (199.12)

140.62 (146.62) 180.83 (80.83) 38.57 (198.57) 316.66 (306.45)

148.52 (146.20) 142.77 (160.77) 234.54 (211.54) 152.67 (101.67)

For the estimation of kpu and kqu from different numbers of meteorological variables in
each season and in all 6 h time intervals of characteristic days of the week, the corresponding
values from Table 4 are included in successive pairs of equations, i.e., (7) and (8), (9) and
(10), . . . , (35) and (36). For example, applying relationships (7) and (8) to the average
values of five meteorological variables in four 6 h time intervals of each characteristic day,
in winter, spring/autumn and summer, respectively, the values for kpu and kqu listed in
Table 5 (and denoted as kpu_5 and kqu_5) are estimated. In an analogous way, the parameters
kpu and kqu with respect to four, three, two and only one meteorological variable are also
estimated.
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Table 5. Parameters kpu and kqu in different seasons and day intervals calculated from five average meteorological variables
(kpu_5 and kqu_5), of a working weekday, Saturday, and Sunday, listed successively.

Season Day
Interval 0 h–6 h 6 h–12 h 12 h–18 h 18 h–24 h

Winter
kpu_5 1.45, 1.47, 1.33 1.75, 1.49, 1.46 1.51, 1.38, 1.41 1.37, 1.27, 1.64
kqu_5 3.58, 3.47, 4.00 3.12, 3.98, 3.23 3.25, 3.63, 3.56 3.53, 3.85, 3.60

Spring/Autumn kpu_5 1.33, 1.41, 1.53 1.43, 1.34, 1.37 1.44, 1.25, 1.29 1.36, 1.29, 1.33
kqu_5 3.33, 3.52, 3.32 3.26, 3.49, 3.26 3.30, 3.57, 3.37 3.45, 3.51, 3.57

Summer
kpu_5 1.33, 1.33, 1.34 1.34, 1.37, 1.34 1.31, 1.34, 1.35 1.31, 1.32, 1.34
kqu_5 3.37, 3.80, 3.63 3.22, 3.94, 3.71 3.69, 3.43, 4.10 3.75, 4.10, 3.30

These estimated kpu and kqu values are compared with the corresponding average
voltage exponents (kpu_A and kqu_A) obtained from electrical variables. Estimated values
are also compared with the corresponding values from the polynomial fitting curves
(kpu_F and kqu_F). In the case of the application of five meteorological variables, all the
values from Table 5 are compared with appropriate average voltage exponents obtained
from electrical variables and the corresponding values from the polynomial fitting curves,
with respect to the season, the day of the week, and the day interval. For example,
kpu_5 values for a working weekday, Saturday, and Sunday, and the interval 0 h–6 h in
winter season, of 1.45, 1.47, and 1.33 (Table 5), are compared with the corresponding
average values in winter (and the values from fitting curve) in the 0 h–6 h, 24 h–30 h, and
48 h–54 h time intervals, respectively, i.e., with 1.50, 1.54, and 1.30 (and with 1.50, 1.53, and
1.25 from fitting curve). When all 12 considered time intervals in one season, and when all
three seasons are taken into account, a total number of 36 comparisons of kpu values and
36 comparisons of kqu values are made. It is found that almost the same results are obtained
in comparisons with the average values and the values from fitting curves. Therefore, the
results of comparisons with fitting curves values are presented in further text.

From the 36 comparisons of kpu values, the following results are obtained. First, in
34 points (i.e., in 94.4% of all comparisons), the deviations of kpu_5 values in Table 5 from
the corresponding values for fitting curves are less than ±15%. Secondly, in 2 points (5.6%
of comparisons), deviations are within the range from ±15% to ±25%, with a maximum
deviation of 21.8%. Furthermore, a mean value of all 36 deviations is 0.28%, while the
standard error of estimate is 0.101.

A comparison of the parameters kqu from Table 5 (denoted as kqu_5) with the corre-
sponding kqu values from fitting curves yields the following number of points within the
ranges of deviations: 30 points (83.3% of all comparisons) when deviations are less than
±15%, and 6 points (16.7% of comparisons) when deviations are from ±15% to ±25%. A
mean value of all 36 deviations is 0.90%, while the standard error of estimate is 0.361.

3.3.2. Comparison of the Results When Applying Fewer Than Five
Meteorological Variables

Generally, when a smaller number of meteorological variables is applied for estimating
kpu and kqu, somewhat larger deviations from the values in Table 3 are obtained. Thus,
when kpu is estimated from the models with four, three, two and only one meteorological
variable, the mean values of deviations are 0.74%, 0.386%, 0.829%, and 0.67%, respectively,
while standard errors of estimates are almost the same (around 0.12), and the largest value
of 0.124 is obtained when one meteorological variable is used. It means that the best results
of kpu are obtained from the five meteorological variables, and that the simpler models
with smaller number of meteorological variables can be used with tolerable errors. For
example, the results of the models with only one meteorological variable represented by
almost identical kpu values in particular season (Table 6) and denoted as kpu_1, deviate from
the corresponding values from the fitting curves for less than ±15% in 31 points (86.1%
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of all 36 comparisons), and in 5 points (13.9% of comparisons) deviations are greater than
±15% but less than 23.3%.

Table 6. Parameters kpu and kqu in different seasons and day intervals calculated from average meteorological variable Ap

(kpu_1 and kqu_1), of a working weekday, Saturday, and Sunday, as listed successively.

Season Day
Interval 0 h–6 h 6 h–12 h 12 h–18 h 18 h–24 h

Winter
kpu_1 1.47, 1.46, 1.47 1.47, 1.47, 1.46 1.42, 1.46, 1.46 1.47, 1.46, 1.47
kqu_1 3.87, 3.75, 3.92 3.87, 3.77, 3.69 3.04, 3.17, 2.75 3.31, 3.48, 3.77

Spring/Autumn kpu_1 1.37, 1.37, 1.36 1.37, 1.37, 1.37 1.36, 1.37, 1.36 1.37, 1.36, 1.37
kqu_1 3.42, 3.42, 3.41 3.42, 3.42, 3.41 3.40, 3.42, 3.40 3.42, 3.41, 3.41

Summer
kpu_1 1.33, 1.34, 1.33 1.33, 1.33, 1.33 1.33, 1.33, 1.33 1.33, 1.33, 1.33
kqu_1 3.67, 3.68, 3.68 3.67, 3.67, 3.67 3.66, 3.66, 3.66 3.66, 3.68, 3.66

Reduction of the number of meteorological variables used for kqu estimation also has
a negative influence on deviations of the estimated kqu values from the kqu values that
are from fitting curves. Thus, kqu values obtained by models with four, three, two, and
one meteorological variable yield the deviations whose mean values are close to the value
obtained when five meteorological variables are used, i.e., 0.92%, 0.698%, 0.87%, and 0.97%,
respectively, but standard errors of estimates increase with the reduction of the number of
input variables, i.e., 0.366, 0.403, 0.412, and 0.460. Thus, when the simplest models with
only one meteorological variable are applied (kqu values, kqu_1, in Table 6), in 29 points
(80.6% of all 36 comparisons) the deviations from the values that belong to kqu fitting curves
are less than ±15%; in 5 points (13.9% of comparisons) the deviations are within the range
between ±15% and ±25%, while in another 2 points the deviations are greater than ±25%
but less than 32.2%.

Figure 1 summarizes the mean values of deviations (mean deviations) and the stan-
dard errors of estimates (SEEs) obtained when different numbers of meteorological vari-
ables is used for kpu and kqu estimations. The general trends of increased mean deviation of
kpu and standard errors of estimates of both kpu and kqu can be seen.

For better insight into the influence of the considered number of meteorological
variables on load model parameter estimation, Figure 2 presents the fitting curves of
load model parameters, with the corresponding kpu and kqu values from these curves,
and kpu_5 and kqu_5, and kpu_1 and kqu_1, for all three seasons. Generally, the values of
kpu are greater in winter and the smallest in summer, no matter what type of variables,
i.e., electrical or meteorological, are used for their determination. Taking into account
the deviations of estimated values from the corresponding values from the fitting curves
(Sections 3.3.1 and 3.3.2) and Figure 2a,c,e, the meteorological variables can be used for kpu
estimation of the examined demand of administrative buildings. The estimation on the
basis of five meteorological variables is more accurate than the estimation by using one
meteorological variable.

The applications of different numbers of meteorological variables for kqu estimation
also influence the accuracy of the estimations of kqu during the year. The most accurate
results are also obtained by using five meteorological variables, while the applications of
a fewer number of input variables, including the application of only one variable, can be
used for only rough kqu estimations.

3.3.3. Comparison of the Results with the Results Obtained from the Validation
Set of Measurements

Further, we checked whether it is possible to use models (7)–(36) for the estimation
of load model parameters of the examined demand when electrical variables are not
available. For this purpose, the aforementioned validation set of measurements is used,
as well as the corresponding average meteorological variables in different seasons and
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time intervals of any day (values inside parentheses in Table 4). These average values are
used to calculate kpu and kqu in different seasons from different numbers of meteorological
variables, according to (7)–(36), for characteristic days and time intervals.

Energies 2021, 14, x FOR PEER REVIEW 13 of 18 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. Mean values of deviations of (a) kpu, (b) kqu; standard errors of estimate of (c) kpu, (d) kqu. Values are obtained 

when 5, 4, 3, 2 and 1 meteorological variable is used. 

For better insight into the influence of the considered number of meteorological 

variables on load model parameter estimation, Figure 2 presents the fitting curves of load 

model parameters, with the corresponding kpu and kqu values from these curves, and kpu_5 

and kqu_5, and kpu_1 and kqu_1, for all three seasons. Generally, the values of kpu are greater in 

winter and the smallest in summer, no matter what type of variables, i.e., electrical or 

meteorological, are used for their determination. Taking into account the deviations of 

estimated values from the corresponding values from the fitting curves (Sections 3.3.1 

and 3.3.2) and Figure 2a,c,e, the meteorological variables can be used for kpu estimation of 

the examined demand of administrative buildings. The estimation on the basis of five 

meteorological variables is more accurate than the estimation by using one meteorologi-

cal variable. 

The applications of different numbers of meteorological variables for kqu estimation 

also influence the accuracy of the estimations of kqu during the year. The most accurate 

results are also obtained by using five meteorological variables, while the applications of 

a fewer number of input variables, including the application of only one variable, can be 

used for only rough kqu estimations. 

Figure 1. Mean values of deviations of (a) kpu, (b) kqu; standard errors of estimate of (c) kpu, (d) kqu. Values are obtained
when 5, 4, 3, 2 and 1 meteorological variable is used.

The values of kpu and kqu obtained using one to five meteorological variables were
compared successively with averages of corresponding kpu and kqu values derived from
electrical variables from the validation set of measurements (kpu and kqu values inside
parentheses in Table 3). In this way, we checked what is the accuracy of the estimates
in the case when the electrical variables that are necessary for load model parameter
identification are not available. Distributions of the deviations of kpu and kqu from the
corresponding values inside parentheses were worse than the distributions discussed in
Sections 3.3.1 and 3.3.2. For example, when equations with five meteorological variables
are applied, in 30 points the deviations are from 0% to ±15% and in 6 points the deviations
are from ±15% to ±25%. When the models with five meteorological variables are used
for parameter kqu determination, in 25, 8, and 3 points the kqu deviations are in the ranges
from 0% to ±15%, from ±15% to ±25%, and from ±25% to ±27.4%, respectively. Similar
distributions of deviations for both kpu and kqu are obtained when the models with only
one meteorological variable are applied.
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variable, in (a,b) winter; (c,d) spring/autumn; (e,f) summer.

The mean values of the deviations of kpu values from Table 3 (inside parentheses) when
the models with different numbers of meteorological variables are used are up to 3%, and
the standard errors of estimate are in a relatively narrow range from 0.179 to 0.215. These
results indicate that the parameter kpu can be estimated with almost the same accuracy from
the presented models with one to five meteorological variables tested in descending order.
Rough estimation of kqu values is also possible, despite the number of used meteorological
variables, since the mean value of kqu deviations from the corresponding values inside
the parentheses is less than or equal to 1.83% when different numbers of meteorological
variables are used, while standard errors of estimate belong to a relatively narrow range,
i.e., from 0.454 to 0.509.

3.4. Estimation by Using Ambient Temperature and Validation of the Results

Since the ambient temperature is the most commonly available meteorological data
listed in weather reports, a linear regression is performed in order to obtain relationships
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between the load model parameters of the examined demand of administrative buildings
and the temperature as the only independent variable. Thus, linear regressions for different
seasons are applied to datasets of average load model parameter values and the average
values of ambient temperatures, in 6 h intervals of a working weekday, Saturday, and
Sunday. Thus, the results (37) and (38) are obtained for winter:

kpu = 1.48384 − 0.00818T , (37)

kqu = 3.58671 − 0.00755T , (38)

for spring/autumn:
kpu = 1.45848 − 0.00976T , (39)

kqu = 3.38635 + 0.00281T , (40)

and for summer:
kpu = 1.34441 − 5.8545 × 10−4T , (41)

kqu = 3.08539 + 0.0272T . (42)

Relationships (37), (39), and (41) are obtained with correlation coefficients 0.600, 0.575
and 0.351, respectively, indicating the existence of correlation between ambient temperature
and kpu in all seasons. Linear relationships of kqu, (38), (40) and (42), are obtained with
correlation coefficients 0.500, 0.071 and 0.844, respectively, i.e., there is no correlation
between kqu and ambient temperature only in spring/autumn.

The average values of ambient temperature in particular season, and day intervals of
three characteristic days are inserted in corresponding linear relationships, and estimated
load model parameter values are obtained. These values are compared with corresponding
data from fitting curves, and deviations are calculated. Regarding the distribution of
kpu deviations, in 31 and 5 points the deviations belong to the ranges from 0% to ±15% and
from ±15% to ±25%, respectively, while for the distribution of kqu deviations, in 28, 6, and
2 points the deviations belong to the ranges from 0% to ±15%, from ±15% to ±25%, and
from ±25% to ±29.4%, respectively. The mean value of all 36 deviations of kpu is 0.70%,
and standard error of estimate is 0.120, which are similar to values obtained in the cases
when less than five meteorological variables are included in linear regression. Mean value
of all kqu deviations is 1.33% and standard error of estimate is 0.426. These values are also
similar to those obtained when a smaller number of meteorological variables is applied in
kqu models.

For comparison, Figure 3 presents the mean deviations of kpu and kqu when only
ambient temperature is applied for parameter estimations, and when the minimum (1),
average (3), and maximum number of meteorological variables (5) are used according to the
procedure described in Section 2. The mean values of deviations when ambient temperature
is used are the largest and the most similar to those when only one meteorological variable
is used.

The validation of (37)–(42) is performed in the same manner as explained in
Section 3.3.3. The mean value of kpu deviations is small, i.e., at about 0.49%, and the
standard error of estimate is 0.185, which are similar values to the kpu values from the
mentioned section. The mean value of kqu deviations is 1.77%, and the standard error of
estimate is 0.460; these values are also similar to the values obtained during the validation
of models with different numbers of meteorological variables. Thus, both kpu and kqu can
be estimated on the basis of only ambient temperature when the electrical variables that
are necessary for load model parameter identification are not available.



Energies 2021, 14, 4874 16 of 17

Energies 2021, 14, x FOR PEER REVIEW 16 of 18 
 

 

bution of kpu deviations, in 31 and 5 points the deviations belong to the ranges from 0% to 

±15% and from ±15% to ±25%, respectively, while for the distribution of kqu deviations, in 

28, 6, and 2 points the deviations belong to the ranges from 0% to ±15%, from ±15% to 

±25%, and from ±25% to ±29.4%, respectively. The mean value of all 36 deviations of kpu is 

0.70%, and standard error of estimate is 0.120, which are similar to values obtained in the 

cases when less than five meteorological variables are included in linear regression. 

Mean value of all kqu deviations is 1.33% and standard error of estimate is 0.426. These 

values are also similar to those obtained when a smaller number of meteorological vari-

ables is applied in kqu models. 

For comparison, Figure 3 presents the mean deviations of kpu and kqu when only am-

bient temperature is applied for parameter estimations, and when the minimum (1), av-

erage (3), and maximum number of meteorological variables (5) are used according to the 

procedure described in Section 2. The mean values of deviations when ambient temper-

ature is used are the largest and the most similar to those when only one meteorological 

variable is used. 

  
(a) (b) 

Figure 3. Mean values of deviations of: (a) kpu, (b) kqu; obtained when ambient temperature T and 1, 3 and 5 meteorological 

variables are used. 

The validation of (37)–(42) is performed in the same manner as explained in Section 

3.3.3. The mean value of kpu deviations is small, i.e., at about 0.49%, and the standard error 

of estimate is 0.185, which are similar values to the kpu values from the mentioned section. 

The mean value of kqu deviations is 1.77%, and the standard error of estimate is 0.460; 

these values are also similar to the values obtained during the validation of models with 

different numbers of meteorological variables. Thus, both kpu and kqu can be estimated on 

the basis of only ambient temperature when the electrical variables that are necessary for 
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4. Conclusions

Unlike other studies that present the results of load model parameter identification
from electrical variables, this paper deals with determining the parameters of a static load
model from meteorological variables. After assuming linear relationships between load
model parameters of an administrative class of customers and meteorological variables,
it was found that the voltage exponents of active and reactive power can be estimated
from different numbers of meteorological variables during the year. The most accurate
estimates were obtained when all five considered meteorological variables were included
in the models, resulting in a kpu mean value of deviations and a standard error of estimate
of 0.28% and 0.101, respectively, and a kqu mean value of deviations and a standard error of
estimate of 0.90% and 0.361, respectively.

The results presented in the paper also showed that when lacking time-consuming
measurements of the electrical variables in the network, which have to be performed in
order to obtain reliable load model parameters, the meteorological variables commonly
listed in weather reports can be used for the estimation of static load model parameters.
This implies an application of previously established linear relationships between kpu and
kqu and the meteorological variables for the examined load. The estimation of load model
parameters can be also performed by simple linear relationships between load model
parameters and ambient temperature. These relationships can be applied instead of more
complex linear models with less than five meteorological variables with similar accuracy.
In this case, the mean value of deviations of kpu is 0.70% and the standard error of its
estimate is 0.120, while the mean value of deviations of kqu is 1.33% and the standard error
of its estimate is 0.426.

Further research should include an investigation of the influence of meteorological
variables on load model parameters of other load classes, as this may provide further
guidelines for a fast and simple estimation of load model parameters from nonelectrical
variables.
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