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Abstract: Infrared thermography has been used as a key means for the identification of overheating
defects in power cable accessories. At present, analysis of thermal imaging pictures relies on human
visual inspections, which is time-consuming and laborious and requires engineering expertise.
In order to realize intelligent, autonomous recognition of infrared images taken from electrical
equipment, previous studies reported preliminary work in preprocessing of infrared images and in
the extraction of key feature parameters, which were then used to train neural networks. However, the
key features required manual selection, and previous reports showed no practical implementations.
In this contribution, an autonomous diagnosis method, which is based on the Faster RCNN network
and the Mean-Shift algorithm, is proposed. Firstly, the Faster RCNN network is trained to implement
the autonomous identification and positioning of the objects to be diagnosed in the infrared images.
Then, the Mean-Shift algorithm is used for image segmentation to extract the area of overheating.
Next, the parameters determining the temperature of the overheating parts of cable accessories are
calculated, based on which the diagnosis are then made by following the relevant cable condition
assessment criteria. Case studies are carried out in the paper, and results show that the cable
accessories and their overheating regions can be located and assessed at different camera angles
and under various background conditions via the autonomous processing and diagnosis methods
proposed in the paper.

Keywords: cable accessories; infrared image processing; Faster RCNN; Mean-Shift algorithm; smart
condition diagnosis

1. Introduction

Power cables have been widely used in urban power systems, and their safe operation
is key to the reliability of the power grid [1]. Cable accessories, which are used to connect
cables with other electrical equipment or different sections of cables, are the weak links
of cable systems [2]. Reference [3,4] indicated that the manufacturing of fault-free cable
accessories is almost impossible, and poor workmanship during installations and design
defects may result in cable faults. Previous studies showed that when there exist defects
in cable accessories, such as poor contact of metal connectors, misalignment of stress
cones, damage of insulation layer or impurities, and bubbles in the internal medium,
the temperature of defective cable accessories was usually higher than those fault free
cable accessories [5]. Because the use of infrared thermography to identify abnormal
temperatures has many advantages, such as no physical contact, non-intrusive, high
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efficiency, and so on, it is widely used in inspection and maintenance activities of power
cable circuits [6]. At present, the processing and analysis of infrared images taken during
inspections mainly require visual inspection. This is time-consuming and laborious on
the one hand, and on the other hand, it relies too much on expert experience and is prone
to erroneous diagnosis. Therefore, the realization of autonomous condition diagnosis in
cable accessories would greatly benefit the practitioners involved in cable maintenance
and inspections.

In previously published researches, the image features related to the temperature
gradients of equipment were used as the input of neural networks for the autonomous
diagnosis of electrical equipment. In order to analyze the temperature-related information,
Rahmani et al. used the Zernike moment as an image feature of fuse bases [7]; Huda et al.
extracted the first-order histogram and gray level co-occurrence matrix of infrared images
captured from main switchboards [8–10]; Jaffery et al. extracted the RGB color moment of
images of fuse cabinets [11]. In the above studies, the key features needed to be selected
manually, which was, in fact, a heuristic process. The quality of the selected features was
largely dependent on human expertise.

Thus far, there have been few studies on the recognition of infrared images for con-
dition diagnosis of cable accessories. Previously reported research came from the same
research team where a number of techniques were investigated for infrared image process-
ing of cable terminations, including the adaptive denoising method based on layer-by-layer
optimal basic wavelet and Bayesian estimation [12], the denoising method based on inter-
scale correlation of the wavelet coefficients and the bivariate shrinkage function [13], the
improved hybrid Fourier-wavelet denoising method [14] and the identification method
based on the Radon transform and the Fourier–Mellin transform [15]. Although the above
methods were proven to be effective in preliminary image processing, the published work
failed to carry out condition diagnosis of real-world infrared images.

This paper proposes a method for autonomous diagnosis of overheating defects in
cable accessories based on a Faster RCNN network and Mean-Shift algorithm. Firstly, the
collected infrared images of cable accessories during routine inspection activities are used
as samples to complete the training of the Faster RCNN network thus as to identify and
locate the objects to be diagnosed. Then, the Mean-Shift clustering algorithm is used to
segment the images. This helps to extract the overheating area quickly and accurately.
Finally, the temperature characteristic parameters are calculated, thus the condition of cable
accessories can be diagnosed according to pre-set diagnostic criteria.

2. Object Localization Based on Faster RCNN Network

Cable accessories of interest in this paper include cable terminations and cable ground-
ing boxes. For more information, readers may refer to [16,17]. For the FLIR T630 thermal
imager, a handheld camera, which has been applied in work presented in this paper, does
not have a specified minimum and maximum shooting distance. When we applied it, the
distance between the camera and the target was usually between 1 and 10 m. It was around
1 m when pictures were taken of cable joints and was 3–10 m for cable terminations. As a
result, the infrared images under analysis may contain the targeted cable accessories and
may also contain other undesired background objects.

The Faster RCNN network, which can identify and locate the desired objects contained
in given images, is one of the most advanced algorithms for target detection. Figure 1 shows
the flowchart of the Faster RCNN network. Firstly, in order to produce the feature map, it
extracts the features of the detected image through a Convolutional Neural Network (CNN).
Then, the Region Proposal Network (RPN) is used to propose the possible regions. Next,
on the basis of the feature map and proposed regions, the Region of Interest (RoI) pooling
layer is applied to extract the proposal feature maps, which are sent to the subsequent
network. Finally, the autonomous recognition and positioning of the objects are realized
through the object detection layer [18].
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Figure 1. Model of Faster RCNN network.

2.1. Sturcture of Faster RCNN Network
2.1.1. Convolutional Neural Network

Convolutional Neural Network is used to extract feature maps of input images, and
the feature maps are shared with the subsequent RPN network and RoI pooling layer. In
this paper, the VGG16 Convolutional Neural Network, which includes 13 Convolutional
(Conv) layers, 13 Rectified Linear Units (ReLU) layers, and 4 Pooling layers, shown in
Figure 2, is adopted.
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Convolutional layers are applied to detect features of images. It is composed of several
convolutional kernels (equivalent to weight matrix k) and additive bias b. Each convolu-
tional kernel can be regarded as a kind of feature detector, which filters the whole image
by sliding on the image to capture the corresponding features. From the mathematical
point of view, the corresponding features are obtained through the convolutional operation.
Suppose the mth layer is a Convolutional layer, then its output vector is as follows:

xm
j = ∑

xi∈Mj

xm−1
i ∗ km

ij + bm
j (1)

where xm
j is the jth output of this layer; Mj is the set of input vectors; km

ij is a convolutional
kernel; bm

j is the additive bias, and * represents the convolutional operation.
The size of the output image is as follows:

soutput =
sinput − skernel + 2 ∗ p

d
+ 1 (2)

where soutput represents the size of the output image; sinput represents the size of the input
image; skernel represents the size of the convolutional kernel; p represents the number of
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pixels to be filled, and d represents the step length of the convolutional kernel sliding on
the image.

After each convolutional layer, the ReLU layers are applied to enhance the nonlinear
characteristics, and the ReLU function is given in (3). Between the Convolutional layers,
the Pooling layers are inserted periodically to reduce the dimensionality of features.

f (x) = max(0, x) (3)

where f (x) stands for the ReLU function, and x represents the characteristic parameters of
the output of the convolutional layer.

2.1.2. Region Proposal Network

The Region Proposal Network is used to complete the preliminary positioning of the
objects. As is shown in Figure 3, the Region Proposal Network firstly generates a set of
rectangular bounding boxes in the detected image. These regions are represented by four-
dimensional vectors (x, y, w, h), where x and y denote the region’s center coordinates, while
w and h denote the width and height. Then, the classification layer is applied to obtain
the object score of each proposed region, based on which the Softmax classifier is used to
identify the regions that include the diagnostic objects by calculating the probability, using
the formula given in (4). On the other hand, to make the positioning more accurate, the
regression layer is applied to realize the bounding box regression, based on the formulae
given in (5) and (6).

P =
ez1

ez1 + ez2
(4)

where P represents the probability that the proposed region contains diagnostic objects; z1 and
z2 represent the foreground score and background score of proposed regions, respectively.{

G′x = Awdx(A) + Ax

G′y = Ahdy(A) + Ay
(5)

{
G′w = Aw exp(dw(A))

G′h = Ah exp(dh(A))
(6)

where (Ax, Ay, Aw, Ah) denote the unadjusted coordinates of the bounding box. (G’x,
G’y, G’w, G’h) denote the adjusted coordinates. dx(A) and dy(A) denote the translation
parameters, dw(A) and dh(A) denote the scale parameters.
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2.1.3. Region of Interest Pooling Layer

The RoI Pooling layer can obtain the fixed-length feature vectors by analyzing input
data of different sizes. The operating principle is shown in Figure 4. Assuming that the
size of input feature map is 8 × 8, and the box calibration region is the proposed feature.
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According to the transformation factors pw and ph, the proposed feature is divided into pw
× ph blocks (pw = ph = 2 in this example). Then the maximum pooling is applied for each
block in order to the maximum value of each block.
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Figure 4. Operating principle of RoI pooling layer.

In the Faster RCNN network, the pooling process of the RoI Pooling layer is shown in
Figure 5. Firstly, the regions proposed by the RPN are mapped to the feature map obtained
by the CNN, to allow the proposal feature maps of different sizes to be extracted. Next,
according to pw and ph (pw = ph = 7 in this paper), maximum pooling is applied to convert
the proposal features into feature maps with the fixed spatial extent of 7 × 7. Finally, the
fixed-length proposal feature maps are sent to the subsequent network.
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2.1.4. Object Detection Layer

As is shown in Figure 6, based on the proposal feature maps, the Softmax classifier
is used to achieve object identification (objects to be identified include cable terminations
and grounding boxes in this paper). On the other hand, the regression layer is applied to
complete the second bounding box regression, which makes the localization more precise.
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2.2. Autonomous Detection Results of Faster RCNN Network

The infrared images captured by the infrared thermal imagers (FLIR T630) were used
as samples to train the Faster RCNN network. Table 1 shows the specifications of the FLIR
T630 handheld thermal cameras. When the infrared images of power cable accessories
were taken, the emissivity coefficients of imagers were set to 0.9.

Table 1. Specifications of the FLIR T630 handheld thermal cameras.

Specifications

Detector resolution 640 × 480
Accuracy ±2 ◦C or ±2% of reading

Thermal sensitivity <30 mK @ 30 ◦C
Operating temperature range −15 ◦C to 50 ◦C

Operating humidity 95% relative humidity
Object temperature range −40 ◦C to 650 ◦C

Atmosphere transmission correction automatic
External optics and widows correction automatic

Optics transmission correction automatic
Reflected apparent temperature correction automatic

The abnormal heating phenomenon usually occurs at connection fittings and sleeves
of the cable terminations or the connections of the grounding boxes. Therefore, when
constructing the training samples, if the diagnostic objects are the terminations, the labeled
target should be the connection fittings and sleeves. If the objects under analysis are
grounding boxes, the marked target should be the connections. After completing the train-
ing, the Faster RCNN network can realize the autonomous identification and positioning
of the cable terminations and grounding boxes in images.

Taking Figures 7 and 8 as examples, where Figures 7a and 8a, respectively, show the
original infrared images of grounding box and cable termination taken during routine
inspection activities. Figures 7b and 8b show the recognition and positioning results of the
trained Faster RCNN network. To eliminate the influence of the interference information,
the image contents inside the proposal regions were kept, while other contents were
eliminated by setting the pixels’ components of red (R), green (G), and blue (B) to zero.
The extracted connections of the grounding box are shown in Figure 7c. The extracted
connection fitting is shown in Figure 8c, and the extracted sleeve in Figure 8d. The results
show that based on the Faster RCNN network, the diagnostic objects were accurately
extracted, and the interference of complex background and foreground, which my hamper
subsequent image processing, were eliminated.

Energies 2021, 14, x FOR PEER REVIEW 6 of 15 
 

 

2.2. Autonomous Detection Results of Faster RCNN Network 
The infrared images captured by the infrared thermal imagers (FLIR T630) were used 

as samples to train the Faster RCNN network. Table 1 shows the specifications of the FLIR 
T630 handheld thermal cameras. When the infrared images of power cable accessories 
were taken, the emissivity coefficients of imagers were set to 0.9. 

Table 1. Specifications of the FLIR T630 handheld thermal cameras. 

Specifications  
Detector resolution 640 × 480 

Accuracy ±2 °C or ±2% of reading 
Thermal sensitivity <30 mK @ 30 °C  

Operating temperature range −15 °C to 50 °C  
Operating humidity 95% relative humidity 

Object temperature range −40 °C to 650 °C  
Atmosphere transmission correction automatic 

External optics and widows correction automatic 
Optics transmission correction automatic 

Reflected apparent temperature correction automatic 

The abnormal heating phenomenon usually occurs at connection fittings and sleeves 
of the cable terminations or the connections of the grounding boxes. Therefore, when con-
structing the training samples, if the diagnostic objects are the terminations, the labeled 
target should be the connection fittings and sleeves. If the objects under analysis are 
grounding boxes, the marked target should be the connections. After completing the train-
ing, the Faster RCNN network can realize the autonomous identification and positioning 
of the cable terminations and grounding boxes in images. 

Taking Figures 7 and 8 as examples, where Figures 7a and 8a, respectively, show the 
original infrared images of grounding box and cable termination taken during routine 
inspection activities. Figures 7b and 8b show the recognition and positioning results of the 
trained Faster RCNN network. To eliminate the influence of the interference information, 
the image contents inside the proposal regions were kept, while other contents were elim-
inated by setting the pixels’ components of red (R), green (G), and blue (B) to zero. The 
extracted connections of the grounding box are shown in Figure 7c. The extracted connec-
tion fitting is shown in Figure 8c, and the extracted sleeve in Figure 8d. The results show 
that based on the Faster RCNN network, the diagnostic objects were accurately extracted, 
and the interference of complex background and foreground, which my hamper subse-
quent image processing, were eliminated. 

   
(a) (b) (c) 

Figure 7. Result of eliminating the interference information in the image of the grounding box: (a) 
original infrared image; (b) detecting result of Faster RCNN network; (c) extracting results of con-
nections. 
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(a) original infrared image; (b) detecting result of Faster RCNN network; (c) extracting results
of connections.
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3. Extraction of Suspected Abnormal Heating Regions Based on
Mean-Shift Algorithm

After extracting the diagnostic objects, it is necessary to extract the suspected abnormal
heating regions among the objects. In subsequent processing, their temperature distribution
is the basis for condition diagnosis.

The gray information of the infrared images reflects the temperature distribution. The
greater the gray value of the pixel, the higher the corresponding temperature. Therefore,
the gray value is to be extracted from the infrared images. The graying formula is as
follows [19]:

I = 0.299R + 0.587G + 0.114B (7)

where, I is the gray value of the pixel; R is the red component; G is the green component,
and B is the blue component.

The Mean-Shift algorithm, which has been widely used in clustering, is essentially
an iterative search algorithm [20]. In this paper, the gray values of pixels were used as
the data samples, and the Mean-Shift algorithm was applied to cluster the pixels. The
clustering process is shown in Figure 9. Firstly, a pixel was randomly selected to be the
clustering center, and other pixels, of which the grayscale difference with the center less
than the bandwidth, were placed in the same class. The bandwidth hr realized adaptive
selection based on the asymptotic mean integrated square error (AMISE) is as shown
in (8) and (9) [21]. Then, the Mean-Shift vector was calculated, and the original center
moved the vector to obtain the new center [22]. The clustering center was updated until
the convergence condition was satisfied. The above steps were repeated until all the pixels
were traversed.

hr =

(
4

d + 2

)1/(d+4)
n−1/(d+4)σ (8)

σ =

√√√√ 1
n− 1

n

∑
i=1

(xi − x)
2

(9)

where, hr represents the bandwidth; d the dimension of the feature space; n the number of
samples; σ the standard deviation; x the sample, and x represents the average value of the
sample data.

In order to describe the Mean-Shift clustering process more intuitively, this paper takes
the cable grounding box as an example, as is shown in Figure 10. Figure 10a shows the
result of autonomous positioning and identification of the diagnostic objects (connections)
in infrared images by trained Faster RCNN network. Figure 10b shows the corresponding
grayscale image. Figure 10c shows the three-dimensional visualization result of the pixels’
gray information, where each scatter point corresponds to a pixel in the image, (x, y)
represents the position information of the corresponding pixel in the original image, and
z represents the gray value of the pixel. Figure 10d shows the result of clustering by the
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Mean-Shift algorithm. In order to reflect the clustering result more intuitively, the pixels
belonging to the same category were marked with the same color.
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Figure 10. Clustering result of Mean-Shift algorithm: (a) detecting results of Faster RCNN net-
work; (b) grayscale image; (c) three-dimensional visualization result of the pixel gray information;
(d) clustering result.

As can be seen in Figure 10d, the pixels in the example were adaptively divided into
three categories. The pixels marked in black correspond to the background area in the orig-
inal image. The pixels marked in green correspond to the regions under normal conditions,
and the pixels marked in red correspond to the suspected overheating regions. Therefore,
after clustering based on the Mean-Shift algorithm, this paper retained the category with
the center, where the gray value was the greatest, as the suspected overheating area.

Taking the infrared images of the HV cable accessories captured during an inspection
as the testing objects. In order to achieve the best results, after realizing the autonomous
identification and positioning of the diagnostic objects, this paper, respectively, applied
the Maximum Between-Class Variance (OTSU) algorithm, the K-Means algorithm, and
the Mean-Shift algorithm to segment the images. The OTSU algorithm can adaptively
calculate the segmentation threshold, and the pixels of which the gray values are lower
than the threshold were categorized into the background, while other pixels, of which the
gray values are higher than the threshold, were categorized into the foreground [23]. The
K-Means algorithm randomly selected k pixels as clustering centers according to the given
k, and then classified the remaining pixels to the most similar center before it updated the
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clustering centers to the mean value of each category. The above steps were repeated until
the convergence condition is satisfied [24,25].

Based on the clustering results, the suspected abnormal heating regions were extracted,
as is shown in Figure 11. Figure 11a shows the original infrared images of grounding box I,
grounding box II, termination I, and termination II. Figure 11b shows the detecting results
of diagnostic objects by the Faster RCNN network. Figure 11c, Figure 11d,e show the
extracting results of suspected abnormal heating regions by different clustering algorithms.
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Energies 2021, 14, 4316 10 of 15

As shown in Figure 11, the adaptive segmentation threshold calculated by the OTSU
algorithm was often too low to distinguish the abnormal heating regions from the area
under normal conditions. Thus, in the final segmentation results, the abnormal heating
area was almost submerged in the diagnostic objects. The K-Means algorithm can specify
the number of categories manually, which solves the disadvantage of the OTSU algorithm
that it can only achieve dichotomy. Therefore, compared with the OTSU algorithm, the
clustering results by K-Means algorithm represented an improvement. However, for
different images, the most suitable number of clustering categories is also different. Thus,
some regions under normal conditions were still identified as abnormal heating regions
wrongly by the K-Means algorithm. The Mean-Shift algorithm can adaptively select
the most appropriate number of clustering categories according to the gray information
of the image, which can overcome the disadvantage of the K-Means algorithm. The
testing results showed that the Mean-Shift algorithm could extract the abnormal heating
regions accurately, and its performance was better than the OTSU algorithm and the
K-Means algorithm.

4. Positioning of Reference Regions

In order to accurately realize condition diagnosis after extracting the abnormal heating
regions, the reference regions should be localized in the reference phases, which do not
have abnormal heating regions (assuming that at least one phase is in normal status in this
paper). This article applied different methods to locate the positions of reference regions
for different HV cable accessories.

4.1. Grounding Boxes

If the diagnostic object was a grounding box, the Faster RCNN network would have
directly positioned the connections (including the upper side connections and the lower
side connections). The phase (one of the three phases), which contained the overheating
area, was noted as the suspected overheating phase, and the remaining phases, which
always had the same height, were regarded as the reference phases. The whole reference
phases can be deemed as the reference regions.

Figure 12 shows the positioning results of reference regions of the grounding boxes. To
describe the positioning process more intuitively, the four-dimensional vectors (x1, y1, x2, y2)
were used to represent the position of each phase, where x1 and x2 denote the horizontal
coordinates of top-left corner and bottom-right corner of each phase, while y1 and y2 denote
the vertical coordinates. The position information of the suspected overheating phase of
the grounding box I was (268, 65, 339, 184), while the position information of other phases
was (148, 65, 219, 184), (390, 65, 461, 184), (100, 290, 142, 338), (214, 290, 256, 338), and
(339, 290, 381, 338). Thus, the connections corresponding to the first two data sets were
regarded as the reference regions because they had the same vertical coordinates with the
overheating phase. The positioning method of reference regions of grounding box II was
the same.
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Figure 12. Reference regions locating results of grounding boxes: (a,e) grayscale image, (b,f) extract-
ing results of suspected overheating regions, (c,g) suspected overheating phase and reference phases,
(d,h) locating results of reference regions.

4.2. Cable Terminations

When the object to be diagnosed was a cable termination, the Faster RCNN network
was firstly applied to locate the connection fittings and sleeves. The phase that included
abnormal heating regions were regarded as the suspected abnormal heating phase, and
the remaining phases were considered as the reference phases. Considering the similarity
of the structure among the three phases of the termination, the reference regions can be
positioned according to the abnormal heating area’s position information and the size
ratio of different phases of terminations identified in the image. Taking Figure 13 as an
example, (10) and (11) were used to calculate the coordinate information of the reference
regions’ pixels. The highlighted areas in Figure 13d,h show the positioning results of
reference regions. {

Xhot = [x1, x2, x3, . . . , xn]

Yhot = [y1, y2, y3, . . . , yn]
(10)

{
Xref = (Xhot − xmin1)/(xmax1 − xmin1) ∗ (xmax2 − xmin2) + xmin2

Yref = (Yhot − ymin1)/(ymax1 − ymin1) ∗ (ymax2 − ymin2) + ymin2
(11)

where Xhot and Yhot, respectively, denote the horizontal coordinates and vertical coor-
dinates of the abnormal heating regions’ pixels; Xref and Yref, respectively, denote the
horizontal coordinates and vertical coordinates of the reference regions’ pixels. n denotes
the number of pixels in the abnormal heating regions; (xmin1, xmax1) and (ymin1, ymax1) the
horizontal coordinates and vertical coordinates of the top-left corner and bottom-right cor-
ner of the suspected abnormal heating phase. (xmin2, xmax2) and (ymin2, ymax2) the vertical
coordinates of the top-left corner and bottom-right corner of the reference phase.
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5. Calculation of Temperature Parameters and Condition Diagnosis

In order to diagnose the severity of the overheating defect, T1 and T2, which denote
the maximum temperature of the identified abnormal heating area and reference area,
respectively, were extracted. Combined with the ambient temperature T0, the temperature
characteristic parameters can be calculated according to (12)~(14).

Tr = T1 − T0 (12)

Td = T1 − T2 (13)

δ = (T1 − T2)/(T1 − T0) (14)

where Tr is the value of temperature rise; Td is the value of temperature difference, and δ
represents the value of relative temperature difference.

According to the corresponding diagnostic criteria, the autonomous diagnosis of
overheating defects in cable accessories can be achieved based on the calculated tempera-
ture characteristic parameters. Table 2 shows the diagnostic criteria from the “Guidelines
for defective grading standards of power transmission equipment of Guangdong Power
Grid Company (version 2018)”. Table 3 shows the calculated temperature parameters and
diagnosis results of Figures 12 and 13. The temperature difference of grounding box I in
Figure 12 was 6.4 ◦C. Because it was between 5 ◦C and 15 ◦C, the status of grounding
box I was regarded as the general defect. The temperature difference of grounding box II
was only 2.9 ◦C, which was lower than 5 ◦C. In addition, the temperature rise was only
4.6 ◦C, which was less than 15 ◦C, the condition of grounding box II was diagnosed to be
normal. Similarly, the temperature difference of connection fittings of cable terminations I
in Figure 13 was 50.6 ◦C, which was higher than 40 ◦C, thus the termination I was judged
to have a defect needing urgent action. The temperature difference of sleeves of cable
terminations II was 11.2 ◦C, thus the condition of this termination was determined as
having a major defect.
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Table 2. Diagnostic standard for HV cable accessories.

Defective Part Defective Appearance Severity Level

Connection fittings of cable
terminations or connections of

grounding boxes

Temperature of heating spot >130 ◦C;
Temperature difference >40 ◦C;

Relative temperature difference >95% and
temperature rise >15 ◦C

Urgent

Temperature of heating spot: 90~130 ◦C;
Temperature difference: 15~40 ◦C;

Relative temperature difference: 80%~95% and
temperature rise >15 ◦C

Major

Temperature difference: 5~15 ◦C;
Relative temperature difference: 35%~80% and

temperature rise >15 ◦C
General

sleeves of cable terminations
Temperature difference >4 ◦C Major

Temperature difference: 2~4 ◦C General

Table 3. Temperature calculation and diagnostic results of cable accessories.

Cable
Accessories

Temperature/◦C
Tr

1/◦C
Max

Td
2/◦C Max σ3/%

Diagnostic
ResultsHeating Ref I Ref II Environment

Grounding box I 31.4 25 26.4 23 8.4 6.4 76.2 General defect

Grounding box II 29.6 26.7 27.1 25 4.6 2.9 63 Normal

Termination I 86.3 35.7 \ 32 54.3 50.6 93.18 Urgent defect

Termination II 47.3 36.1 \ 22 25.3 11.2 44.27 Major defect
1 Tr means the temperature rise, 2 max Td means the maximum temperature difference, 3 max σ means the maximum relative tempera-
ture difference.

The proposed method has been applied to test against actual infrared images, includ-
ing 50 images of cable terminations and 50 images of grounding boxes. The testing results
are shown in Table 4.

Table 4. Testing results of inspection images.

Cable
Accessories Actual Condition Autonomous

Diagnosis Results

Cable
terminations

Normal 32 Normal 32
General defect 2 General defect 2
Major defect 7 Major defect 7
Urgent defect 9 Urgent defect 9

Grounding
boxes

Normal 40 Normal 39
General defect 7 General defect 8
Major defect 1 Major defect 1
Urgent defect 2 Urgent defect 2

6. Conclusions

This paper is an extension of a conference paper, which the authors previously pub-
lished [25]. It proposed an autonomous method to analyze infrared images for the diagnosis
of insulation conditions of cable accessories. The approach included the positioning and
identification of diagnostic objects, the extraction of key regions, and the calculation of
temperature parameters for condition assessment of cable accessories. The conclusions are
as follows:

(1) The method for autonomous positioning and identification of cable accessories in
infrared images based on Faster RCNN network was proposed. This method was applied
to test against actual infrared images, and results showed that the autonomous location and
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recognition could be achieved at different shooting angles and under various background
conditions.

(2) The method for extracting suspected abnormal heating regions based on Mean-
Shift algorithm was proposed. Case studies showed that this method, which was superior
to other alternatives, can realize image adaptive segmentation. It can extract the abnormal
heating regions of grounding boxes and cable terminations accurately.

(3) The proposed method may potentially be productive as it helps reduce the de-
pendence on human efforts and expertise and helps improve the practice of intelligent
condition monitoring.
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