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Abstract: Wind turbines are often placed in complex terrains, where benefits from orography-related
speed up can be capitalized. However, accurately modeling the wind resource over the extended
areas covered by a typical wind farm is still challenging over a flat terrain, and over a complex
terrain, the challenge can be even be greater. Here, a novel approach for wind resource modeling is
proposed, where a linearized flow model is combined with a machine learning approach based on the
k-nearest neighbor (k-NN) method. Model predictors include combinations of distance, vertical shear
exponent, a measure of the terrain complexity and speedup. The method was tested by performing
cross-validations on a complex site using the measurements of five tall meteorological towers. All
versions of the k-NN approach yield significant improvements over the predictions obtained using
the linearized model alone; they also outperform the predictions of non-linear flow models. The
new method improves the capabilities of current wind resource modeling approaches, and it is
easily implemented.

Keywords: wind resource; machine learning; similarity; complex terrain; WAsP; WindSim

1. Introduction

Wind and solar photovoltaic power plants are now the cheapest options for electricity
generation in most parts of the world [1], paving the way for the extensive decarboniza-
tion [2–4] of the power sector and the economy. However, in the case of wind energy, the
accurate assessment of the wind resource at a prospective wind farm site continues to
be key to successful development and competitive pricing. While traditional modeling
approaches [5,6] for wind project development [7] are often sufficiently accurate in flat
or mildly rolling landscapes, wind power predictions in complex terrain are consider-
ably more challenging [6,8–11]. A 5% mean error in predicted wind speed can be the
threshold for the approval or rejection of a wind project. Although traditional modeling
approaches based on linearized flow solvers are nowadays often complemented with
Reynolds-averaged Navier–Stokes (RANS) flow models and sometimes even large-eddy
simulations (LES), the benefit is not always clear. Well-tuned linearized flow models,
complemented by expert knowledge, may often yield similar or better results compared to
advanced computational fluid dynamics (CFD) models.

In an attempt to evaluate and compare the performance of numerical wind flow
models, different validation studies have been reported in the literature. Flow modeling
approaches include assessments using wind industry-standard linearized flow models
such as the one included in the Wind Atlas Analysis and Application Program (WAsP) [5],
and more complex CFD approaches, e.g., RANS and LES. Beaucage et al. [6] performed a
validation study over different terrain features, where the linearized flow model in WAsP
and the Meteodyn CFD model were compared. In contrast to what is normally assumed,
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the results of WAsP were similar or better than those of the CFD model, with an overall
root mean squared error (RMSE) of 0.62 m/s (corresponding to an 8.0% error) for WAsP
and 0.76 m/s (9.4%) for Meteodyn. Another comparative analysis was performed between
the linearized WAsP model and the RANS-model also available within the WAsP suite
(WAsP CFD) at a complex site in Brazil [8]. In this study, it was pointed out that the WAsP
CFD model did not present a clear advantage over the linearized version. The authors
conjectured that thermal effects not considered by either model highly contributed to the
uncertainty of both results. Other studies have suggested the capacity of CFD models to
outperform linear models [9–11]; Hristov et al. [11] suggested improvements of about 8%
when predicting the annual energy production (AEP).

More recently, statistical learning methods have made their appearance in wind
resource assessment. Such methods have the potential for taking advantage of a larger
amount of input data than conventional approaches. In such data-based methods, the
learning process commonly relies on terrain and meteorological features to estimate the
target variable. This provides greater flexibility for considering micro-climatic effects that
are generally not accounted for by flow models. Examples of machine learning methods
include ensembles of regression trees [12], support vector regression (SVR) [13] and neural
networks (NN) [14].

The combination of physics-based and data-based methods may be a natural solution
to the problem of accurate wind resource estimations in a complex terrain. Such hybrid
approaches take advantage of each method’s strengths to increase robustness and predictive
performance. However, for wind resource assessment, these methods are less popular.
According to a literature review, only Tang et al. [15] appear to have used a method that
combines flow (CFD) simulations with a data-driven technique for assimilating multiple
on-site measurements in complex terrain, in addition to a more traditional inverse-distance
weighting (IDW) method [16].

Here, we address the continuing challenges of accurate wind resource estimation
in complex terrains by designing a method which taps into the capabilities of modern
wind resource modeling suites such as WAsP or WindSim, but simultaneously provides
the capability of accounting for micro-climatic effects, which are generally not properly
addressed in flow models. The proposed new method is based on a conceptually simple
machine learning approach, the k-nearest neighbors (k-NN) method (see, e.g., [17]). To
the best of our knowledge, this approach has not been used before. The basic idea was
to take advantage of the similarity between different locations at a prospective wind farm
site in terms of a set of classifiers or features (Section 2.1). Ideally, it should be possible
to determine such features with the terrain information alone (elevation and roughness)
and possibly wind resource information from one reference location, very much like in
conventional flow models. It will be argued below that all feature parameters required for
this work can actually be determined with flow models such as WAsP or WindSim alone,
although an improved prediction can be obtained in the case of power density estimates
if the wind rose at one reference location is known. The new k-NN method can then be
used in complete analogy to a conventional flow model to predict the wind resource at
an arbitrary location for the purpose of turbine yield calculation or wind mapping. It
should be noted that while the new method essentially uses the same input information
as a conventional flow model, it provides larger flexibility, since it is not restricted by the
deterministic relationships between a target and a reference location, which necessarily
only consider the properties of the fluid model but not the micro-climate.

In order to build a reference case against which the new method can be compared, flow
simulations based on both the linearized model within the WAsP suite (Section 2.6) and
the RANS-CFD model (WindSim) (Section 2.7) were conducted first and the results were
analyzed by cross-validation. The setup of both models was explored in a detailed manner,
ensuring that the models were optimally configured and not artificially underperforming.
This included the fine-tuning for atmospheric stability (in the case of WAsP), the use of
both standard and high-resolution roughness maps, the exploration of a detailed forest
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model (in the case of WindSim), and the study of two different turbulence closure models
(in the case of WindSim).

A number of different implementations were studied for the k-NN approach (Section 2.4).
The basic approach consists of directly using the observed wind speed or power density
at the available met tower locations, with the exception of the target location used for
validation in each turn. Alternatively, the local wind climates can be first transferred to
the target location, and the k-NN can then be applied to the transferred climates; this is
what we call the hybrid approach below. Given that the hybrid method is a statistically
independent implementation, the linear combination of both methods, i.e., an ensemble,
bears the potential of providing more accurate predictions and was implemented as well.

2. Methods and Data
2.1. The k-NN Method Applied to Wind Resource Modeling: The General Concept

The general idea of the k-NN approach is to determine similarity between different
locations, using a certain number N f of features as variables in a generalized coordinate
space. Each site can then be represented as a point in this N f -dimensional space, and its
distance from any other site can be determined by an appropriate norm. Here, the L2-
norm L2(x) = (∑ x2

i )
1/2 was used throughout, prior to the standardization of each feature

variable x through x → (x− µx)/σx. Feature candidates include strictly terrain-related
variables, such as the terrain complexity parameter RIX [18], speedup and (geometric)
distance between sites; variables related to local atmospheric conditions, such as tempera-
ture and turbulence intensity; and mixed variables such as the vertical wind shear, which
depend on both terrain-dependent flow and atmospheric stability.

The key assumption of the k-NN method is that the variable of interest, e.g., the wind
speed vn = v(tn) at time step tn, can be predicted from the values of its k nearest neighbors
in the N f -dimensional feature space, either by a simple or a weighted average:

ŷ(x0) = ∑
xi∈Nk(x0)

wiyi/ ∑ wi, (1)

where x0 is the target site and Nk(x0) is the set of nearest neighbors identified by the
algorithm. The weights wi were taken either as constant (uniform weighting) or as
wi = 1/d(x0, xi) (inverse distance weighting, IDW), where d(x0, xi) is the distance be-
tween features (=L2(|x0 − xi|). It should be noted that the number k of nearest neighbors
can be dynamically determined at each time step by the algorithm, allowing to account for
time-dependent features.

The k-NN procedure is illustrated in Figure 1 for the case of two features, which
in this case are the RIX number and the speedup. The differences in RIX between the
predictor and the predicted site (delta-RIX) can be used to correct results obtained with the
linearized flow model in WAsP for complex terrain analysis [5]. Here, RIX is used as one
of the potential features determining similarity. In Figure 1, the target site is shown is a
diamond-shaped location in the RIX-speedup plane, together with a number of potential
predictor sites. Note that both features may be taken as constant or time dependent; in
the more general case of time-dependent features, Figure 1 shows a snapshot of a set of
locations at a given time step tn. The methodology can also be extended to include the time
as an additional feature.
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Figure 1. Illustration of the k-NN approach, for the case of the features’ speedup and RIX. Red
diamond: target site. The circles groups the k = 3 nearest neighbors out of 10 possible predictors.

2.2. Hyperparameter Estimation in k-NN Models

In a k-NN regression, the number of nearest neighbors in feature space k is a hyperpa-
rameter that determines the accuracy of the model. The other hyperparameter used in this
work is the type of weighting wi (uniform or inverse-distance weighting); see Equation (1).
Both hyperparameters are evaluated systematically in a process called parameter tuning,
which determines the optimal value of k so that prediction errors are minimized. The
standard methodology is based on splitting the data set into a training and a testing set,
in such a way that the training set allows to estimate the optimal k∗ value (usually by
cross-validation to avoid over-fitting). Then, the selected k∗ value is evaluated on the
testing set (unseen data) to obtain an unbiased estimation of the model’s performance. In
the present work, this approach was used for reference purposes (see below), however, the
main contribution of this work to the k-NN methodology is the estimation of the optimal
hyperparameters without the target location, while still using the full observational period,
thereby avoiding seasonality biases; a detailed description can be found in Section 2.4. The
two conceptually different approaches used in the work for hyperparameter estimation
can then be described as follows:

1. In the first approach, the complete annual set of wind measurements was used to
obtain the k∗ minimizing the prediction errors for each site. In a first step (termed
method kNN0 in Section 2.4), data from all locations, including the target site, were
used for that purpose. This step provides a fit to the data, not a prediction. It does,
however, allow creating prior knowledge of the best hyperparameters possible for the
reference sites. An estimation of the optimal hyperparameters without using data from
the target site, required for wind resource estimation at a location without measured
data, is then conducted in a separate step, as described in Section 2.2.1.

2. The second approach consists of the implementation of a nested cross-validation
method, similar to the standard procedure of splitting the data set into a training and
evaluation set. As opposed to the standard procedure, however, biases are avoided by
using training periods of variable lengths, while maintaining validation and testing
periods at constant lengths; as can be seen in Section 2.2.2.

2.2.1. Hyperparameter Estimation with the Full Data Set

The parameter estimation for the full observational period is based on the following
four algorithms. Algorithm 1 estimates the wind speed at each time step i using multiple
combinations of features and a maximum of k neighbors. The uniformly weighted k-NN
average ŷi and the inverse-distance weighted k-NN prediction ŷ(w)

i were used to estimate
the wind speed. The mean percentage error MPE was used as the main error metric.
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Algorithm 1 k-NN regression with subset and number of neighbors selection
Let X be the matrix of predictors and y be the vector of target values
Let x0 be the vector of query predictors
Let F be the set of all possible combination of features
Let K be the maximum number of neighbors to consider

Let z ≡ 1
N

N

∑
i=1

zi

for each fα ⊆ F do
for k← 1 to K do

for i← 1 to N do
Di,j ← ||xj − x0i ||2, ∀xj ∈ X . Variable D stores the L2 norm between query site x0i and each predictor site xj for each instance i.

wi,j ←
1

Di,j
Let N0 be an empty set
for i← 1 to k do

Ni+1 ← Ni ∪ arg min
xp |X\Ni

(D) . The set N stores the nearest neighbors to the query site for each instance i.

end for

ŷi ←
1
k

k

∑
xi∈Nk

yi

ŷ(w)
i ←

k

∑
xi∈Nk

yiwi

k

∑
xi∈Nk

wi

end for

MPEα,k ←
(

ŷ− y
y

)
× 100% . The MPE variable stores the percentage error for each set of features α and number of neighbors k

MPE(w)
α,k ←

(
ŷ(w) − y

y

)
× 100%

end for
end for
MPEα,k ← MPEα,k ∪MPE(w)

α,k
return fα , k, MPEα,k

Algorithm 2 was used to determine the best hyperparameter k and its associated
regression type c, either uniform or inverse-distance weighted. Those best ks were selected
for each site and for each set of features based on their MPE values. A ranking of the best
set of features for the study site was determined by cardinality (i.e., the number of features
in a set) based on the average of the MPE of all sites. Here, the four highest-ranking sets of
features (i.e., the four best indicators of similarity) are reported in all cases.

Algorithm 2 Selection of the optimal k and best predictors for cardinality 2 to #{X0}
Let X be the matrix of predictors and y be the vector of target values
Let x0 be the vector of query predictors
Let F be the set of all possible combination of features
Let K be the maximum number of neighbors to consider
Let Sites be the set of sites that will be predicted

for each site ∈ Sites do
Algorithm 1 (X, x0, y,F , K)
MPEsite,α,k

end for
return MPEsite,α,k
for each site ∈ Sites do

for each fα ⊆ F do
k(MPE)

site,α ←arg min
k

(MPEsite,α,k) . Selection of optimal hyperparameter k∗ for each site and set of features indexed by α

end for
end for
Let F(MPE)

0 be an empty set
for c← 2 to #{X0} do

F(MPE)
c+1 ← F(MPE)

c ∪ arg min
fα |F\F

(MPE)
c ,#{ fα}=c

(
1

#{sites}

#{sites}

∑
site=1

|MPE
site,α,k(MPE)

site,α
|
)

. Selection of features fα that minimize the average MPE of all sites per cardinality

end for
return F(MPE)

#{X0}
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As mentioned previously, the optimal hyperparameters (k∗ and c∗) determined by
Algorithm 2 (also referred to as method kNN0, as can be seen in Section 2.4) were de-
termined using the wind measurements of all sites and are therefore not suitable for the
estimation of the wind resource at a target location without on-site measurements. To
overcome this limitation, the kNNa method (Section 2.4) was designed to estimate the hy-
perparameters of an arbitrary target site using the optimal hyperparameters of neighboring
reference sites, where the estimation is based on the similarity between sites. An illustration
of this approach is given in Figure 2. A k-NN classifier was used to predict the two target
variables k̂site and ĉsite at the target site by the majority or weighted majority class of its k
nearest neighbors. This procedure was conducted using Algorithm 3, where an in-depth
exploration of the parameters was performed using multiple combinations of features and
a number of neighbors in the classifier. Each combination of parameters is called a different
classifier. Given that hyperparameters in the present study are not time-dependent, all the
features used to estimate k̂ and ĉ must be constant in time. Therefore, a mean value was
calculated for time-dependent variables.

Algorithm 3 k-NN classification with subset and number of neighbors selection

Let X be the matrix of mean predictor values for all sites
Let k∗ and c∗ be the vector of optimal parameters for k and c for all sites
Let x0 be the vector of mean predictor values at query location
Let F be the set of all possible combinations of features
Let #{Sites} − 1 be the maximum number of neighboring sites

for each fα ⊆ F do
for j← 1 to #{Sites} − 1 do

for each site ∈ Sites do
Dsite,q ← ||xq − x0||2, ∀xq ∈ X|xq 6= x0

Isite,q ←
1

Dsite,q

Wsite ←
j

∑
q=1

Isite,q

wsite,q ←
Isite,q
Wsite

Let Q0 be an empty set
for i← 1 to j do

Qi+1 ← Qi ∪ arg min
q|Sites\Qi

(Dsite,q)

end for
Let k∗γ be the set of unique k∗l denoted as{k∗1 , ..., k∗L} 6= . The subset of unique values of k∗ is given by k∗γ
votek∗l

← ∑
q∈Qj

I(k∗q = k∗l ), ∀l ∈ k∗γ . votek∗l
saves the votes for each class k∗l from neighborhood Qj

k̂α,j,site ← arg max
k∗l

(votek∗l
) . The majority class is the predicted number of neighbors k̂, estimated with the classifier fα and number of neighbors j

vote(w)

k∗l
← ∑

q∈Qj

I(k∗q = k∗l )wsite,q , ∀l ∈ k∗γ

k̂(w)
α,j,site ← arg max

k∗l
(vote(w)

k∗l
)

Let c∗ be a set of two labels {c1, c2} = {uni f orm, distance}
votec∗l

← ∑
q∈Qj

I(c∗q = c∗l ), ∀l ∈ c∗l . votec∗l
saves the votes for each class c∗l from neighborhood Qj

ĉα,j,site ← arg max
c∗l

(votec∗l
) . The majority class is the predicted type of regression ĉ, estimated with the classifier fα and number of neighbors j

vote(w)

c∗l
← ∑

q∈Qj

I(c∗q = c∗l )wsite,q , ∀l ∈ c∗l

ĉ(w)
α,j,site ← arg max

c∗l
(vote(w)

c∗l
)

end for
end for

end for
k̂α,j,site ← k̂α,j,site ∪ k̂(w)

α,j,site

ĉα,j,site ← ĉα,j,site ∪ ĉ(w)
α,j,site

return k̂α,j,site , ĉα,j,site

To determine which of the k-NN classifiers evaluated in Algorithm 3 had the best
performance, wind speed predictions were conducted using the predicted hyperparameters
k̂ and ĉ. The classifier minimizing the average error of the reference sites (leaving out the
target site) was selected. Each site at its turn was assumed to be a target site, therefore Nsite
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(number of sites) average errors were calculated; the classifier that repeated the most in
those performance rankings was then selected. A pseudocode description of the method
described is shown in Algorithm 4.

Figure 2. Illustration of the k-NN classifier method to predict the type of regression ĉ (uniform or
inverse-distance weighting), used by Algorithm 3. Red diamond: target site. The circles group the
k = 4 nearest neighbors in the 2-dimensional space created by the features speedup and RIX. The same
idea holds for predicting the number of neighbors k̂.

Algorithm 4 k-NN regression to estimate ŷ using estimated hyperparameters
Let X be the matrix of predictors and y be the vector of target values
Let x0 be the vector of query predictors
Let F be the set of all possible combinations of features
Let F(MPE)

#{X0}
be the set of best predictors

for each fβ ⊆ F(MPE)
#{X0}

do . The k-NN regression uses the set of selected features (F(MPE)
#{X0}

) by Algorithm 2, and indexed by β

for each site ∈ Sites do
for each k̂r ∈ k̂α,k,site , ĉr ∈ ĉα,k,site do . The hyperparameters k̂ and ĉ predicted by the k-NN classifiers are indexed by r

for i← 1 to N do
Di,j ← ||xj − x0i ||2, ∀xj ∈ X|xj 6= x0

wi,j ←
1

Di,j
Let J0 be an empty set
for i← 1 to k̂r do

Ji+1 ← Ji ∪ arg min
xp |X\Ji

(D)

end for
if ĉr = uni f orm then

ŷi,β,site,k̂r ←
1
k̂r

k̂r

∑
xi∈Jk̂r

yi

else

ŷi,β,site,k̂r ←

k̂r

∑
xi∈Jk̂r

yiwi

k̂r

∑
xi∈Jk̂r

wi

end if
end for

MPEβ,site,k̂r ←
(

ŷβ,site,k̂r − ysite

ysite

)
× 100% . The MPEβ,site,k̂r variable stores the errors using features β, at a given site with the estimated k̂ and ĉ

end for

r(MPE)
β,site ← arg min

r

 1
#{Sites} − 1

#{Sites}−1

∑
i=0

i 6=site

|MPEβ,site,k̂r |

 . Selection of the classifier that belongs to the index r that minimizes the avg. error leaving one site out

end for
Let ηα be the set of unique r(MPE)

β,l denoted as {r(MPE)
β,1 , ..., r(MPE)

β,L } 6=
vote

r(MPE)
β,l

← ∑
site∈Sites

I(r(MPE)
β,site = r(MPE)

β,l ), ∀l ∈ ηα . vote
r(MPE)
β,l

saves the votes for each classifier

r(MPE)
β,opt ← arg max

r(MPE)
β,l

(vote
r(MPE)
β,l

) . r(MPE)
β,opt saves the classifier that repeat the most for each set of features β

end for
return ŷ

β,site,r(MPE)
β,opt
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2.2.2. Hyperparameter Selection and Testing through Nested Cross-Validation

As described above, often k-NN methods deals with time series data, which portray
different characteristics when analyzed within different periods. For hyperparameter
tuning and providing an unbiased validation of a given method for modeling or predicting
a variable (such as wind speed), cross-validation is commonly carried out. In the present
work, the nested cross-validation approach illustrated in Figure 3 was implemented. With
such an approach, the testing period (green square in Figure 3) appears chronologically
after the training period (blue squares). The training data are used to systematically
evaluate the number of neighbors and type of regression, and the setup that minimizes the
MPE is selected and used in the testing set to provide an unbiased measure of the model
prediction error. By repeating this process with multiple testing sets, a better estimate of
model performance is obtained. In this work, the data set was split into five nested subsets,
using the setup shown in Table 1. The testing period was constant in all runs (2 months).
As mentioned before, this implementation was conducted for reference purposes only.

Figure 3. Illustration of the nested hyperparameter estimation and cross-validation approach.

Table 1. Setup of nested cross-validation simulations.

Data set/case 1 2 3 4 5

Total observations 17,568 26,352 35,136 43,920 52,704
Training observations 8784 17,568 26,352 35,136 43,920
Testing observations 8784 8784 8784 8784 8784

2.3. Feature Selection for k-NN Methods

A number of features were considered for their use with k-NN-based methods. A
basic requirement for all candidates was the possibility of calculating their values for each
location of interest from geographic information alone, in a completely analogous way in
which flow modeling tools such as WAsP or WindSim construct wind maps for a site or
region of interest. The following feature candidates were found to be suitable candidates:

• The terrain ruggedness index RIX. Although the ∆RIX correction procedure [18] did
not provide a significant improvement of the WAsP flow modeling results for the
site, a weak correlation between the WAsP flow modeling error for the wind speed
indicated a possible suitability of the RIX index as a similarity feature.

• The orography-induced speedup (e.g., relative increase in wind speed due the terrain
slope). A modest correlation between the prediction error and the difference between
the WAsP-calculated topography-induced speedups was found (Figure 4), indicating
that the speedup is a possible similarity measure candidate.

• The distance between measurement locations (met towers). As shown in Figure 4,
the distance between locations bears a similar impact on the flow modeling results as
the difference between speedup values.
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• The vertical wind shear. The wind shear was found to have a significant (negative)
correlation with the prediction error, and was therefore expected to be among the
important predictor variables of the k-NN method. Note that the degree of correlation
between the flow modeling error and the feature candidates shown in Figure 4 does
not have any impact on the k-NN methodology, beyond the decision of including
or not a given candidate feature in the list of k-NN predictors. The k-NN method
determines the optimal set of predictors in an automated fashion, as described above.

The following additional feature parameters were used for the assessment of
power density:

• The Weibull scale and shape parameters. Determining Weibull parameters requires
on-site measurements (or simulated winds from atmospheric models) for at last one
location. Using such a reference location, a transferred wind rose (the latter understood
as the set of angular wind speed histograms) can be constructed using a wind flow
modeling tool. Since local flow conditions are different for different wind directions,
the average transferred wind rose will generally have different Weibull parameters.

• The R2-value, or coefficient of determination, of the Weibull fit. The transfer of
wind roses may not only change the Weibull parameters, but may also distort the
underlying histogram, resulting in varying degrees of goodness of fit. R2-related
parameters can be constructed for their use as similarity features; additionally, a
modified weighting scheme (similarly to the one proposed in [19]) was explored as
well, where the R2-value was used to build a confidence level matrix as part of a
generalized inverse-distance averaging scheme.
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Figure 4. Mean absolute modeling error for WAsP-predicted wind speed vs. features selected for the
k-NN study. The dots correspond to the cross-validation between each pair of sites. The blue line
represents the linear regression of the errors as a function of presented features.

2.4. Setup of the k-NN Simulations

The current work consists of the following sequence of assessments:
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1. KNN0. All available wind speed data for the full one-year period (see Section 2.5)
were used to perform a k-NN regression for each of the five towers as target site.
The optimal hyperparameters k∗ and c∗ were calculated from the full regression.
Algorithms 1 and 2 were used for this purpose. This is a baseline case, constructed
for reference purposes.

2. KNNa. In order to conduct an independent test of the methodology, the optimal
hyperparameters were estimated from all towers, excluding the target tower itself.
The corresponding procedure is described in Algorithm 3.

3. KNNb. Instead of using the measured wind speed information directly as a predictor
for a given target site, an alternative method consists of using the WAsP predictions
for the target site, prepared with each of the predictor sites. The same set of features
and feature combinations as before were used in this step.

4. KNNc. Since methods KNNa (driven exclusively with observed wind speed data)
and KNNb (working on WAsP-processed observational data) represent independent
assessments, an ensemble version was performed, where methods KNNa and KNNb
were combined linearly.

5. KNNd. For an independent validation of the k-NN approach, an additional method
was implemented, where optimal hyperparameters were determined and validated
in the nested approach described in Section 2.2.2.

2.5. Validation Data

On-site tall tower meteorological data from the development phase of a commercial
wind farm in Mexico were used for model construction and validation. The data are
proprietary and are not in the public domain. Each of the five towers at the site (“site B”)
was equipped with three pairs of redundant cup anemometers (class I for primary sensors,
standard for redundant) placed at 80, 60, and 40 m above ground level. The wind direction
was measured at two levels (42 and 78 m). Temperature measurements were taken at 12
and 80 m above ground level. Data were recorded at 10 min intervals; for each variable,
the mean, maximum, minimum and standard deviation were recorded. One full year of
concurrent information with only minor data gaps was selected to avoid seasonal biases.
Initial quality assurance was conducted in a semi-automatic way using Windographer.
Overall data recovery after quality assurance was 99.9%. All reported results for the wind
speed modeling accuracy in this study refer to the 80 m wind speed.

In order to build a continuous observational period, three reconstruction methods
were used: (1) replacement of missing or invalid 80 m data with those from the redundant
sensor, prior tower shadow correction when necessary; (2) vertical extrapolation, and
(3) principal component analysis (PCA). Vertical extrapolation was used when 40 m and
60 m wind speed data were available. PCA was used to take advantage of concurrent data
from other towers where no concurrent wind speed data at the same tower were available.

In order to ascertain that the reconstructed continuous data records for each met tower
were statistically indistinguishable from the quality-controlled original data, both a χ2

test for the observed ( fO(xi)) and reconstructed ( fS(xi)) wind speed distributions, with
χ2 = ∑( fO(xi)− fS(xi)/ fO(xi), and a Kolmogorov–Smirnov test for the cumulative prob-
ability density functions (FO(xi) and FS(xi), respectively) were conducted. All tower mea-
surements at site B successfully passed both tests, demonstrating that the quality-controlled
original data sets and the reconstructed full data sets were statistically indistinguishable.

The wind regime at the site is essentially bi-modal, with Southerly winds predominat-
ing most of the year, the remainder corresponding to Northerly winds (see Figure 5). All
towers were located at either the Southern or the Northern edge of a plateau structure, with
three towers (S01_B, S02_B, SO3_B) being located at the Southern and two (S04_B, S05_B)
at the Northern edge. S01_B and S05_B are somewhat more exposed locations, sitting on
extruded portions of the plateau, whereas the other towers sit between a steep slope and
the flat upper part of the plateau.



Energies 2021, 14, 4364 11 of 19

E

N-E

N

N-W

W

S-W

S

S-E

8.7

17.5

26.2

35.0

43.7

Wind Rose S01B

[0.0 : 6.0)
[6.0 : 12.0)
[12.0 : 18.0)
[18.0 : 24.0)
[24.0 : inf)

E

N-E

N

N-W

W

S-W

S

S-E

7.9

15.8

23.7

31.5

39.4

Wind Rose S04B

Figure 5. Wind rose observed at sites S01B and S04B from June 2016 to June 2017.

2.6. Flow Modeling: WAsP

WAsP [5] was used for (1) wind flow modeling and cross-prediction of the wind
resource at all locations with observational data; and (2) the determination of the feature
parameters (Section 2.4). Orography inputs come from the Shuttle Radar Topography
Mission (SRTM) digital elevation data [20] with a resolution of 1 arcsec (30 m). The SRTM
1 Arc-Second Global version [21] used was downloaded from the U.S. Geological Survey
(USGS) website. The domain extends 10 km beyond the limits of the site of interest in order
to create a large enough buffer to avoid boundary effects; contour lines with a spacing of
10 m were used. The GlobeLand30 (GLC30) database [22] with a resolution of 1 arcsec
(30 m) was used to create a roughness map. Using the GLC30 version 2020 database
improves the cross-validation results for the wind speed compared to using the WAsP
default database (GlobCover-2009 map [23]); therefore, we use the former roughness data
hereafter. A detailed discussion of the impact of potentially more accurate roughness maps
and its impact of flow modeling accuracy is not part of the present work.

In the WAsP modeling chain, the observed wind is generalized using predefined
heights and roughness lengths, which can be modified. It was observed that a fine tune of
these values reduces the error in the predicted wind. Here, the predefined heights were set
to 10, 30, 60, 80 and 100 m above ground level and the standard roughness lengths were set
to 0.0, 0.05, 0.11, 0.23 and 0.5 m.

In order to account for atmospheric stability, a systematic assessment of the heat
flux impact on the vertical wind shear profiles was conducted (not shown). By using the
WAsP default configuration, corresponding to a slightly stable condition with a heat flux
offset of −40 W/m2, a good fit with the observed profiles was found at all tower locations.
Allowing for heat flux offset variations did not improve the results. Another option in
the WAsP software is the geostrophic shear model, which is turned on by default. The
geostrophic shear is obtained from coarse reanalysis data, which cannot resolve the slopes
in mountainous terrain [24], and can therefore give unphysically large geostrophic wind
shear values. This was also observed for the study site in this work (0.02 m/s/m). The
model was therefore turned off in all cases.

An attempt to further improve the results of the cross-validation predictions using
the delta-RIX methodology [18] was performed. However, as mentioned in Section 2.3, no
statistically significant improvement was obtained.

As an additional reference, the WAsP software was run in (RANS) CFD mode; the
results were found to be similar to the ones obtained with WindSim, discussed in the next
subsection. Unless mentioned otherwise, all WAsP results were obtained with the standard
(linear) flow solver.
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2.7. Flow Modeling: WindSim

A RANS-based solver, the commercial software package WindSim ([25]), was used
in an attempt to improve cross-predictions, given the terrain complexity of the site. The
same topography data (STRM and GLC30) as those in WAsP were used. The WindSim
mesh was setup with an initial horizontal resolution of 50 m in the refinement area for
convergence and initial performance tests; the resolution in the refinement area used in the
final selected configuration was then set to 20 m for a better representation of the terrain at
its steep parts. Setup parameters for WindSim include (1) a toggle parameter for including
the forest model (on/off); (2) the free parameters of the forest model; (3) the turbulence
closure model (k-ε or k-ω); and (4) the type of atmospheric stability. A Taguchi experiment
design [26] was set up in order to assess the different free parameters of the forest model.
The assumption of neutral stability was found to produce a good agreement with the
observed wind speed profiles; moreover, simulations under stable and unstable conditions
lead to convergence problems, so only neutral stability conditions were considered for the
final model setup. The use of the k-ω turbulence closure model and the omission of the
forest model produce the best results generally, so we use this configuration hereafter. A
detailed discussion of the setup, experiment design and results obtained with the WindSim
study are beyond the scope of the present work and will be reported elsewhere.

3. Results
3.1. Cross-Validation with Flow Models

As baseline, we choose the best results from WAsP and WindSim, which are summa-
rized in Figure 6, where the cross-validation errors (in %) for the prediction of the average
wind speed obtained with WAsP (a) and WindSim (b) are shown. In both cases, a relatively
small prediction error is observed within groups S (S01B, S02B, S03B), which are locations
at the Southern edge of the plateau, and N (S04B, S05B), which are at the Northern edge.
The error is dramatically larger when cross-predicting between these two groups. WindSim
does not seem to systematically reduce the latter errors.

Figure 6. Cross−validation errors for the prediction of the average wind speed in % obtained with
WAsP (a) and WindSim (b). Light orange colors: small errors; reddish colors: large errors.

Figure 7 shows the cross-validation results as a function of the distance between
predictor-predicted pairs. This distance highly influences the prediction accuracy, but only
within the northern (N) and southern (S) zones. The absolute prediction errors are similar
within the zones. However, inter-zone cross-predictions show a much larger error than
intra-zone cross-predictions. This is as expected, as the met towers are located near either
of the plateau edges. WindSim demonstrated good results in the Bolund benchmark [11],
so one might expected improvements compared to WAsP at this site. WindSim results are
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only slightly better than WAsP and both models show (≈10%) errors when cross-predicting
between zones.

Figure 7. Absolute mean prediction error of the cross-validations as a function of distance and zone for the results using (a) WAsP; and
(b) WindSim.

Based on the above findings, which indicate that the cross-prediction accuracy between
zones is limited, we can assume that the wind climatology at the S and N edges of the
plateau is significantly influenced by the local orography. Using an inverse-distance weight
approach does not improve cross-predictions as shown in Table 2 (column 3) for the case
of WAsP. The lack of accuracy continues to be particularly noticeable at the edges of the
plateau (locations S01B and S05B), where the wind speed errors are of the order of 7–8%,
which are much larger than the accepted error for wind farm development.

Table 2. Percentage error of the cross-predictions of four implementations of the k-NNa method
(kNNa card. 2 − 5) operating for cardinalities 2, 3, 4 and 5, compared to the flow modeling results
using WAsP. WAsP = average of all WAsP cross-predictions for a given target met tower site;
IDW = inverse-distance averaged WAsP cross-predictions.

WAsP WAsP kNNa Implementations
Tower (Linear) (Linear, IDW) (Card.2) (Card.3) (Card.4) (Card.5)

S01_B 8.19 7.80 −3.39 −3.49 −3.91 −3.95
S02_B 3.75 4.00 −0.85 −0.60 0.03 0.14
S03_B 2.90 3.13 1.55 1.94 0.96 0.96
S04_B −3.48 −4.30 −1.57 −0.22 −0.99 −3.28
S05_B −7.06 −6.59 0.49 0.86 −0.54 −0.36

MAE (%) 5.08 5.16 1.57 1.42 1.29 1.74

3.2. k-NN Modeling Results
3.2.1. Overall Results

As described in Section 2.4, the kNNa model uses estimated, rather than fitted, hyper-
parameters, and therefore provides a true prediction of the wind speed at each location, as
opposed to a fit to the data. Input data are the measured wind speeds at each of the towers,
excluding those of the target location. As shown in Table 2, where the results for four
implementations (see Section 2.2.1) of the kNNa method are shown, alongside the results
from WAsP, the overall performance of the k-NN method is far better than that of the
flow model. Whereas the uniformly (column 2) and inverse-distance weighted (column 3)
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average WAsP results have an error of about 5%, the k-NN error is about 1.5%, with the
best-ranking method (kNNa.card4, using cardinality 4, see Table 3) yielding an error of
only 1.29%.

It is also worth noting that not only is the average error of the k-NN predictions
significantly smaller than the one obtained with WAsP, but the discrepancies at the more
exposed locations are also largely resolved. While the flow model produces deviations
of about 8 and −7% for S01B and S05Bs, respectively, the corresponding k-NN results are
around 3.75 and 0.5%, respectively.

3.2.2. Hyperparameter Optimization

In order to build some intuition of the structure of the results of the k-NN method, the
KNNa case described above will be further discussed. As described above, KNNa uses
estimated hyperparameters (k̂ and ĉ) for each target site, rather than their optimal values
(as determined by method KNN0). The modeled wind speeds are therefore independent
predictions, not the result of a regression. The results are shown in Table 3 for each target
site and each level of cardinality. The method with cardinality 4 (based on features’ distance,
RIX, shear exponent, and time) produces the smallest error (1.29% average), though good
results are obtained with the other methods as well. In all cases, the error is much smaller
than in the case of the flow modeling predictions (WAsP or WindSim). It can also be seen
that the number of nearest neighbors (k̂) used for the prediction of the wind speed at each
location varies among methods. Whereas the cardinality-2 method requires up to nine
nearest neighbors and shows great variability in the hyperparameter k̂ among sites, the
results for the cardinality-4 method appear to be more consistent among the tower locations
for both k̂ and ĉ, with the best predictions for each location based on one or two adjacent
locations and using uniform weighting in all cases. To understand why a location can have
nine neighbors in a five-tower arrangement, it should be recalled that time is used as a
feature parameter as well, allowing the wind speed at time step tn to be modeled based
on wind speeds at times tn−1 and tn+1. It should also be stressed that the aim is to predict
wind speeds and not to forecast them (in time), which would preclude future time steps to
be considered. In any case, restricting predictor wind speeds to simultaneous time steps
still only produces excellent results, as evidenced by the cardinality-3 and -4 methods, with
method 3 being the highest-ranking method of all.

Table 3. Highest-ranking k-NN solutions for case kNNa and each cardinality (number of features considered). Estimated optimal
hyperparameters k̂ and ĉ are shown, along with their feature sets and their mean percentage error for each target site.

Cardinality Parameter Features S01B S02B S03B S04B S05B MAPE (%)

2
MPE (%)

RIX and time
−3.39 −0.85 1.55 −1.57 0.49 1.57

k̂ 2 1 9 9 9
ĉ uniform uniform distance uniform uniform

3
MPE (%) RIX, shear

exponent and
time

−3.49 −0.60 1.94 −0.22 0.86 1.42
k̂ 9 1 2 2 9
ĉ distance uniform distance uniform distance

4
MPE (%) Distance, RIX,

shear exponent
and time

−3.91 0.03 0.96 −0.99 −0.54 1.29
k̂ 2 1 1 2 2
ĉ uniform uniform uniform uniform uniform

5
MPE (%) Distance, RIX,

shear exponent,
speedup and

time

−3.95 0.14 0.96 −3.28 −0.36 1.74
k̂ 3 1 1 3 4
ĉ distance uniform uniform distance uniform
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3.2.3. Results Obtained the Hybrid WAsP-KNN Approach

Here, we first predict the wind speed at a location (e.g., by using WAsP) and then we
use these predictions at the target location from each predictor site within the k-NN model
framework. In other words, this implementation works with the transferred climatologies,
rather than with the measured wind speed time series.

Results obtained with this method (referred to as KNNb in Section 2.4) are shown in
Table 4 under the column tagged “hybrid”. The method does not result in a decrease in the
error at the more exposed locations (S01B and S05B), although a slight improvement at the
less exposed locations occurs. The MAPE is comparable to that of WindSim.

3.2.4. Results Obtained with the Ensemble Approach

The ensemble approach (kNNc) consists of a linear superposition of models kNNa and
kNNb, where kNNa is driven by the observed wind speed data at each location, and kNNb
works on the transferred microclimates from each predictor tower to the target location.

In order to determine the statistical weight of each method, first a regression was
conducted, leading to optimal weights for each target site. In a second step, average
weights were used to build a new prediction. The accuracy observed was somewhat better
on the average (around 1.1%) than the observational data-based k-NN results, and showed
a better consistency among target sites. Since the two methods used (kNNa and kNNb)
are independent predictions of the wind resource, as their combination can lead to errors
being canceled out—as shown in Table 4, where the average error is about 1%, with a quite
homogeneous prediction accuracy at all locations.

3.2.5. Results Obtained with the Nested Approach

The nested approach (kNNd) cannot be directly used to estimate the wind resource
at a location without on-site measurements (as opposed to methods kNNa, kNNb, and
kNNc) and was implemented for reference purposes only. Given that kNNd uses the
full set of data, the metrics of kNNd are very good, with an average error of about 1%,
comparable to the best performing methods kNNa and kNNb. Note that kNNd does a
better job at locations (S02B, S03B, SOB) compared to the more exposed locations (S01B
and S05B), similarly to kNNa and kNNb, highlighting that the capabilities of a method
based on similarity are limited by the number of locations available with similar features.
In modern wind resource campaigns, which now often include remote sensing devices
such as sodar [27] or lidar [28], this limitation can, however, readily be overcome with
complementary remote sensing campaigns.

Table 4. Summary of all wind speed modeling results in this work.

Flow Models k-NN Methods

Tower WAsP WAsP Wind Obs.data Hybrid Ensemble Nested
(linear) (CFD) Sim (kNNa) (kNNb) (kNNc) (kNNd)

S01_B 8.19 2.93 5.89 −3.91 8.06 −0.80 −2.15

S02_B 3.75 4.35 5.74 0.03 0.88 0.25 0.26

S03_B 2.90 3.65 0.76 0.96 -0.33 0.62 0.68

S04_B −3.48 −4.70 −3.63 −0.99 −5.13 −2.07 −0.69

S05_B −7.06 −8.61 −5.51 −0.54 −4.44 −1.56 1.87

MAPE 5.08 4.85 4.31 1.29 3.77 1.06 1.13

3.2.6. Power Density Results

As described above, estimating power density is potentially more challenging in a
complex terrain than estimating wind speed because considerable differences may arise
in the simulated wind speed distributions due to terrain effects. As shown in Table 5, the



Energies 2021, 14, 4364 16 of 19

WAsP predictions for power density had similar errors at four locations and a large error
(27%) at one location (S01B). At this location, the wind speed prediction of both WAsP
and k-NN methods (see Table 5) had also a large error. As this more exposed location, the
simulated wind speed distribution differs the most from the observations.

As shown in Table 5, the k-NN method (optimized for wind speed prediction) does
a considerably better job of predicting power density at SO1B than WAsP (albeit at the
expense of worse predictions for S05B), resulting in similar overall errors for the set of
five towers as in the case of WAsP. However, by including the location-specific Weibull
parameters as additional similarity features, the k-NN method can be tuned to provide
significantly better power density predictions, as shown in columns 7–10 of Table 5. Predic-
tion errors are now down by approximately 10% for location S01B and on average by only
approximately 3 to 3.5% for all sites, which is only half of the error obtained with WAsP.

Table 5. Average percentage error for the prediction of power density obtained with WAsP (linear
solver), the original implementation of the k-NN method, tuned for wind speed prediction, and a
modified k-NN version, optimized for the prediction of the power density. The four highest ranking
implementations are shown for both k-NN cases.

k-NN (Original Method) k-NN (Opt. for Power Dens.)

Tower WAsP (1) (2) (3) (4) (1) (2) (3) (4)

S01_B 27.38 −18.29 −16.72 −13.52 −17.82 −10.32 −10.72 −10.21 −9.62

S02_B 1.77 −1.10 −0.88 0.02 0.23 1.02 0.12 0.14 −1.14

S03_B −3.14 −0.82 0.21 0.74 0.74 −1.90 −0.12 −0.78 0.13

S04_B 1.55 −3.08 −1.90 6.21 −5.23 0.76 1.63 0.83 1.62

S05_B −1.28 12.19 13.19 8.22 11.42 2.15 3.87 4.72 5.57

MAPE 7.02 7.10 6.58 5.74 7.09 3.23 3.29 3.33 3.62

4. Summary and Conclusions

Here, a novel method for the modeling of the wind resource with improved accu-
racy was proposed and evaluated using on-site data from a site with complex terrain
characteristics. As opposed to industry-standard approaches, which mainly rely on flow
models, the new method uses a simple and intuitive machine learning algorithm, based
on the k-nearest neighbors concept. While being a consolidated method in the literature
on advanced statistical modeling and machine learning, to the best knowledge of the
authors, no such approach was previously proposed or demonstrated in the field of wind
resource assessment.

The k-NN method in this work was based on the concept of similarity between met
tower locations. To assess similarity, the method uses classifiers or features of each location.
Features related to the terrain characteristics, flow-related quantities and micro-climate
parameters were selected. All location features can be readily obtained with a microscale
flow model. All k-NN runs performed in this work use features generated with WAsP.
In order to generate a baseline for comparisons, cross-validations between the five tall
(80 m) tower locations were conducted with both WAsP (using its linear flow solver) and
WindSim (using a RANS implementation). Both software suites were fine-tuned in order
to strive for optimal performance.

Given that all met towers are located at edge locations, a clear improvement of the
RANS-CFD predictions over the linear flow model was expected. Some improvement by
the best-tuned RANS model was indeed observed. Both flow models failed, however, to
accurately transfer the measured climatologies from the northern edge to the southern edge
locations and vice versa with the accuracy required by modern competitive wind farms.

Four conceptually different k-NN approaches were proposed and assessed, with one
of the methods (kNNd) being used for reference purposes. The baseline model (kNNa)
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works directly with the quality-controlled wind speed or power density 10 min time series
retrieved from all met towers other than the target location used for validation. The
hyperparameters required by the k-NN model were estimated with a novel methodology
based on the similarity between locations, which takes advantage of the full observational
period. This is somewhat different from a typical machine-learning approach (implemented
as method kNNd) and more suitable for the context of this work.

Two other variants of the k-NN concept were implemented as well. In kNNb, the
observed wind data were first transferred to the target site using WAsP, and the k-NN
method was then applied to those transferred climatologies. This hybrid approach has
the advantage of being an independent assessment of the wind resource at the target site,
allowing for the construction of an ensemble method (kNNc) by combining the predictions
of kNNa and kNNb.

The k-NN concept, in its different implementations, provided significant improve-
ments overflow modeling results. While the average WAsP prediction accuracy was around
5% for the wind speed and 7% for the wind power density, the corresponding figures for
k-NN method were only approximately 1.5 and 3%, respectively. It should be noted that
from the perspective of a wind resource modeler, the k-NN method works similarly to a
flow model such WAsP or WindSim; only terrain-related information and wind time series
for different measurement locations are needed.

While providing improved accuracy over wind flow models, the k-NN approach does
have some limitations. First, a flow model is needed to determine the feature parameters of
each location of interest. Therefore, the k-NN method can be viewed as an add-on to existing
wind modeling suites such as WAsP and WindSim, rather than a stand-alone method.
However, wind resource modelers typically have access to flow modeling tools, so this is
not a practical limitation. Second, the k-NN method needs more than one measurement
location, as opposed to WAsP or WindSim. This is, however, not a strong limitation, since
nowadays, a number of met towers are routinely installed at prospective wind farm sites,
and additional measurement locations can be created dynamically using remote sensing
devices such as lidar and sodar. The proposed method was therefore believed to have good
prospects for applications in a practical wind resource assessment context.
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Nomenclature

#{x} The cardinality of the set x
ĉ The estimated type of regression
k̂ The estimated number of neighbors
ŷi The estimated variable (uniform weighted regression)
ŷi

(w) The estimated variable (inverse distance weighted regression)
F The set of all possible combination of features
µx The mean of the variable x
X The matrix of mean predictor values
x0 The vector of mean predictor values at site x0
σx The standard deviation of the variable x

c
The type of regression either uniform weighting or inverse distance
weighting

c∗ The optimal type of regression
fα The set of features
K The maximum number of neighbors
k The number of neighbors
k∗ The optimal number of neighbors
L2 The L2 norm or Euclidean distance
MPE The mean percentage error
MPE(w) The MPE obtained from a inverse distance weighing regression

MPEsite,α,k
The MPE obtained for a given site from a set of features α and k number
of neighbors

N The number of observations
N f The number of features
Nk(x0) The set of nearest neighbors to the site x0
Sites The set of sites to be predicted

w
The weight of the regression either one or calculated with the inverse
distance

X The matrix of predictors
x0 The target site
yi The observed variable to be predicted at a time step i
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