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Abstract: Real-time electricity pricing mechanisms are emerging as a key component of the smart
grid. However, prior work has not fully addressed the challenges of multi-step prediction (Predicting
multiple time steps into the future) that is accurate, robust and real-time. This paper proposes a novel
Artificial Intelligence-based approach, Robust Intelligent Price Prediction in Real-time (RIPPR), that
overcomes these challenges. RIPPR utilizes Variational Mode Decomposition (VMD) to transform
the spot price data stream into sub-series that are optimized for robustness using the particle swarm
optimization (PSO) algorithm. These sub-series are inputted to a Random Vector Functional Link
neural network algorithm for real-time multi-step prediction. A mirror extension removal of VMD,
including continuous and discrete spaces in the PSO, is a further novel contribution that improves the
effectiveness of RIPPR. The superiority of the proposed RIPPR is demonstrated using three empirical
studies of multi-step price prediction of the Australian electricity market.

Keywords: demand response; real-time pricing; prosumers; electricity price forecasting; particle
swarm optimization

1. Introduction

The global transition to renewable power generation has resulted in significant re-
search efforts to design real-time approaches for power dispatch in power grids [1] and
microgrids [2]. Real-time pricing is emerging as a solution for coordinating renewable
generation with other intelligent energy resources [3], such as flexible loads [4], battery
storages [5] and electric vehicles [6]. Several authors mean real-time pricing when they
use the term ‘demand response’ [7]. In some works, real-time pricing refers to varying
hourly prices that are determined day-ahead [8] or at the end of the day [9]. Anand and
Ramasubbu [10] proposed an isolated microgrid with hourly changing real-time prices
known only one hour in advance. However, a move towards real-time pricing with prices
being determined one interval at a time at 5-min intervals offers powerful tools for retailers
and utilities to coordinate the diverse, intelligent distributed energy resources of their
customers [11]. The transformation of residential and commercial buildings into prosumers
with local renewable generation is one driver for such short interval real-time pricing
markets [12]. Elma et al. [13] proposed a domestic prosumer operating at five min intervals,
rescheduling or curtailing loads according to forecasted local photovoltaic generation and
real-time electricity prices. Mbungu et al. [14] presented a similar approach for a commer-
cial building prosumer with photovoltaic generation and battery storage; the proposed
real-time pricing scheme is built on top of a time-of-use pricing scheme. Mirakhorli and
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Dong [15] demonstrated that a commercial building prosumer operating under five-minute
real-time pricing could achieve major electricity cost savings in comparison to time-of-use
or hourly pricing. Li et al. [3] optimize a multi-energy prosumer community in a market
environment with real-time prices for electricity and district heating. In some regions,
electricity spot markets support real-time trading at 5 min intervals [16]. An example of
such a market is the Australian spot market [17].

Alahyari and Pozo [18] presented an approach for maximizing the profits for electricity
consumers participating in a demand response program. A real-time electricity price is as-
sumed so that the price for the next hours is not known at the time of planning the demand
response actions. The proposed framework is able to use a forecast of such a real-time
price and is able to cope with uncertainties in the forecast. Thus, the approach presented in
this paper could be directly exploited in the demand response optimization proposed by
Alahyari and Pozo [18]. Moving to real-time spot prices, such as prices that change every
5 min, motivates a rethinking of energy management approaches to address a real-time
timeframe. For example, weather forecasts that are crucial to consumption forecasting
are usually not performed short-term to address weather disturbances. However, such a
short-term forecast is provided in Thilker et al. [19]. These forecasts are advantageously
used by a model-predictive controller managing indoor climate, with the goal of reducing
electricity consumption while maintaining indoor comfort within specifications. Our real-
time electricity price forecast is not directly comparable to the short-term weather forecast
in [19], as the price remains constant for the market interval, e.g., 5 min. However, as short
intervals such as 5 min become more common in real-time electricity pricing, a rethinking
of energy management system research to exploit short-term generation and consumption
forecast will be needed.

This article proposes a novel real-time electricity price predictor, and the Australian
spot market will be used as a case study due to the availability of open data. However,
our proposed approach uses generally applicable time series forecasting techniques that
are not specific to spot markets, so the proposed forecasting method is adaptable to other
real-time electricity markets such as those referenced above.

Time series forecasting is a mature field of study with diverse applications in academic,
industrial and business contexts. It is defined as the formulation of forecasts on the basis
of data in one or more time series, where time series is a collection of observations made
sequentially through time [20]. A forecasting method is distinguished from a forecasting
model which takes into account underlying distributions of a time series. A forecast is
predicated on the current time step, forecast horizon, and evaluated using the residual
forecast error. In EPF, time series forecasting methods can be grouped into three categories,
statistical, machine learning and hybrid methods. Statistical methods are effective at
capturing seasonality, machine learning captures non-linear behaviors of a time series
such as sudden bursts or jumps, and hybrid methods break down the raw data stream
into sub-components and then apply either statistical or machine learning methods on
these components. Although hybrid methods exhibit high accuracy, they have only been
demonstrated in theoretical settings, and this limits its value in addressing the practical
challenges of balancing high accuracy with robust, real-time processing.

In this paper, we propose a new EPF method, Robust Intelligent Price Prediction in
Real-time (RIPPR), to address these practical challenges. RIPPR is an ensemble technique
that uses Variation Mode Decomposition (VMD) to decompose time series data streams
into K sub-series, where K is chosen by particle swarm optimization (PSO) considering
both forecasting accuracy and forecasting horizon. Each sub-series is modeled using a
variant of Random Vector Functional Link (RVFL) neural networks, Extreme Learning
Machine (ELM), for the h-step ahead point forecast. Finally, the h-step forecast for the
given data stream is taken by aggregating the forecasted values for each sub-series.

The research contributions of this paper are as follows:

1. The design and development of RIPPR, a novel EPF ensemble using VMD and RVFL;
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2. Optimization of the VMD module using PSO to determine optimal modes of decom-
position with respect to forecast accuracy and forecast horizon;

3. Extending the VMD module to process signal edges for real-time EPF applications;
4. Evaluation of RIPPR on three benchmark datasets and one real-world dataset, using

metrics of accuracy and robustness. The four datasets are from diverse energy market
settings that are representative of the complexities of EPF and the robustness of the
proposed method.

The rest of the paper is organized as follows; Section 2 presents related work in
statistical, machine learning and hybrid methods, followed by the proposed ensemble
approach for EPF. The experiments and results are presented in Section 3, and Section 4
concludes the paper.

2. Materials and Methods
2.1. Related Work

Most related work in the domain of EPF is based on statistical models that derive
underlying statistical properties of the time-series data streams for the task of forecasting.
Some of the examples for statistical methods are autoregressive–moving average (ARMA),
autoregressive integrated moving average (ARIMA), vector autoregression (VAR), Kalman
filter-based methods, Holt–Winters exponential smoothing and generalized autoregressive
conditional heteroskedasticity (GARCH). Chujai et al. [21] validated the capabilities of both
ARMA and ARIMA in household electric consumption forecasting. Furthermore, they
evaluate using the most suitable forecasting period for the given use case. Carolina et al. [22]
used the VAR forecasting model to apply to interval time series. Girish et al. [23] presented
the GARCH-based one-hour-ahead price forecasting model and empirically validated
it using voluminous time series generated by the electricity market of India. The main
limitation of statistical methods is the inability to detect or represent the non-linear features
and random changes in a time series.

In contrast, EPF based on machine learning methods such as support vector machine
(SVM), artificial neural networks (ANN), fuzzy neural networks (FNN), recurrent neural
networks (RNN) and randomly connected neural networks is able to capture and represent
these non-linear features. Ziming et al. [24] proposed a month ahead of daily electricity
price profile forecasting based on SVM; SVM is adopted to forecast the prices of peak hours
in peak months. Furthermore, they validated its effectiveness using the Electric Reliability
Council of Texas (ERCOT). Anand et al. [25] deployed an ANN-based PSO model to
forecast future energy demand for a state of India. Both particle swarm optimization (PSO)
and Genetic algorithm (GA) were developed in linear and quadratic forms, and the hybrid
ANN models were applied to different series. They have empirically evaluated the results
comparing with other methods such as ARIMA, linear models. From the optimization
perspective, they have validated the gains of the PSO-based model over the GA-based
model. Yunpeng et al. [26] proposed a model for multi-step ahead time series forecasting
using long short-term memory (LSTM) RNN. Hassan et al. [27] proposed a novel model
based on randomly connected RNNs for electricity load demand forecasting, and the
results prove the superiority of the proposed model. Compared to statistical methods,
machine learning methods capture the non-linear features and random changes to a certain
extent and maintains the potential for further improvements.

A separate stream of related work has focused on hybrid models composed of one
or more statistical and machine learning techniques, as single models cannot effectively
extract features from a complex time series such as those in energy markets that fluctu-
ate rapidly. Hybrid models use different data decomposition techniques to process the
non-linear and non-stationary electricity-related data before applying it to the forecasting
model. Wang et al. [28] proposed a novel method that uses wavelet packet transform (WPT)
to decompose the time series data and particle swarm optimization based on simulated
annealing (PSOSA) and Least Square Support Vector Machine (LSSVM) for wind speed
forecasting and the experiments demonstrated that the WPT decomposition technique
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makes great improvement on the forecast accuracy. Wang et al. [29] proposed a hybrid
model that consists of a two-layer decomposition technique which includes fast ensemble
empirical mode decomposition (FEEMD) and Variational mode decomposition (VMD).
Further, the model uses back propagation (BP) neural network optimized by the firefly
algorithm (FA) as the prediction algorithm. Yang et al. [30] proposed a multi-step electricity
price forecasting algorithm based on the VMD algorithm, improved multi-objective sine
cosine algorithm (IMOSCA), and regularized extreme learning machine (RELM). Addition-
ally, they ensured the model is not dependent on new information during the testing phases,
thereby increasing its practical value. Kaijian et al. [31] developed a method for forecasting
electricity market risk using Empirical Mode decomposition (EMD) based on the Value
at Risk (VaR) model, with Exponential Weighted Moving Average (EWMA) representing
individual risk factors. Separately, decomposition-based TSF methods such as a multi-
objective optimization for short-term wind speed forecasting [32], an ensemble empirical
mode decomposition based crude oil price forecasting [33], as well as AI-based models
that use deep recurrent neural networks [34], long short term memory networks [35], and
hybrid neuro-fuzzy inference [36] for energy consumption prediction were reported in the
recent literature.

Despite hybrid models reporting improvements to the accuracy and prediction horizon
of time series forecasts, two major limitations are inherent in the development of such
models. Firstly, the use of a fixed number of components for the decomposition of the
raw time-series into train and test sets, which implies the test set is required in advance
in the data pre-processing stage [30]. This means the model will underperform when
deployed in a real-world setting where data is acquired in a sequential manner and cannot
be decomposed in advance. Additionally, the model will not be able to adapt to any changes
in the data stream. Secondly, decomposition has to be conducted at the arrival of each
new data point. If the time step (time between two adjacent data points) is smaller than
the time taken to decompose and forecast, such models become impractical for real-world
application settings.

2.2. Proposed Method

The proposed method, RIPPR, is a machine learning ensemble-based decomposition
method that addresses these limitations. In brief, the proposed approach consists of five
main components. The pre-processing module includes a normalization as well as an
extreme outlier removal process, which is then processed by the data decomposition
module. The data decomposition module decomposes a given data stream into K sub-
series where the optimal parameters for the decomposition are chosen by the optimization
module, including the value K. It is followed up by the Forecasting module where each
sub-series is modeled with RVLF for h-step ahead point forecast, which then aggregated for
each subseries in the post-processing module to produce the h-step ahead point forecast.
The RIPPR process is illustrated in Figure 1. It comprises of five modules, data pre-
processing, data decomposition, optimization, time series forecasting and post-processing.
Each module is delineated in the following subsections.

Figure 1. The Proposed Method-Robust Intelligent Price Prediction in Real-time (RIPPR).
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2.2.1. Data Pre-Processing Module

The pre-processing module receives the raw time series data as input. In the context
of energy markets, short-term EPF is a core capability of an energy market that drives
the market’s operational activities. The short-term EPF is also called spot or day-ahead
price forecasting. Here we consider raw time series data to be the spot prices that the
National Electricity Market Operators use to match the supply of electricity from power
stations with real-time consumption by households and businesses. All electricity in the
spot market is bought and sold at the spot price.

In general, to obtain an accurate forecast, the input time series data that are used to
model the forecasting model should be normalized in consideration of the new data that
the model will account for in the future. Due to the high fluctuation and varying nature of
the energy market, each dataset and data sample is unique, posing unique challenges for
EPF. In the context of spot prices, the primary challenge is the presence of noise, including
duplicated values, missing data points, and extreme outliers that will make the forecasting
model weak. In RIPPR, we adopt two techniques to suppress the noise in input data
streams. First, we remove the extreme values to discard extreme outliers in the input data,
and second, we normalize the input data prior to feeding it to the prediction model.

Extreme values (or outliers) are data points that significantly differ from other obser-
vations, and the removal of such extreme values is considered as one of the significant steps
in data pre-processing. This is because machine learning algorithms and corresponding
predictions/forecasts are sensitive to the range and distribution of the input data points;
therefore, outliers can mislead the training process resulting in longer training times and
less accurate models. Extreme values can be of two types, (1) outliers that are introduced
due to human or mechanical errors, and (2) extreme values that are caused by natural
variations of a given distribution. In the context of smart grid/spot prices, the first type is
rarely attested. However, a common case is the presence of extreme outliers. For instance,
wholesale energy prices are influenced by a range of factors, including weather, local
economic activities, international oil prices and resource availability. The availability of
such factors could lead spot prices to be extremely volatile and unpredictable. Thereby, we
intend to address these extreme values using extreme value analysis that use the statistical
tails of the underlying distribution of the variable and find the values at the extreme end
of the tails. Followed by the extreme value removal, we perform min–max normalization
on the time series data to scale the time series data in the range 0 and 1. In general, the
min–max normalization technique does not handle outliers and extreme values, and this is
why normalization is preceded by extreme value removal.

A limitation of the min-max normalization technique is that the values used in the
train-test phases can be very different from a real-world scenario, where the minimum and
maximum values of a time series is not prior. It is necessary to make a realistic assumption
of the min–max values based on expert knowledge of the energy market.

2.2.2. Data Decomposition Module

Time series data can exhibit a variety of patterns; therefore, splitting such time series
data into several distinct components, each representing an underlying pattern category,
could lead to better analysis and pattern identification. The complex characteristics of the
electricity spot price market make it even harder to capture the underlying patterns in order
to forecast spot prices, which makes decomposition an essential component of the proposed
approach. In recent work, a number of signal decomposition algorithms that can be utilized
for time series forecasting were proposed. For example, Empirical Mode Decomposition
(EMD) [37], Ensemble EMD [38], Complete Ensemble EMD with adaptive noise [39],
Empirical Wavelet Transform (EWT) [40] and Variational Mode Decomposition [41] are
several recent signal decomposition techniques.

As stated by Wang et al. [42], Variational Mode Decomposition (VMD) is the state-of-
the-art data decomposition method in signal modeling. VMD decomposes a signal into an
ensemble of band-limited Intrinsic Mode Functions (IMF). It is more effective than other
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signal decomposition methods as it is able to generate IMF components concurrently using
the ADMM optimization method [43], it can avoid the error caused during the recursive
calculating and ending effect, which is a significant issue of EMD [30] and it is significantly
robust to noise as well [41].

In VMD, a real-valued input signal s is decomposed into a discrete number of modes
uk that have specific sparsity properties while reproducing the input. Each mode of χk is
assumed to be most compact around a center pulsation ωk, which is determined along with
the decomposition. Based on the original algorithm, the resulting constrained variational
problem is expressed as follows.

min{uk},{ωk}

{
∑
k

∣∣∣∣∣
∣∣∣∣∣әt

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∣∣∣∣∣|22
}

s.t. ∑k uk = f (1)

where {uk}:= {u1, . . . .,uk} and {ωk}:= {ω1, . . . ., ωk} are shorthand notations for the set of
all modes and their center frequencies, respectively, and f is the input signal. Equally,
∑k := ∑K

k=1 is understood as the summation over all modes. Here, K is the total number
of the decomposed modes. Since the decomposition is mainly based on the parameter K, a
significant effort should be placed to select the optimal value.

To address the constrained variational problem, VMD uses an optimization method-
ology called ADMM [41] to select the central frequencies and intrinsic mode functions
centered on those frequencies concurrently. First, minimization with respect to uk (modes)
is considered, and the following is obtained for ûk

n+1:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (2)

Secondly, minimization with respect to ωk (center frequencies) is considered and
following is obtained for ωk

n+1
:

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2 dω∫ ∞

0 |ûk(ω)|2 dω
(3)

Here uk
n+1, ωk

n+1 and λn+1 are updated continuously until convergence. When the
following convergence condition is met, the algorithm terminates, producing the K modes.

∑k

||ûn+1
k − ûn

k ||22
||ûn

k ||22
< ε (4)

The generic VMD algorithm is effective for discrete, finite time signals; however, the
boundaries of the signal are a key technical challenge due to the vanishing derivatives in the
time domain boundary [41]. To address this challenge, VMD introduces a mirror extension
of the signal by half its length on each side. However, this means the prediction is based
on using previously seen values as future point forecasts. This is because decomposed
sub-signals assume that the original signal will continue in the form of a mirror extension.
Therefore, generic VMD cannot be used directly in a real-world time series forecasting
setting. In RIPPR, we modified the VMD algorithm by removing this mirror extension.

In Figure 2, we compared the generic VMD algorithm and the modified version (that
has the mirror extension removed) on a benchmark dataset. The results indicate that
the two versions obviously differ, which will lead to different forecasting performances.
However, the effectiveness of the modified-VMD algorithm is necessary for practical use.
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Figure 2. Data decomposition comparison between VMD and modified-VMD.

Returning to the core capability of the VMD method, the decomposition of a signal
depends on the settings of its input parameters. The VMD method consists of five parame-
ters, namely, mode number (K-the number of modes to be recovered), balancing parameter
(α-the bandwidth of extracted modes (low value of α yields higher bandwidth)), time-
step of dual ascent (τ), initial omega (ω) and tolerance (ε). As experimentally proven by
Dragomiretskiy and Zosso [41], ε, τ and ω has standard values across any given signal dis-
tribution. The standard values are; ε = 1 × 10−6, ω = 0, τ = 0. However, k and α depends on
the signal, and this means for each new signal distribution, these two parameters needed to
be adjusted. We address this in the next module using particle swarm optimization (PSO).

2.2.3. Optimization Module

The number of modes to be recovered (K) and the balancing parameter (α) determine
the accuracy of the VMD decomposition. In this module, we utilize particle swarm opti-
mization [44] (PSO) to select the most suitable values for these two values K, α, for a given
forecasting horizon. We consider the prediction time for a given time-step as the objective
function of the optimization technique.

PSO is a metaheuristic parallel search technique used for the optimization of con-
tinuous non-linear problems, inspired by the social behavior of bird flocking and fish
schooling [45]. PSO is a global optimization algorithm for addressing optimization prob-
lems on which a point or surface in an n-dimensional space represents the best solution. In
this algorithm, several cooperative agents are used, and each agent exchanges information
obtained in its respective search process. Each agent, referred to as a particle, follows
two rules, (1) follow the best performing particle and (2) move toward the best conditions
found by the particle itself. Thereby, each particle ultimately evolves to an optimal or a
near-optimal solution. PSO requires only primitive mathematical operators and is compu-
tationally inexpensive in terms of both memory requirements and speed when compared
with other existing evolutionary algorithms [46].

The standard PSO (Algorithm 1) algorithm can be defined using the following equations,

vi(k + 1) = ωvi(k) + c1r1 .(pbest,i − xi(k)) + c2r2 .(gbest − xi(k)) (5)

xi(k + 1) = xi(k) + vi(k + 1)α (6)

where xi is the position of particle i; vi is the velocity of particle i; k denotes the iteration
number; ω is the inertia weight; r1 and r2 are random variables uniformly distributed
within (0, 1); and c1, c2 are the cognitive and social coefficient, respectively. The variable
pbest,i is used to store the best position that the ith particle has found so far, and gbest is
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used to store the best position of all the particles. The basic PSO is influenced by a number
of control parameters, namely the dimension of the problem, number of particles, step size
(α), inertia weight (ω), neighborhood size, acceleration coefficients, number of iterations
(itermax), and the random values that scale the contribution of the cognitive and social
components. Additionally, if velocity clamping or constriction is used, the maximum
velocity and constriction coefficient also influence the performance of the PSO.

Algorithm 1 Standard particle swarm optimization

Input: Objective function to be minimized (or maximized)
Parameters: swarm size, c1,c2,ω, itermax,error
Output: gbest
1: Initialize population (Number of particles = swarm size) with random position and velocity;
2: Evaluate the fitness value of each particle. Fitness evaluation is conducted by supplying the
candidate solution to the objective function;
3: Update individual and global best fitness values (pbest,i and gbest). Positions are updated by
comparing the newly calculated fitness values against the previous ones and replacing the pbest,i
and gbest, as well as their corresponding positions, as necessary;
4: Update velocity and position of each particle in the swarm, using Equations (5) and (6);
5: Evaluate the convergence criterion. If the convergence criterion is met, terminate the process; if
the iteration number equals itermax, terminate the process; otherwise, the iteration number will
increase by 1 and go to step 2.

A novel contribution of this module is that we have extended the basic PSO algorithm
to take both continuous space (R+-space) and discrete space (Z+-space) for optimization.
In the given context, two variables exist for the optimization purpose, namely K and α. The
variable α is a continuous variable, while K is a discrete variable. Therefore, we modify the
basic PSO to consider both R+ and Z+ spaces in optimization.

At the start of the algorithm, we place particles randomly such that particle position
for each particle with respect to K is discrete. Then, we round off the vi(k+1) α to the nearest
integer before adding it to xi (k) (Equation (6)). As such, we change Equation (6) for variable
K as follows:

xi(k + 1) = xi(k) + [vi(k + 1)α] (7)

where ‘[ ]’ operation represents rounding to the nearest integer.
The following section describes the fitness function that is used in the RIPPR approach.

This fitness function is selected to cover both prediction accuracy as well as time taken to
the prediction. The more obvious fitness function will be to use the testRMSE directly so that
PSO will find an optimal (K, α) combination so that the forecasting accuracy will be higher.
However, our experiments show that by doing so, it will result in a higher K value which
is not desirable when considering the time taken for the prediction (K separate models will
be created for each sub-series).

To overcome the aforementioned issue, we have included a penalty term to penalize
having a higher K value while having good accuracy. The final fitness function is as follows:

Fitness function = min{testrmse + β× K} (8)

where β is constant, we can control the penalizing term by adjusting the β value. From
our experiments on energy price forecasting, we see that having β = 1 leads to better
accuracy as well as manages to penalize having a higher K value precisely. Depending on
the application, the value for K should be chosen accordingly. The calculation of the fitness
function is given in Algorithm 2.
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Algorithm 2 Fitness value calculation for PSO

Input: K, α, Data (X), forecasting horizon
Output: Fitness value
1: Decompose the data (X) using VMD for the given (K, α) combination;
2: Divide each sequence (sub-series) into multiple input/output patterns called samples for the
given forecasting horizon;
3: Split the samples set into train and test split at a ratio of 6:4;
4: Train on the train data using the time series forecasting module for each sub-series;
5: Predict for the test data using trained models for each sub-series;
6: Aggregate the predicted values for each sub-series to obtain the final prediction for the test
data;
7: Calculate the RMSE value between actual values and predicted values for the test data
(testRMSE);
8: Calculate fitness value as follows: fitness value = testrmse + β× K.

In Figure 3, we illustrate the learning process of PSO to find the optimal components
for VMD. This experiment is conducted using dataset A (Table 1). We used the following
parameters in the PSO algorithm, swarm_size = 10, inertia = 0.7, local_weight =2 and global
weight = 2. We can see that the learning process follows the discrete–continuous search
space as expected. It keeps the variable K in a discrete space while handling the alpha
variable in a continuous search space. The best position for each iteration is circled in the
plot with the iteration number. The spectrum of colors is used to distinguish between
particles of each iteration.

Figure 3. Convergence of discrete–continuous PSO algorithm.
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Table 1. Experiment setup.

Experiment Dataset Description Referred Literature

1 A Spot price, June 2016, NSW Wang et al. (2017),
Yang et al. (2020)

2
B Load demand, January 2013, NSW

Qiu et al. (2017)C Load demand, April 2013, NSW
D Load demand, July 2013, NSW

3 E Spot price, May 2013, NSW Peng et al. (2018),
Babu et al. (2014)

Further visualization of the PSO learning process with respect to the fitness value is
shown in Figure 4. On the left is the contour plot for the scattered data and on the right
is the surface plot of the contour plot. The convergence of the PSO to a global optimum
mainly depends on its parameters. The β × K term in the fitness function prevents looking
at higher K values in the search space. Thus above-mentioned parameter configuration
manages to find near-optimal components for VMD in 10–15 min of time.

Figure 4. D visualization of the PSO learning process.

2.2.4. Time Series Forecasting Module

The forecasting module generates predictions for each sub-series of the input time-
series data that are decomposed by the VMD algorithm. In the context of predicting
sub-series of decomposed input data, each time-step is remodeled; thus, it is not possible
to use the previously trained predictive model to predict future values. Therefore, for each
new time-step, the predictive model needs to be remodeled, and the re-training process
should be efficient and effective to provide an accurate predictive model in a limited
amount of time. This duration should ideally be less than the time between two time-steps
in the time-series function.

In general, most recent approaches utilize feedforward neural networks; however,
such feedforward connectionist networks are comparatively slow in training. This slow
learning of feedforward neural networks continues to be a major shortcoming for EPF. The
key reasons for this latency are the utilization of slow gradient-based learning algorithms
and iterative tuning of all parameters of the network during the learning process. In general,
randomly connected neural networks and Random Vector Functional Link (RVFL) [47] in
particular are popular alternative methods for overcoming this limitation. These networks
are characterized by the simplicity of RVFL’s design and training process. It makes them
a very attractive alternative for solving practical machine learning problems in edge
computing. Further, our recent result on the efficient FPGA implementation of RVFL [48]
makes this type of network particularly suitable for the target real-time prediction scenario.
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Here we use a variant of RVFL known as Extreme Learning Machines (ELM) [49]. ELM is
a single hidden layer feedforward neural network (SLFN) that randomly chooses input
weights and analytically determines the output weights. The technical details of the ELM
algorithm used for the RIPPR approach are described below.

For N arbitrary distinct input samples (xi, ti), where xi = [xi1, xi2, . . . , xin]T ∈ Rn and
ti = [ti1, ti2, . . . , tim]T ∈ Rm standard SLFNs with N hidden nodes and activation function
g(x) are mathematically modelled as:

Ñ

∑
i=1

βigi
(
xj
)
=

Ñ

∑
i=1

βig
(
wi.xj + bi

)
= tj (9)

j = 1, . . . . . . , N

where wi = [wi1, wi2, . . . , win]T is the weight connecting the ith hidden node and the input
nodes, βi = [βi1, βi2, . . . , βin]T is the weight connecting the ith hidden node and the output
nodes, Ñ is the number of hidden layer nodes, and bi is the threshold of the ith hidden
nodes. wi·xi denotes the inner product of wi and xi. The above N equations can be written
compactly as:

Hβ = T, where

H
(
w1, . . . , wÑ , b1, . . . , bÑ , x1, . . . , xN

)
=

 g(w1.x1 + b1) . . . g
(
wÑ .x1 + bÑ

)
... . . .

...
g(w1.xN + b1) . . . g

(
wÑ .xN + bÑ

)


N×Ñ

β =

 βT
1
...

βT
Ñ


Ñ×m

And T =

 tT
1
...

tT
Ñ


Ñ×m

(10)

where H denotes the hidden layer’s output matrix. ELM tends to reach not only the
smallest training error but also the smallest norm of output weights. According to Bartlett’s
theory for feedforward neural networks reaching smaller training error, the smaller the
norms of weights are, the better generalization performance of the network.

In the following formulations, 11–15, we deliberate the workings of the learning
and generalization of the ELM model. Firstly, output weight optimization is solved as a
minimization problem using the generalized inverse matrix of the hidden layer, followed
by fine-tuning of the ELM generalization across two cases for N >> L and N > L.

The output weight can be obtained by solving the following minimization problem:

Minimize : ||Hβ− T||2 and ||β|| (11)

where H, β and T are defined in (10). The reason to minimize the norm of the output
weights ||β|| is to maximize the distance of the separating margins of the two different
classes in the RVLF feature space.

The optimal solution is given by:

β = H†T (12)

where H† denotes the Moore–Penrose generalized inverse matrix of the hidden layer’s
output matrix, which can be calculated by the following mathematical transformation. This
eliminates the lengthy training phase where network parameters will be adjusted with
some hyperparameters in most learning algorithms:

H† =
[

HT H
]
−1HT (13)
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Input weights of the SLFN are randomly chosen, then the output weights (linking the
hidden layer to the output layer) of an SLFN are analytically determined by the minimum
norm least-squares solutions of a general system of linear equations. The running speed of
ELM can be a thousand times faster than traditional iterative implementations of SLFNs. To
further extend the generalizability of ELM, regularized extreme learning machine algorithm
is introduced [50]. The original algorithm is extended by adding a regularization parameter
(C) to control the generalization. This is divided into two cases as follows;

Case 1:
If the number of training data is very large, for example, it is much larger than the

dimensionality of the feature space,
N >> L:

β =

(
I
C
+ HT H

)−1
HTT (14)

Case 2:
N > L:

β = HT
(

I
C
+ HHT

)−1
T (15)

where I is the identity matrix.

3. Experiments and Results

In this section, we evaluate RIPPR on three experiments conducted on five different
datasets of EPF for the state of New South Wales (NSW), Australia. The datasets were
chosen to reflect the factors of different seasons in Australia. The following section describes
the experiments, their datasets and their characteristics.

The experiments were carried out on a multi-core CPU at 2.8 GHz with 16 GB memory
and GPU of NVIDIA GeForce GTX 1060.

3.1. Experimental Process

First, we will consider the real-world scenario and then modify it to the experimental
study (past data). Here the forecasting horizon is h (i.e., forecasts are generated for h step
ahead). The full process is outlined in Algorithm 3.

Algorithm 3 Experiment procedure

Input: Data (X),h,(K,α) pair for the given h (taken from the optimization module)
Output: h step ahead forecasted value
1: Obtain the most recent 1440 data points from X(1 month period if the data rate is 30 min−1);
2: Decompose the data into K sub-series by using the data decomposition module;
3: Divide each sequence (sub-series) into multiple input/output patterns for the given forecasting
horizon. Here, we will have (1440-h-input size) samples that have target values (outputs). For the
experiment, the input size is kept as 24. We have (1416-h) samples. Call this train set. Last (h)
samples will not have a target value. Call this test set;
4: Train on the train data using the time series forecasting module for each sub-series;
5: Predict for the test data using trained models for each sub-series;
6: Aggregate the predicted values for each sub-series to obtain the final prediction for the test data
(from the h number of predicted values, the last value will give the final h-step ahead prediction
for the given time frame);
7: At the arrival of a new data point, add it to the data set and remove the least recent data point
from the data set and go to step (2).

For the experimental study, we start the above procedure starting from the train set
and continue till the whole test set values are predicted.
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3.2. Results

We report the empirical evaluation of RIPPR in terms of the following performance
metrics, mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE) and mean squared error (MSE).

3.2.1. Experiment 1

This experiment was designed as a comparative study of results for dataset A, com-
pared between the modules of RIPPR and the available literature [29,30]. The RIPPR
modules consist of ELM, VMD-ELM with a fixed K = 8 and α = 1500, VMD-PSO-ELM
(Proposed RIPPR approach). The dataset is divided into train and test as follows, as the
training dataset first 25 days is used. Therefore, the training dataset consists of 1200 data
points. As the test dataset, the last 5 days are used. Thus, it contains 240 data points. The
experiment results are shown in Table 2. The experiment compares results in three metrics,
namely MAE($/MWh), RMSE($/MWh) and MAPE(%). In the experiment results, in three
instances MAE and MAPE are superior to results reported in [28].

Table 2. Results comparison for dataset A.

Horizon
(h) Metric Persistence LSTM ELM VMD-

ELM RIPPR Wang et al.
[29]

Yang et al.
[30]

0.5
MAE 35.75 27.08 38.62 7.92 4.67 7.17 5.05
RMSE 56.38 39.76 55.32 9.26 5.63 9.77 6.61
MAPE 31.43 23.95 30.45 8.64 4.89 7.88 6.22

1
MAE 48.48 43.40 45.11 11.94 5.45 10.54 5.04
RMSE 71.38 60.69 62.72 14.78 6.91 14.50 7.11
MAPE 46.85 38.49 43.01 12.75 6.02 12.17 5.95

2
MAE 66.84 63.45 56.23 13.90 9.87 15.43 10.98
RMSE 94.00 85.77 78.45 17.66 12.35 20.25 14.25
MAPE 78.41 76.45 51.26 14.05 10.21 17.64 12.94

3
MAE 83.79 80.44 62.98 18.37 18.39 21.10 18.02
RMSE 110.87 100.99 84.64 23.69 20.01 26.61 22.52
MAPE 108.17 81.45 63.48 18.34 18.75 24.89 21.47

Across all instances of this experiment, RIPPR reports a better RMSE value than the
literature. A key challenge in EPF is the inability to forecast outliers. From these three
metrics, RMSE is the most sensitive metric to outliers. Therefore, we can confirm that our
model has a more effective capability to forecast outliers than those reported in the related
literature. Optimal component selection of VMD using PSO gained an advantage over the
other models. A single step in this experiment represents 30 min of time.

In this comparison (Figures 5–8), we compared five models for dataset A. The models
include the Persistence model, LSTM (with two hidden layers), ELM, VMD-ELM (with
a constant α-1500 and K = 8) and finally RIPPR, which uses PSO to find the optimal
components for the VMD algorithm. In the first scenario (1 step ahead forecasting), it
is seen that as expected, VMD-ELM outperforms the Persistence model, LSTM and the
traditional ELM model by a considerable margin. The capability of RIPPR over VMD-ELM
is clearly visible in the second9 scenario (Six steps ahead forecasting), where we can see
that the residuals of the RIPPR are significantly lower than the VMD-ELM’s residuals.
These results confirm that RIPPR can significantly outperform the VMD-ELM model. Due
to the lower performance of the Persistence model and the LSTM model, we have excluded
them from the later experiments.



Energies 2021, 14, 4378 14 of 20

Figure 5. One step ahead forecasting for dataset A.

Figure 6. Six steps ahead forecasting for dataset A.

Figure 7. Forecasting error-one step ahead forecasting for dataset A.
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Figure 8. Forecasting error-six steps ahead forecasting for dataset A.

Furthermore, to verify the significance of the accuracy improvement of the RIPPR
model, the forecasting accuracy comparison with the aforementioned models is conducted
using Wilcoxon signed-rank test. It is conducted under a significance level of 0.05 in
one-tail-tests. The test results are presented in Table 3. It is clearly seen that there is a
statistical significance (under a significance level of 0.05) for the proposed RIPPR among
the compared models, including the Persistence model, LSTM model, ELM model and
VMD-ELM model.

Table 3. Wilcoxon signed-rank test.

Compared Models

Wilcoxon Signed-Rank Test

OneStep Ahead (α = 0.05;
W = 1611)

SixStep Ahead (α = 0.05;
W = 9882)

RIPPR vs. Persistence 1120 608

RIPPR vs. LSTM 869 499

RIPPR vs. ELM 316 734

RIPPR vs. VMD-ELM 1548 6782

3.2.2. Experiment 2

This experiment was also designed as a comparative study for datasets B, C and D
between RIPPR modules as experiment 1 and the available literature [51]. Note that here
we consider the electricity load demand for the given time period. The first 3 weeks of
each dataset are used to train the model, and the remaining week is used as the test set.
Therefore, the training set consists of 1008 data points, and the test set consists of 336 data
points. The experiment results are shown in Table 4. The experiment compares results
for two metrics, namely RMSE (MW) and MAPE (%). The results clearly indicate that the
RIPPR model has outperformed the available literature for all datasets. We can confirm the
superiority of VMD over EMD in an EPF scenario as presented in this experiment.
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Table 4. Results comparison for datasets B, C and D.

Horizon
(h) Metric ELM VMD-ELM RIPPR Qiu et al.

B
0.5

RMSE 94.09 37.82 28.21 49.86
MAPE 0.86 0.35 0.27 0.53

24
RMSE 754.18 483.12 420.19 541.53
MAPE 6.94 4.32 4.01 4.62

C
0.5

RMSE 115.61 46.33 37.56 69.55
MAPE 1.09 0.46 0.35 0.65

24
RMSE 567.33 400.16 352.23 377.63
MAPE 5.67 3.78 2.89 3.22

D
0.5

RMSE 142.61 37.47 30.96 75.09
MAPE 1.21 0.31 0.25 0.70

24
RMSE 583.75 375.59 318.15 322.04
MAPE 4.51 2.66 2.39 3.08

3.2.3. Experiment 3

We follow the same configuration as the two previous experiments for dataset E;
RIPPR vs. the available literature [52,53]. All the data were converted into hourly data
similar to the literature. Thus, 1 day has 24 data points. In total, 744 data points were
obtained, and 24 data points were set as test data for one step (one hour) ahead forecasting
scenario. For one day (25 steps) ahead forecasting scenario, 168 data points were considered
as the test data. The experimental results are shown in Table 5. The experiment compares
results in 2 metrics, namely MAE($/MWh) and MSE($/MWh). In the results, the RIPPR
model outperforms the compared literature by a considerable margin across all instances.
The superiority of a decomposition-based hybrid model over a traditional model is also
confirmed by these results. Hour-ahead forecasting is illustrated in Figure 9, and the
24-h ahead forecasting scenario is presented in Figure 10. For the 24-h ahead scenario in
Figure 10, the RIPPR model has managed to capture a number of outliers in the dataset.
Further, it is supported by the low MSE values across the two horizons. A single step in
this experiment represents one hour of time.

Table 5. Results comparison for dataset E.

Horizon (h) Metric ELM VMD-ELM RIPPR Peng et al.
[52]

Babu et al.
[53]

1
MAE 2.95 2.91 2.52 3.19 3.23
MSE 13.53 13.02 10.22 15.44 18.27

24
MAE 7.85 7.48 4.63 5.01 5.32
MSE 119.01 112.09 50.08 52.59 53.00

Figure 9. Forecasting performance of RIPPR for one hour ahead.
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Figure 10. Forecasting performance of RIPPR for 24 h ahead.

4. Discussion and Conclusions

In this paper, we propose a novel Artificial Intelligence (AI) based approach for
electricity price forecasting that addresses the challenges of accuracy, robustness and real-
time multi-step prediction. RIPPR utilizes Variational Mode Decomposition (VMD) to
transform the spot price data stream into sub-series that are optimized for robustness using
particle swarm optimization (PSO). These sub-series are input to an Extreme Learning
Machine (ELM) algorithm for real-time multi-step prediction. RIPPR was evaluated with six
electricity price/load demand datasets from the Australian energy market. Five benchmark
methods were compared with the proposed model to verify its effectiveness. Based on
this robust empirical evaluation across three data streams from different market types,
we can conclude that VMD based hybrid models outperform traditional single structure
models in EPF, the performance of VMD depends on the mode number (k) and balancing
parameter (α), and PSO optimization to find the optimal (k, α) combination improves
the results significantly rather than using a static (k, α) combination. As future work, we
intend to extend the proposed model to incorporate additional features such as weather,
global market variables and related external events that will improve the forecast accuracy
and contribute towards the AI capability for real-time monitoring of future smart grids.

Author Contributions: Conceptualization, S.K., D.D.S., S.S., R.N., A.J. and V.V.; formal analysis, D.A.
and V.V.; investigation, S.K. and A.J.; methodology, S.K., D.D.S., S.S., R.N., E.O. and A.J.; resources,
D.A.; software, V.V.; validation, D.D.S., S.S., R.N. and E.O.; writing—original draft, S.K., D.D.S. and
S.S.; writing—review and editing, D.A., E.O., A.J. and V.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data is publicly available from the Australian Energy Market
Operator (AEMO) at https://aemo.com.au/ accessed on 4 May 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Nomenclature Refferd to
VMD Variational Mode Decomposition
PSO particle swarm optimization
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RVFL Random Vector Functional Link neural network
ELM Extreme Learning Machine
EPF Electircity Price Forecasting
ARMA Auto regressive moving average
ARIMA Auto-regressive integrated moving average
VAR Vector auto-regression
GARCH Generalized autoregressive conditional heteroskedasticity
ANN Artificial neural networks
SVM Support vector machine
FNN Fuzzy neural networks
RNN Recurrent neural networks
ERCOT Electric Reliability Council of Texas
LSTM Long short-term memory
WPT Wavelet packet transform
PSOSA particle swarm optimization based on simulated annealing
LSSVM Least Square Support Vector Machine
FEEMD Fast ensemble empirical mode decomposition
BP Back propagation
IMOSCA Improved multi-objective sine cosine algorithm
RELM Regularized extreme learning machine
EMD Empirical Mode decomposition
EWMA Exponential Weighted Moving Average
EWT Empirical Wavelet Transform
SLFN Single hidden layer feedforward neural network
NSW New South Wales
MAE Mean absolute error
RMSE Root mean square error
MAPE Mean absolute percentage error
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