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Abstract: Pyro-breaker, a fast-responding, highly reliable and explosive-driven circuit breaker, is
utilized in several Quench Protection Systems (QPS). The commutation process and its parameters are
the main technical considerations in the process of designing a new pyro-breaker. The commutation
parameters, such as the commutation time and the current change rate, are not only determined by
the electrical parameters of the commutation circuit but also the arc behavior during the operation.
The arc behavior is greatly affected by the structure and the driving mechanism of the Commutation
Section (CS) in the pyro-breaker. The arc model was developed decades ago and the black-box arc
model is considered a valid method to study arc behavior. In this paper, the Schavemaker black-box
arc model, an improved Mayr-type arc model, is applied to study the commutation process of a
newly designed pyro-breaker. Unlike normal circuit breakers, the arc discussed in this paper is
discharged in deionized water. A parameter selection method is proposed. The practicability of the
method is verified by numerical calculation in Power Systems Computer Aided Design (PSCAD)
and experimentally.

Keywords: black-box arc model; DC circuit breaker; PSCAD; pyro-breaker

1. Introduction
1.1. Motivation and Incitement

Direct current (DC) power systems offer enhanced efficiency, reliability and simplicity
over alternating current (AC) systems. They have been adopted in aircrafts, ships, urban
transit systems and nuclear power plants [1–3]. Nonetheless, because there is no natural
zero-crossing point, as in an AC system, extinguishing a DC arc is more challenging when
it comes to avoiding breaking failure caused by the arc burning and reigniting [4].

Due to the fast responsiveness and highly reliability of pyro-breakers, they have
been adopted as backup breakers in Quench Protection Systems (QPS) in a number of
superconducting fusion facilities [5–9]. When a quench phenomenon occurs, the enormous
electromagnetic energy in the superconducting coil is converted to heat energy [10]. This
causes irreversible damage to the superconducting coil. Therefore, the energy needs to be
commutated and consumed by a discharge resistor within a short period of time.

The pyro-breaker presented in this paper was developed from the concept of the
pyro-breaker used in ITER [9] and it is expected that it will be utilized in an ongoing design
project by the QPS for the China Fusion Engineering Test Reactor (CFETR) [11–13]. Various
studies have been undertaken on the structure and thermal dynamics of the breaker [14,15].
As part of the design process, the breaker has to be tested in a high-power laboratory to
confirm its performance and capability.
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1.2. Literature Review

Arc models are a feasible way to study the commutation process theoretically and
build on the tests results of a breaker. A fully developed arc model which has good
correspondence with the arc behavior of the breaker can be applied to link the structural
design to the commutation parameters of the pyro-breaker.

Research into DC arcs is usually conducted by means of dynamic arc models [16–18].
There are two types of dynamic arc model: the physical–mathematical model and the
pure mathematical model. The physical–mathematical model describes arc characteristics
by studying and analyzing the physical processes of the arc, which are very complex
and difficult to measure. The pure mathematical model, i.e., the black-box model, treats
the arc as an electrical component. It only describes the external relationship between
the arc voltage and the arc current. Since Mayr and Cassie published their dynamic
arc models [19,20], many studies have been devoted to studying and modifying their
differential equations to fit the measured data [21–25]. Determining the values of the
parameters of the arc model is considered to be the most difficult problem in the application
of the black-box arc model. Furthermore, most of the existing arc model research has
focused on arcs discharged in a vacuum or in open air [26–28]. The arc in the pyro-breaker
presented here, however, is discharged in deionized water.

1.3. Paper Organization and Contribution

First, the structure of a pyro-breaker currently under design is introduced. Then the
paper discusses the adoption of the Schavemaker black-box arc model, an improved Mayr-
type arc model [23], to simulate the commutation process of the discussed pyro-breaker. It
then discusses how the simulation was conducted, using Power Systems Computer Aided
Design (PSCAD). Next, it describes how a fitted curve of the arc model parameter was
obtained by examining ITER pyro-breaker tests. It then proposes a parameter selection
method based on the fitted curve and verifies this on the newly designed pyro-breaker.

This method provides the theoretical basis for the study of the current commutation
process of the pyro-breaker. It fills certain gaps in the literature regarding arc modeling
in an underwater and explosive-driven circuit breaker, and provides a foundation for
designing the pyro-breaker in QPS for CFETR.

2. Arc Modeling for Pyro-Breaker
2.1. The Commutation Section in the Pyro-Breaker

The commutation function is achieved through the Commutation Section (CS) in the
pyro-breaker. As shown in Figure 1, the main components of the CS are the lower explosive,
the support epoxy and the barrel conductor. The barrel conductor is a thin cylindrical
copper wall. Circular grooves are arranged on the external surface to provide stress con-
centration, which leads to a high current density. Deionized water flows through the inner
cavity of the barrel conductor and works as a cooling and detonation transmission medium.
When the main breaker fails to disconnect the circuit, the CS is triggered to operate.

Figure 1. Structure of the CS of the pyro-breaker: (1) upper conductor (2) deionized water (3) barrel
conductor (4) support epoxy (5) explosive (6) lower conductor.
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After the detonation wave reaches the barrel conductor, the barrel conductor will
break along the annular grooves. Due to the restrictions by the equidistantly installed
support epoxy, the barrel conductor will break into several rings, as shown in Figure 2.
Multiple arcs will appear between each ring and be extinguished by the high-pressure
deionized water in the cylinder. The commutation capacity of the pyro-breaker depends
on the number and size of the gaps between the rings. The current will commutate into a
set of resistors to discharge the tremendous energy in the superconducting magnet. The
arc behavior in the CS, which greatly affects the commutation capacity of the pyro-breaker,
is determined by the structure and driving mechanism of the CS.

Figure 2. Formation of the barrel conductor in operation: (1) exterior epoxy (2) support epoxy (3) arc
(4) explosive (5) barrel conductor (6) rings.

2.2. The Schavemaker Black-Box Arc Model

Black-box models describe non-linear arc conductance over time. The purpose of
the black-box arc model is to study the external relationship between arc voltage and arc
current during arc ignition.

The Mayr arc model, defined by Equation (1), and the Cassie arc model, defined by
Equation (2), are the most widely used black-box arc models.

1
g

dg
dt

=
1
τ

(
ui
P0
− 1
)

(1)

1
g

dg
dt

=
1
τ

(
u
E0
− 1
)

(2)

Here, the time constant τ shows the increasing rate of arc resistance. A smaller
value of τ indicates a shorter time for the arc resistance to reach a certain level. P0 is the
cooling power, which depends on the internal characteristics of the circuit breaker. E0 is
the reference arc voltage, which is irrelevant to the arc current. The Cassie and Mayr arc
models are pure mathematical models, based on different assumptions. They both consider
only one aspect of the heat dissipation equation. In fact, arc energy tends to dissipate in a
manner that combines these two assumptions. In a circuit breaker, arc energy is mainly
transmitted by convection and radial diffusion.

The Schavemaker black-box arc model, defined by Equation (3), is a Mayr-type arc
model integrated with the Cassie arc model.

1
g

dg
dt

=
1
τ

(
ui

max(E0i, P0 + P1ui)
− 1
)

(3)

P1 is the cooling constant, which adjusts the impact of the input power on P0. The
pressure caused by ohmic heating during arc extinguishment is embodied in P1. In a high
current area, Equation (3) is reduced to the Cassie arc model. Near the zero-current region,
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Equation (3) is reduced to the Mayr arc model. The validity of both the Cassie model in a
high current area and the Mayr model in a near-zero-current region have been proven.

As a result of the multiple gaps formed during the explosion in the CS, several arcs
are ignited. To simplify the modeling, this series of arcs is regarded as a single arc.

3. Simulation and Experiment
3.1. Parameter Fitting

Schavemaker pointed out that the parameters in the equation can be either constant
or a function of the electrical quantities. Many variations in these parameters can be
found in [29]. Several of these varieties achieve good results in simulations. Schavemaker
pointed out that there is no unique relationship between the electrical quantities and the
parameters of the arc model. For example, at a certain time instant, k, Equation (1) can be
transformed to: [

− dlng
dt

∣∣∣
k

ui|k
][ τ|k

1/P0|k

]
= 1 or A

⇀
x = b (4)

Equation (4) is an under-determined system [30]. There are two unknown factors
in one equation. It can be deduced that there is no unique set of (τ, P) values which
can fit the current and voltage measured in the experiment. Hence, there is more than
one set of parameter choices that can achieve a simulation which agrees with the actual
switching characteristics.

Normally, the parameters of the black-box arc model are derived hypothetically and
verified experimentally. A method to explore the parameter selection patterns is proposed
here. The method adopts the Parameter Sweep Strategy [31,32] to fit the commutation test
results of the ITER pyro-breaker in PSCAD.

The test circuit of the ITER pyro-breaker is illustrated in Figure 3. A current of
sufficient amplitude was produced by means of capacitor bank C. The ignition resistor Ri
provided the necessary opening conditions for the ignitrons. After triggering the ignitrons,
FV, the current began to rise in the pyro-breaker branch. After the current reached the
defined test level, the pyro-breaker operated and the current switched to the discharge
resistor R. The current pulse length and its value depended on the inductance of the coil, L.
The Rogowski coils, RC1 and RC2, were installed to measure the current in the pyro-breaker
and the discharge resistor branches. A high-voltage probe was used to measure the voltage
across the pyro-breaker.

Figure 3. The test circuit of ITER pyro-breaker.

The PSCAD model was built to simulate the test circuit of the ITER pyro-breaker, as
shown in Figure 4. To simplify the simulation, a DC resource was selected as the power
supply. Due to the characteristics of the electrical components, a resistor, R1, was added to
the inductance in the main circuit and an inductor, L2, was added to the discharge resistor
branch. The electrical parameters were set according to the ITER pyro-breaker test circuit,
as shown in Table 1. The arc was regarded as a variable resistor, Rarc. The module, Rarc, was
applied with the Schavemaker black-box arc model. Ipb is the current in the pyro-breaker
branch. Ir is the current in the discharge resistor branch. Vpb is the voltage across the
pyro-breaker. Since the resistance of the pyro-breaker was quite small, Vpb can be regarded
as the arc voltage.
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Figure 4. The PSCAD model of the commutation test circuit.

Table 1. The electrical parameters in the ITER pyro-breaker test circuit.

Electrical
Components L1 R1 L2 R2

Value 5 mH 2.5 mΩ 5 µH 133 mΩ

There are four parameters in the Schavemaker black-box arc model. E0 is used to
modify and calculate the value in the large current area. It has little influence on the current
zero-crossing area. Hence, E0 is set to 10 kV, according to the design requirements. For
the values of τ, P0 and P1, it can be concluded from the above analysis that there is no
unique set of solutions to fit the arc model of the pyro-breaker. Schavemaker gave a set of
parameter choices for an arc burning in SF6: τ = 0.27 µs, P0 = 15.917 kW and P1 = 0.9943.
According to the definition of each parameter, the time constant, τ, in water should be
smaller than the time constant in gas [33], while the cooling power, P0, should be relatively
larger than the cooling power in gas. Therefore, this study qualitatively selected a series of
parameters in different orders of magnitude to run several simulations in PSCAD. It can be
observed from the simulation results that as the time constant increased, the response time
between arc ignition and breaking operation became longer. The cooling power, P0, mostly
affects the voltage waveform, and even a slight variation in P1 has a significant effect on
the time delay in arc ignition.

The oscillogram of the ITER pyro-breaker test at 72.5 kA is shown in Figure 5 [34].
As illustrated in Figure 5a, the commutation process began at 90 µs and finished at 199
µs, giving a total commutation time of 109 µs. The peak voltage was 14.9 kV, as shown
in Figure 5b. In PSCAD, a set of simulations and parameter sweeping were conducted.
Finally, a group of parameters that fit the test oscillogram was obtained, as illustrated
in Figure 6. In the simulation, τ was 0.02 µs, P0 was 2500 kW and P1 was 1.00147. The
commutation time, the value and the time peak voltage occurred in the simulation agreed
with the test results.

Figure 5. ITER pyro-breaker tested at 72.5 kA: (a) Current oscillogram; (b) Voltage oscillogram.
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Figure 6. Simulation results in PSCAD of the ITER pyro-breaker at 72.5 kA: (a) Current oscillogram; (b) Voltage oscillogram.

Based on the above analysis, P1 is considered to be the only parameter affected by the
input current among all four parameters. Hence, for pyro-breakers with the same driving
mechanism, the value rule of P1 under different input currents I can be deduced. Based on
this assumption, simulations and parameter fitting have been carried out for a large number of
ITER pyro-breaker tests [34–37] and the P1-I diagram, illustrated in Figure 7, obtained.

Figure 7. P1-I diagram of ITER pyro-breaker.

By examining the P1-I diagram, it can be observed that the value of the parameter P1
has a linear relationship with the input current defined by Equation (5). The fit goodness
(R2) is 0.98383.

P1 = 2.374× 10−5 I + 0.9997 (5)

It needs to be mentioned that a pyro-breaker is a single-action switch with a very fast
and transient operation process driven by explosives. It is necessary to reassemble the
breaker and reconnect it into the circuit after each test, which may alter the stray inductance
value of the circuit. This can lead to differences in the commutation process under the same
current. Therefore, the data obtained from several tests at the same current were averaged
and any highly inconsistent datapoints were deleted.

3.2. Simulation and Experiment

The test model illustrated in Figure 4 was also applied to simulate the commutation
process of the pyro-breaker designed for CFETR, in order to verify the proposed value rule
of P1. As shown in Table 2, the electrical parameters were set according to the test circuit:
P0 = 2500 kW, τ = 0.02 µs and E0 = 2 kV, according to the design requirements. Based on
Equation (5), when the input current is 40 kA, P1 is 1.0006.
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Table 2. The electrical parameters in the CFETR pyro-breaker test circuit.

Electrical
Components L1 R1 L2 R2

Value 5 mH 2.5 mΩ 20 µH 50 mΩ

The simulation results are shown in Figure 8. Due to the setting of a delay, the current
in the pyro-breaker branch began to commutate to the resistance branch from 200 µs.
Simultaneously, the voltage across the breaker, i.e., the arc voltage, began to increase. The
current in the pyro-breaker branch crossed the zero point at 413 µs. The arc voltage reached
a peak value of 9.20 kV at 346 µs.

Figure 8. Simulation results in PSCAD of the CFETR pyro-breaker at 40 kA: (a) current oscillogram; (b) voltage oscillogram.

The commutation test of the pyro-breaker was carried out on a DC test platform. The
output current of the platform was set to 40 kA. The test circuit is illustrated in Figure 9. The
inductance of the discharge resistor branch was 20 µH. The resistance of the inductance was
2.5 mΩ. Two Rogowski coils were installed in the pyro-breaker branch and the discharge
resistor branch to measure the current. A voltage differential probe was applied to measure
the voltage across the breaker.

Figure 9. The test circuit of the CFETR pyro-breaker.
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The oscillograms of the commutation test are shown in Figure 10. The current in the
pyro-breaker branch began to commutate at 100 µs and finished at 321 µs. The current
commutating speed reached its peak value at around 240 µs. This lead to a large di/dt and
resulted in the appearance of a peak voltage of 9.17 kV.

Figure 10. CFETR pyro-breaker tested at 40 kA: (a) current oscillogram; (b) voltage oscillogram.

3.3. Discussion

The application of black-box arc models in a circuit breaker is very complicated,
especially when the arc is discharged underwater. The selection of parameters is the main
problem. There are four parameters in the Schavemaker black-box arc model: the time
constant, the cooling power, the cooling constant and the reference voltage constant. Based
on a set of parameter choices given by Schavemaker, curve fitting for the ITER pyro-breaker
was performed using the parameter sweep strategy. As illustrated in Figures 5 and 6, the
simulation in PASCAD corresponded well with the test results.

By analyzing the sweeping process and the simulations, it can be concluded that as
the time constant increased, commutation duration became longer and the peak current
became higher. The cooling power had the same effects as the reference voltage. They
mostly affected the voltage waveform. As the cooling power increased, the voltage diagram
changed into a sharp-shaped waveform. The cooling constant was the only parameter
affected by the input current among all four parameters. As shown in Figure 7, within
an input current range of 70–90 kA, the change in P1 was within 5 × 10−4. Even a slight
variation in P1 had a significant effect on the time delay of the arc ignition. This might be
because the model was applied in a high-power situation. The influence of the electrical
power input was relatively higher than in the lower input power situation. Moreover, the
stray inductance value of the circuit varies every time the pyro-breaker is reassembled and
connected into the circuit, leading to differences in the commutation process under the
same current. Any analysis of the relationship between P1 and the input current needs take
this variation into account.

As shown in Figure 8a, the commutation time was 213 µs and the commutation speed
reached its highest value at 146 µs in the simulation results. As shown in Figure 10a, the
commutation time was 221 µs and the commutation speed reached its highest value at
140 µs in the experimental results. By comparing the results of the simulation and the
experiment, it can be concluded that the current commutation time and the peak voltage
obtained from the simulation agree with the experimental results. It can be inferred that the
values for (P0, τ and E0) determined in this paper can be applied in pyro-breakers with a
similar driving mechanism, and that P1 can be determined by the proposed method under
different input currents.
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It can be observed from Figure 10a that the current curve of Ir has a small hump in
the beginning section of the commutation phase. This might because multiple gaps are
formed at different speeds during the explosion. This would result in a certain randomness
in the rate of change of the arc resistance and the arc voltage. As illustrated in Figure 8b,
the simulated voltage has a smoother waveform than the voltage waveform of the test
illustrated in Figure 10b. For modelling purposes, in this paper the multiple arcs were
regarded as a single arc. In future simulations, this randomness could be treated as a factor
of the arc model to enhance the accuracy of the simulation.

4. Conclusions

The arc, as an inevitable phenomenon occurring when a direct current (DC) circuit
breaker is opened, directly determines the performance of the breaker. It is very challenging
to develop a pure physical model based on arc characteristics. Many studies have focused
on the application of the black-box arc model in the analysis of arc behavior in circuit
breakers. Nevertheless, the application of the black-box arc model for this type of breaker,
in which the arc ignites under water, remains to be explored.

The Schavemaker arc black-box model was applied to study the current commutation
of the presented pyro-breaker. By analyzing the test results of the pyro-breaker in ITER,
a suitable method for the selection of parameters was proposed. The feasibility of this
method was verified by means of experiments on the pyro-breaker prototype designed
for the China Fusion Engineering Test Reactor (CFETR), which was developed from the
concept of the pyro-breaker used in ITER. This method provided a theoretical basis for the
study of the current commutation process of the pyro-breaker.

Since the pyro-breaker presented here is an extremely fast, nonlinear and single-
operated switch, it is necessary to build a more accurate and stable test platform to measure
the commutation process. A high-speed camera could be implemented into the platform to
inspect the arc’s behavior during the operation. Also, the randomness in the gap formation
of the commutation section (CS) should be factored into the arc modeling to enhance
the accuracy of the simulation. The operation time is extremely short, so contamination
of the deionized water was ignored in this paper. However, changes in the electrical
characteristics of the water and their effect on arc ignition could be valuable future research
directions. Moreover, for this kind of complex problem, Artificial Intelligence techniques
could be considered for parameter fitting in the future.

Author Contributions: Conceptualization, J.H. and J.L.; methodology, J.H.; validation, J.H., K.W.
and J.L.; formal analysis, J.H.; writing—original draft preparation, J.H.; writing—review and editing,
J.H., K.W. and J.L.; supervision, J.L. and K.W.; project administration, J.L.; funding acquisition, J.L.
and K.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China, grant number 2017YFE0300500.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by Shenzhen Clean Energy Research Institute. The
authors would like to express gratitude to Honghao Ma of University of Science and Technology of
China and the students who helped with the experiments.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 4383 10 of 11

Nomenclature of the Variables
g arc conductance
t time
u arc voltage
i arc current
τ time constant
P0 cooling power
E0 reference arc voltage
P1 cooling constant
Ipb current in the pyro-breaker branch
Ir current in the discharge resistor branch
Vpb voltage across the pyro-breaker
R2 fit goodness
Abbreviations
DC direct current
AC alternating current
QPS Quench Protection System
ITER International Thermonuclear Experimental Reactor
CFETR China Fusion Engineering Test Reactor
PSCAD Power Systems Computer Aided Design
CS Commutation Section

References
1. Park, J.S.; Choi, J.H.; Gu, B.G.; Jung, I.G. Feasibility study of DC electrical distribution system. In Proceedings of the 8th

International Conference on Power Electronics—ECCE Asia, Jeju, Korea, 29 May 2011–2 June 2011; pp. 2935–2938. [CrossRef]
2. Li, H.; Xiang, B.; Song, W.; Geng, Y.; Liu, Z.; Wang, J.; Pei, X.; Tu, Y. Effect of Arc Chute on DC Current Interruption by Liquid

Nitrogen in HTS Electrical System of Distributed Propulsion Aircraft. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [CrossRef]
3. Yazdani-Asrami, M.; Zhang, M.; Yuan, W. Challenges for developing high temperature superconducting ring magnets for rotating

electric machine applications in future electric aircrafts. J. Magn. Magn. Mater. 2021, 522, 1–3. [CrossRef]
4. Niewind, J.; Hemdan, N.G.A.; Klosinski, C.; Bösche, D.; Kurrat, M.; Gerdinand, F.; Meisner, J.; Passon, S. Operation and protection

of 380V DC distribution systems. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017;
pp. 1–6. [CrossRef]

5. Fu, P.; Song, Z.Q.; Gao, G.; Tang, L.J.; Wu, Y.B.; Wang, L.S.; Liang, X.Y. Quench protection of the poloidal field superconducting
coil system for the EAST tokamak. Nucl. Fusion. 2006, 46, S85. [CrossRef]

6. Rummel, T.; Gaupp, O.; Lochner, G.; Sapper, J. Quench protection for the superconducting magnet system of WENDELSTEIN
7-X. IEEE Trans. Appl. Supercond. 2002, 12, 1382. [CrossRef]

7. Barabaschi1, P.; Kamada, Y.; Shirai, H. Progress of the JT-60SA project. Nucl. Fusion. 2019, 59, 112005. [CrossRef]
8. Song, I.; Choi, C.; Cho, M. Quench Protection System for the Superconducting Coil of the KSTAR Tokamak. IEEE Trans. Appl.

Supercond. 2007, 17, 1–6. [CrossRef]
9. Manzuk, M.; Avanesov, S.; Roshal, A.; Bestuzhev, K.; Nesterenko, A.; Volkov, S. The 70 kA pyrobreaker for ITER magnet back-up

protection. Fusion Eng. Des. 2013, 88, 1537–1540. [CrossRef]
10. Zhu, J.; Zhang, Y.; Dong, Y.; HL-2A Team. Characterization of plasma current quench during disruptions at HL-2A. Plasma Sci.

Technol. 2017, 19, 055101. [CrossRef]
11. Ren, Y.; Zhu, J.; Gao, X.; Shen, F.; Chen, S. Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet

system. Nucl. Fusion. 2015, 55, 093002. [CrossRef]
12. Zheng, J.; Song, Y.; Liu, X.; Lu, K.; Qin, J. Overview of the Design Status of the Superconducting Magnet System of the CFETR.

IEEE Trans. Appl. Supercond. 2018, 28, 4204305. [CrossRef]
13. Song, Y.; Wu, S.; Li, J.; Wan, B.; Wan, Y.; Fu, P.; Ye, M.; Liu, S.; Gao, X. Concept design of CFETR Tokamak machine. In Proceedings

of the 2013 IEEE 25th Symposium on Fusion Engineering (SOFE), San Francisco, CA, USA, 10–14 June 2013; pp. 1–6. [CrossRef]
14. He, J.; Song, Z.; Tang, C.; Fu, P.; Zhang, J. Study of contact resistance in the design of a pyro-breaker applied in superconducting

fusion facility. Plasma Sci. Technol. 2019, 21, 065602. [CrossRef]
15. He, J.; Song, Z.; Tang, C.; Fu, P.; Ye, J. Designing of cooling water system for a pyro-breaker utilized in superconductive fusion

facility. Fusion Eng. Des. 2019, 148, 111294. [CrossRef]
16. Gammon, T.; Lee, W.; Zhang, Z.; Johnson, B.C. A Review of Commonly Used DC Arc Models. IEEE Trans. Ind. Appl. 2015, 51,

1398. [CrossRef]
17. Khakpour, A.; Franke, S.; Uhrlandt, D.; Gorchakov, S.; Methling, R. Electrical Arc Model Based on Physical Parameters and Power

Calculation. IEEE Trans. Plasma Sci. 2015, 43, 2721. [CrossRef]

http://doi.org/10.1109/ICPE.2011.5944794
http://doi.org/10.1109/TASC.2021.3064515
http://doi.org/10.1016/j.jmmm.2020.167543
http://doi.org/10.1109/PTC.2017.7981063
http://doi.org/10.1088/0029-5515/46/3/S11
http://doi.org/10.1109/TASC.2002.1018660
http://doi.org/10.1088/1741-4326/ab03f6
http://doi.org/10.1109/TASC.2006.887540
http://doi.org/10.1016/j.fusengdes.2013.01.006
http://doi.org/10.1088/2058-6272/aa5ff2
http://doi.org/10.1088/0029-5515/55/9/093002
http://doi.org/10.1109/TASC.2018.2797965
http://doi.org/10.1109/SOFE.2013.6635362
http://doi.org/10.1088/2058-6272/aaf590
http://doi.org/10.1016/j.fusengdes.2019.111294
http://doi.org/10.1109/TIA.2014.2347456
http://doi.org/10.1109/TPS.2015.2450359


Energies 2021, 14, 4383 11 of 11

18. Rau, S.; Zhang, Z.; Lee, W. 3D magnetohydrodynamic modeling of DC arc in power system. In Proceedings of the 2016 IEEE/IAS
52nd Industrial and Commercial Power Systems Technical Conference (I&CPS), Detroit, MI, USA, 1–5 May 2016; pp. 1–7.
[CrossRef]

19. Cassie, A.M. Arc Rupture and Circuit Severity: A New Theory. In Proceedings of the Conférence Internationale des Grands
Réseaux Électriques à Haute Tension (CIGRE Report), Paris, France, 29 June–8 July 1939; Volume 102, pp. 1–14.

20. Mayr, O. Beitrage zur Theorie des Statischen und des Dynamischen Lichtbogens. Arch. Elektr. 1943, 37, 588–608. [CrossRef]
21. Wu, X.; Li, Z.; Tian, Y.; Mao, W.; Xie, X. Investigate on the simulation of black-box arc model. In Proceedings of the 2011 1st

International Conference on Electric Power Equipment—Switching Technology, Xi’an, China, 23–27 October 2011; pp. 629–636.
[CrossRef]

22. Ahmethodzic, A.; Kapetanovic, M.; Sokolija, K.; Smeets, R.P.P.; Kertesz, V. Linking a physical arc model with a black box arc
model and verification. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1029. [CrossRef]

23. Schavemaker, P.H.; Slui, L. An improved Mayr-type arc model based on current-zero measurements [circuit breakers]. IEEE Trans.
Power Deliv. 2000, 15, 580–584. [CrossRef]

24. Guardado, J.L.; Maximov, S.G.; Melgoza, E.; Naredo, J.L.; Moreno, P. An improved arc model before current zero based on the
combined Mayr and Cassie arc models. IEEE Trans. Power Deliv. 2005, 20, 138. [CrossRef]

25. Gao, Y.; Wang, L.; Zhang, Y.; Zeng, K. Research on the Calculation Method for the Parameters of the Simplified Schavemaker AC
Arc Model. In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing,
China, 26–28 October 2018; pp. 150–156. [CrossRef]

26. Wang, D.; Liao, M.; Wang, R.; Li, T.; Qiu, J.; Li, J.; Duan, X.; Zou, J. Research on Vacuum Arc Commutation Characteristics of a
Natural-Commutate Hybrid DC Circuit Breaker. Energies 2020, 13, 4823. [CrossRef]

27. Hashemi, E.; Niayesh, K. DC Current Interruption Based on Vacuum Arc Impacted by Ultra-Fast Transverse Magnetic Field.
Energies 2020, 13, 4644. [CrossRef]

28. Najam, A.; Pieterse, P.; Uhrlandt, D. Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents. Energies
2020, 13, 6377. [CrossRef]

29. Haupt, M. Untersuchung der Anwendungsmöglichkeiten von Lichtbogenzweipolmodellen zur Beschreibung des Thermischen
Schaltverhaltens von SF6-Leistungsschaltem. PhD Thesis, RWTH Aachen University, Aachen, Germany, 12 February 1988.

30. Strang, G. Linear Algebra and its Applications, 3rd ed.; Harcourt Brace Jovanovich Publishers: London, UK, 2010.
31. Lim, S.; Khan, U.A.; Lee, J.; Lee, B.; Kim, K.; Gu, C. Simulation analysis of DC arc in circuit breaker applying with conventional

black box arc model. In Proceedings of the 2015 3rd International Conference on Electric Power Equipment—Switching
Technology (ICEPE-ST), Busan, Korea, 25–28 October 2015; pp. 332–336. [CrossRef]

32. Park, K.; Lee, H.; Asif, M.; Lee, B.; Shin, T.; Gu, C. Assessment of various kinds of AC black-box arc models for DC circuit breaker.
In Proceedings of the 2017 4th International Conference on Electric Power Equipment—Switching Technology (ICEPE-ST), Xi’an,
China, 22–25 October 2017; pp. 465–469. [CrossRef]

33. Yoon, K.H.; Spindle, H.E. A Study of the Dynamic Response of Arcs in Various Gases. Trans. Am. Inst. Electr. Eng. 1958, 77,
1634–1640. [CrossRef]

34. Miklyaev, S. Pirobreaker RD-Test Report. JQ9M2X; Efremov Institute: St. Petersburg, Russia, 2013.
35. Miklyaev, S. Test Report on Pirobreaker. MN7QZ6; Efremov Institute: St. Petersburg, Russia, 2014.
36. Miklyaev, S. Report on Reliability Tests of the TF FDU Pirobreaker (Step 3). MU3Q8N; Efremov Institute: St. Petersburg, Russia, 2014.
37. Miklyaev, S. Report on Reliability Tests of the TF FDU Pirobreaker (Step 4). RDTSHR; Efremov Institute: St. Petersburg, Russia, 2015.

http://doi.org/10.1109/ICPS.2016.7490250
http://doi.org/10.1007/BF02084317
http://doi.org/10.1109/ICEPE-ST.2011.6123163
http://doi.org/10.1109/TDEI.2011.5976092
http://doi.org/10.1109/61.852988
http://doi.org/10.1109/TPWRD.2004.837814
http://doi.org/10.1109/PHM-Chongqing.2018.00032
http://doi.org/10.3390/en13184823
http://doi.org/10.3390/en13184644
http://doi.org/10.3390/en13236377
http://doi.org/10.1109/ICEPE-ST.2015.7368330
http://doi.org/10.1109/ICEPE-ST.2017.8188878
http://doi.org/10.1109/AIEEPAS.1958.4500218

	Introduction 
	Motivation and Incitement 
	Literature Review 
	Paper Organization and Contribution 

	Arc Modeling for Pyro-Breaker 
	The Commutation Section in the Pyro-Breaker 
	The Schavemaker Black-Box Arc Model 

	Simulation and Experiment 
	Parameter Fitting 
	Simulation and Experiment 
	Discussion 

	Conclusions 
	References

