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Abstract: Energy and exergy (EnE) efficiencies are considered the most important parameters to
compare the performance of various thermal systems. In this paper, an analysis was carried out
for EnE efficiencies of a flat plate solar collector (FPSC) using four different kinds of nanofluids as
flowing mediums, namely, Al2O3/water, MgO/water, TiO2/water, and CuO/water, and compared
with water as a flowing medium (traditional base fluid). The analysis considered nanofluids made of
nanomaterials’ volume fractions of 1–4% with water. The volume flow rates of nanofluids and water
were 1 to 4 L/min. The solar collector′s highest EnE efficiency values were obtained for CuO/water
nanofluid among the four types of nanofluids mentioned above. The EnE efficiencies of the CuO
nanofluid-operated solar collector were 38.21% and 34.06%, respectively, which is significantly higher
than that of water-operated solar collectors. For the same volume flow rate, the mass flow rate was
found to be 15.95% higher than water for the CuO nanofluid. The EnE efficiency of FPSC can also be
increased by increasing the density and reducing the specific heat of the flowing medium.

Keywords: energy; exergy; nanofluid; solar collector; dead state

1. Introduction

Nowadays, solar thermal collectors and photovoltaics are primary devices for collect-
ing solar energy [1]. The solar thermal collector is a device to absorb heat from sunlight. It is
designed in such a way that it helps to convert solar irradiation into more functional energy
forms, such as hot water, molten salt, or applied to produce steam to generate electricity.
Flat plate solar collector (FPSC) is considered as the better performing solar heater within
other types of solar heaters. These FPSC are considered to have a fixed area for collecting
the incoming radiation and are typically stationary throughout the day [2,3]. They are also
considered to have a fixed area for collecting incoming radiation. The efficiency of these
systems is explained as the extent to which the thermal energy impacts on the collector
surface, and heat is transferred to the working fluid. Improved collector efficiency will
be achieved by increasing solar absorption while reducing outgoing heat losses, a process
known as energy transfer optimisation [4]. The collector′s efficiency can be improved by
substituting the absorbing medium with high thermal conductivity (TC) fluids. The TC of
a fluid can be increased by mixing a small quantity of nanoparticles with base fluid. For
example, a 1 vol % of multi-wall carbon nanotube with base fluid could enhance TC by
40% [5].

The particle size of nanomaterials (nm range) is an important parameter. Although
nanofluid increases heat transfer performance, large nanoparticles may cause instability
of suspensions, flow resistance, clogging, and abrasion problems [6,7]. Nanofluids are
colloidal suspensions of nanomaterials, including metals, metal oxides, non-metal, and
oxides and carbon nanotubes in solutions or base fluids that are commonly employed as
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carrier fluids [8]. The nanofluids provide a larger surface area, higher thermal conductivity,
better stability, and minimal clogging. In addition, nanoparticles are capable of changing
the fluid characteristics [9].

The thermal performance of a FPSC can be significantly enhanced by employing an
absorbing medium called nanofluids. Natarajan and Sathish [10] studied the impact of
carbon nanotube (CNT) on the TC over the base fluid. They demonstrated that using these
fluids as an agent medium in a standard solar water heater would improve performance.
In a directive solar collector (DAC), Tyagi et al. [11] used aluminium nanoparticles with
water as an absorbent medium. They reported that the DAC had 10% more efficiency than
a standard flat plat solar collector [12]. Otanicar and Golden [13] studied the improvement
of solar collector efficiency compared to a conventional collector under the environmental
and economic influence and suggested some possible improvements. The effect of nanoflu-
ids on the performance of microthermal collectors has been experimentally studied by
Otanicar et al. [14]. When the nanofluid is used as an absorbing medium, they observed an
improvement in the efficiency of about 5% as compared to water.

Ziyadanogullari et al. [15] experimented with Al2O3/water and CuO/water to in-
vestigate the performance efficiency of FPSC. Their result showed CuO/water nanofluid
achieved maximum efficiency compared to the other two nanofluids. The reason for these re-
sults may be because of differences in TC coefficients of the nanoparticles. Said et al. [16,17]
experimentally and theoretically investigated the impact of utilising different sized Al2O3
nanoparticles (20 nm and 13 nm) suspended into a base fluid (water) on the EnE efficiencies
of the FPSC. They performed their experiments with nanofluid of 0.3 vol % and 0.1 vol %,
varying the mass flow rate from 0.5 to 1.8 kg/min. They reported that the nanoparticle size
has an impact on the performance of FPSC. They found a 3% higher thermal performance
enhancement when the size varies from 20 nm to 13 nm. Additionally, they recorded 83.5%
theoretical thermal efficiency at 0.3 vol % and 1.8 kg/min of a mass flow rate. An overview
of the literature analysis is presented in Table 1.

Table 1 provides an overview of FPSC performance improvement using metallic oxide
nanofluid. It specifically indicates that the nanofluid was used in FPSC as heat transfer
fluid, with a broad range of nanoparticles varying from 0.05 to 3 vol % and mass flow
rate varying from 0.96 to 7.5 kg/min. It shows the optimum nanoparticle volume fraction
(vol %) corresponding to FPSC maximum efficiency enhancement in nanofluid in the
perspective of mass flow rate in laminar and turbulent flow conditions. Table 1 further
indicates that employing Al2O3/water as a heat transfer fluid inside the FPSC improved
the effectiveness of FPSC by 2–31.6% when nanoparticle concentrations of 0.1 to 3 wt.%
and mass flow rates of 0.5 to 7.5 kg/min were maintained. In addition, Cu/water and
CuO/water nanofluids improve the efficiency of 6.3 to 27.3% when the experiments were
employed at a volume fraction that varies from 0.025 to 0.5 vol % and the mass flow rate
changes from 1 to 8.8 kg/min, when compared to traditional fluids.
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Table 1. Literature review summary on FPSC using different.

References Model Base Fluid
Nanoparticles’ Specification Optimum Parameters

Particle Name Volume Fractions
(Vol %) Size (nm) Mass Flow

Rate (kg/min)
Improvement of

Efficiency (%)
Flow

Regime
FPSC Surface

Area (m2)

Sundar et al. [18] Experimental Water Al2O3 0.1 and 0.3 20 5 18 Turbulent 2

Hawwash et al. [19]

Experimental
and Numerical

(CFD ansys
fluent)

DW Al2O3 0.1 and 0.3 20 5.51 18 Turbulent 2.1

Mogahadam et al. [20] Experimental Water CuO 0.4 40 1 21.8 Laminar 1.88

Genc et al. [21] Numerical
(Matlab) Water Al2O3 0.1, 0.2 and 0.3 3.6 9.5 Laminar 1.99

Nasrin and Alim [22] Experimental DW Al2O3, CuO and
TiO2

0.2, 0.4 and 0.8 50, 50 and 25 4 71, 87.8 and 52.5 Laminar 1.51

Shojaeizadeh et al. [23] Experimental
and Numerical DI water Al2O3

SDBS

0.090696, 0.094583,
0.10293, 0.11057,
0.117686, 0.1244,

0.13082, 0.137, and
0.1423

15 2.5 70 Turbulent 1.51

Kilic et al. [24] Experimental Water TiO2
Triton X-100 0.2 44 2 34.43 Turbulent 1.82

Said et al. [25] Experimental PEG-400 TiO2 0.1 and 0.3 21 0.5 76.6 Laminar 1.84
Jouybari et al. [26] Experimental Water SiO2 0.2, 0.4, and 0.6 7 1.5 8 Laminar 0.8

Faizal et al. [27] Experimental Water SiO2 0.2, 0.4, and 0.6 10 3 23.5 Turbulent 2
Meibodi et al. [28] Experimental EG–water SiO2 0.5, 0.75, and 1 10 2.7 8 Turbulent 1.59
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The energy equation alone is insufficient to determine the efficiency of a FPSC in ther-
modynamics analysis. The second law, also known as exergy analysis, is more successful
in determining the source and amount of irreversibility and may be utilised to soptimise
system efficiency. Exergy is the maximum output that may be obtained in relation to the
difference in temperature [29]. Saidur et al. [30] performed an exergy study on a variety of
solar energy applications and FPSCs’ [31]. Alim et al. [32], and Zhong et al. [33] conducted
a thorough study of entropy generation in a FPSC utilising various metal oxide nanofluids.
Most of the published research [34–37] focus on the thermal performance of FPSC utilising
different working fluids at a constant flow rate which has a limited application in reality.
Therefore, a more detailed and accurate study of their performance requires more and
more up-to-date research. The aim of our paper is to analyse the EnE efficiency of a FPSCs’
using the different absorbing medium as nanofluids. Furthermore, the effect of mass flow
rate, volume fraction, specific heat, density, and outlet temperature on EnE efficiency for
a given operating condition are investigated. The effect of fraction factor and pumping
power in variable flow rate can be evaluated in this study. A previous study was done for
a single/given particle, whereas, for variable flow rate, we can determine which particle is
performing better compared to many others. The nanofluids made of Al2O3, MgO, TiO2,
and CuO nanoparticles in water were considered in this study. The first law of thermody-
namics was used to calculate energy efficiency, while the second law of thermodynamics
was used to determine exergy efficiency.

2. Analytical Approach
2.1. The First Law of Thermodynamics for Energy Efficiency

The first law of thermodynamics states that the energy is conserved, and the overall
amount of conserved energy remains constant. However, different types of energies (such
as potential, kinetic, and internal) can be changed from one form to another. An energy
balance can be expressed using the law as follows [38]:

.
Q− P = ∑

outlet

.
mk

(
h + gz +

w2

2

)
k
− ∑

inlet

.
mk

(
h + gz +

w2

2

)
k

(1)

The absorbing mediums’ potential heat gain (Qu) may be expressed as,

Qu =
.

mCp

(
Tf ,out − Tf ,in

)
(2)

The following formulas determine the heat capacity and density of nanofluid. [39,40]

Cp,n f = φCp,np + Cp,b f (1− φ) (3)

ρn f = (1− φ)ρb f + φρnp (4)

The Hottel–Whillier Equation is another equation for calculating the potential heat
gain rate

.
Qu of a FPSC. The Equation that accounts for heat losses between the solar

collector and atmosphere as follows [41].

.
Qu = ApFR

[
S−U1

(
Tf ,in − Ta

)]
(5)

The amount of absorbed irradiation per unit area of solar collector absorber plate (S)
is calculated as follows,

S = IT(τα) (6)

where (τα) is an optical efficiency (ηo) [42].
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FR can be defined by,

FR =

.
mCp

U1 Ap

[
1− exp

{
−

F′U1 Ap
.

mCp

}]
(7)

An energy balance equation of the absorber plate in the rating form can be expressed
for a steady-state condition as [42],

.
Qu = ApS−U1 Ap(Tc − Ta) (8)

In this study, the absorber plate′s average temperature, absorbed irradiation flux per
unit area, overall loss, and absorber plates’ area were all considered to remain constant.
The instantaneous collector efficiency is calculated by Equation (9) or Equation (10).

ηEn =

.
Qu

Ap IT
=

.
mCp

(
Tf ,out − Tf ,in

)
IT

(9)

ηEn = FR(τα)− FRU1
Tf ,in − Ta

IT
(10)

The current study was conducted under the usual incidence condition; FR(τα), FR, and
U1 were constant at the tested temperatures [5]. However, it should be remembered that
different types of energy have additional chances of generating work. As a result, efficiency
specification was limited to a comparison of quantities that were metrically equivalent but
not conceptually equivalent.

2.2. The Second Law of Thermodynamics for Exergy Efficiency

Energy efficiency is not enough to describe a thermodynamic process because the
energy equation does not encounter internal losses. The second law of thermodynamics
provides more information about the optimal operating stage, inefficiencies, corresponding
magnitudes and traces [31,43]. It assumes that actual processes are not reversible and
that the processes accumulate entropy. Molecular diffusion, friction, and hysteresis are
examples of typical irreversible processes. The second law, according to the Clausius
argument, can be written as [38]

∑
outlet

( .
m.s
)

k − ∑
inlet

( .
m.s
)

k = ∑
j

( .
Q
T

)
j

+ σ (11)

The irreversibility is not considered in the analysis of the first law of thermodynam-
ics. On the other hand, the second law addresses irreversibility without using the word
work. The first and second laws are merged to gather further details. The Gouy–Stodola
equation [44] can be obtained by combining Equations (1) and (11).

P = ∑
n

.
Qn

(
1− Ta

Tn

)
+ ∑

Inlet

.
mk

(
h− Tas +

w2

2
+ gz

)
k
− ∑

Outlet

.
mk

(
h− Tas +

w2

2
+ gz

)
k
− Taσ (12)

Exergy is described as the work that is obstructed to its dead state. When the environ-
ment and the system are in balance, there is no more work to be done. The process is said
to be in a dead state at this stage. So, the Equation (12) can be rewritten in terms of exergy
for a control volume as shown below:( .

EP

)
out
−
( .

EP

)
in
=
( .

EQ

)
in
−
( .

EQ

)
out

+
( .

Em

)
in
−
( .

Em

)
out
− σTa( .

EP +
.
EQ +

.
E .

m

)
in
=
( .

EP +
.
EQ +

.
E .

m

)
out

+ σTa
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Therefore,
σTa = ∑

in

.
Ej −∑

out

.
Ek (13)

where the exergy of work
.
Ep, the exergy of heat

.
Q at a temperature of T, the exergy

.
EQ

exergy of a mass flow
.
E .

m can be defined as follows:

.
EP = P

.
EQ =

.
Q
(

1− Ta

T

)
and

.
E .

m =
.

m
[
(h− ho)− Ta(s− so) +

w2 − wo
2

2
+ g(z− zo)

]
The difference in measured exergy at the inlet and outlet of the control volume will

then be used to quantify irreversibility. In steady state, the exergy balance per unit area of
the solar collector is given by [45]:

.
Eg = ηo

.
Esun −

.
Eloss (14)

The loss of exergy because the pressure drop of the fluid is assumed to be negligible.
Alternatively, Equation (14) can also be represented as [46],

∑
.
Ein −∑

.
Eout = ∑

.
Edest (15)

In steady state, the exergy collection rate is the amount of energy gained by the heat
transfer fluid as the temperature of the fluid rises from Tf in at the inlet to Tf out at the
outlet. The exergy collection rate can be expressed without considering the mechanical
exergy if the fluid is incompressible by using the following Equation:

.
Eg =

.
mCp

(
Tf ,out − Tf ,in − Taln

Tf ,out

Tf ,in

)
(16)

When considering the usable exergy ratio for solar radiation, two crucial points should
be kept in mind. On earth, the radiating solar flux can always be assumed to be a steady
state condition but not in an equilibrium condition. The other is that the Sun′s radiation
is an open system, which implies it is not possible to recover photons, as opposed to the
equilibrium system. Carnot of (1 − Ta/Ts) is deemed appropriate from these facts for
exergy with the solar radiation, which has the same form as the result of Jeter [47]. The
exergy flow from the sun can be defined from the above information as:

.
Esun = IT

(
1− Ta

Ts

)
(17)

The absorber plate is absorbed solar radiation from the sun, , and to heat is then
transferred to working fluid. As shown in Figure 1, exergy destruction occurs during these
two processes, including the flowing sections, as illustrated [45].

Absorption exergy loss (radiation á plate): when solar light at Ts is absorbed by the
absorber at Tc, an exergy annihilation event occurs.

Leakage exergy loss (plate á ambient): a process of exergy loss followed by heat
leaking from the absorber into its environs.

Conduction exergy loss (plate á fluid): heat conduction between the absorber and the
heat transfer fluid causes exergy annihilation.
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Through Gouy-theorem Stodola′s [48], the aforementioned three types of exergy
loss processes are strongly connected to the entropy generating rates. The following
thermodynamical concepts may be used to derive these three entropy production rates:

∆
.
srp =

∫ 1

0
kIT

(
1
T1
− 1

Ts

)
dσ (18)

∆
.
spa =

∫ 1

0
U1(T1 − Ta)

(
1
Ta
− 1

T1

)
dσ, and (19)

∆
.
sp f =

∫ 1

0
k
(

T1 − Tf

)( 1
Tf
− 1

T1

)
dσ (20)

Even though Equations (18)–(20) cannot be integrated without knowing local absorber
temperature (T1) and the heat transfer coefficient distribution; these equations may be
approximated using the mean absorber temperature as shown below:

∆
.
srp = kIT

(
1
Tc
− 1

Ts

)
(21)

∆
.
spa = U1(Tc − Ta)

(
1
Ta
− 1

Tc

)
, and (22)

∆
.
sp f =

∫ Tf ,out

Tf ,in

.
mCpdT

T
−

.
mCp

(
Tf ,out − Tf ,in

)
Tf ,out

(23)

The first right term in Equation (23) is an entropy flow from the absorber fluid, and
the second one is an entropy of energy gathered from the absorber. The difference between
the two variables becomes the entropy production rate while the heat is transferred from
the absorber into the fluid. The phrase of exergy loss Equation (14) can be seen from
Equations (21)–(23) using the Gouy-Stodola′s theorem as,

.
Eloss = Ta

(
∆

.
srp + ∆

.
spa + ∆

.
sp f

)
(24)
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As a result, the steady-state exergy-balance-equation of a solar collector may be
obtained by inserting Equations (16), (17), and (24) into Equation (14). After a few modifi-
cations, it becomes:

.
mCp

(
Tf ,out − Tf ,in − Taln

Tf ,out
Tf ,in

)
= IT

(
1− Ta

Ts

)
−
[
(1− ηo)IT

(
1− Ta

Tc

)
+ ITTa

(
1
Tc
− 1

Ts

)
+ U1(Tc − Ta)

(
1− Ta

Tc

)
+

.
mCpTa

(
ln

Tf ,out
Tf ,in
− Tf ,out−Tf ,in

Tc

)] (25)

The energy balance of a solar collector can be derived by rearranging Equation (25)
as follows

.
mCp

(
Tf ,out − Tf ,in

)
= ηo IT −U1(Tc − Ta) (26)

From Equation (25), the exergetic efficiency can be expressed by Equation (27) as follows:

ηEx =
.
Eg

.
Esun

= 1−
[
(1− ηo)

1−Ta/Tc
1−Ta/Ts

+ 1/Tc−1/Ts
1/Ta−1/Ts

+Ul(Tc−Ta)
IT

1−Ta/Tc
1−Ta/Ts

+
.

mCpTa
IT(1−Ta/Ts)

(
ln

Tf ,out
Tf ,in
− Tf ,out−Tf ,in

Tc

)] (27)

= 1−
[
eopt + erp + epa + ep f

]
(28)

In Equations (27) and (28), the words in brackets indicate loss of exergy and have the
following physical significance:

3 eopt: Optical loss percent solar energy absorbed owing to glazing transmissiveness
and amorphous absorption.

3 erp: When solar radiation at Ts is absorbed by the absorber at Tc, there is a loss fraction.
(Absorption at low temperatures degrades the high-quality energy).

3 epa: A portion of the exergy lost by the absorber to the environment.
3 epf: The heat transfer from the absorber to the fluid is accompanied by a heat-

conduction loss percentage.

The terms (1 − η=) and Ul (Tc − Ta)/IT in the well-known formulation of energy
efficiency correspond to two of the aforementioned loss fractions, eopt and epa; it is worth
mentioning that the word epf is quite close to the collector efficiency factor, which stands for
loss of heat conduction. The following link is discovered using the temperature distribution
correlations in the collector [45]:

Tf ,out − Ta − S/U1

Tf ,in − Ta − S/U1
= exp

(
−

U1 ApF′
.

mCp

)
(29)

In order to remove the component of output fluid temperature from Equation (27),
the collector exergy efficiency correlation is recast as follows [49]:

ηEx =

.
mCp

[(
Tf ,in − Ta − S

U1

)(
exp

(
−U1 Ap F′

.
mCp

)
− 1
)]
− .

mCp

Ta

 exp
(
−U1 Ap F′

.
mCp

)
−1

Tf ,in

(
Tf ,in − Ta − S

U1

)
+ 1


Ap IT

[
1−

(
Ta
Ts

)] (30)

3. Input Data and Methodology
3.1. Input Data

Some assumptions were made to simplify the analysis in this study. Other heat
transfer coefficients were assumed to be constant, such as the absorbing fluid characteristics,
exergy flow rate, Solar flux, total heat loss, and heat transfer coefficients. Furthermore,
the temperature of the fluid entering the system and the temperature of the surrounding
environment were both considered to be constant and equal. Tables 2–4 include information
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on the characteristics of nanoparticles, the solar collectors’ parameter, and the analytic
condition, respectively.

Table 2. Properties of different nanoparticle and base fluid [50–52].

Nanoparticles Specific Heat, Cp
(J/kg·K)

Thermal Conductivity, k
(W/m·K)

Density, ρ
(kg/m3)

Alumina (Al2O3) 773 40 3960
Copper oxide (CuO) 551 33 6000

Titanium oxide (TiO2) 692 8.4 4230
Magnesium oxide (MgO) 955 45 3560
Water (H2O), base fluid 4182 0.60 997

Table 3. Characteristic parameters for two kinds of solar collector [45].

Solar Collector
Type Optical Efficiency, ηo

Overall Heat Loss,
U1 (W/m2 K)

Collector Efficiency
Factor, F′

Evacuated tube 0.47 1.1 0.99
Flat plate 0.82 5.0 0.97

Table 4. Environmental and analysis conditions for the FPSC.

Parameters of Collector Value

Type Black paint flat plate
Glazing Single glass

Agent fluids Water, Al2O3, MgO2, TiO2 and CuO nanofluids
Absorption area (m2) 1.44

Wind speed (m/s) 20
Collector till (◦) 20

Fluid inlet and ambient temperature (K) 300
Apparent sun temperature (K) 4350

Optical efficiency 84%
Emissivity of the absorber plate 0.95

Emissivity of the covers 0.90
Glass thickness (mm) 4

Insulation TC (W/m·K) 0.06
Incident solar energy per unit area of the

absorber plate (W/m2) 500

Inner diameter of pipes (m) 0.005

3.2. Methodology

The excel equation solver was used to extract the results. The input parameters from
Tables 2–4 and, the Equations from 1–30 have been used to obtain analytical results. The
Equations (3) and (4) have been used to estimate the specific heat, and density of a given
nanofluids. The Equations (9), (10), and (30) have been used to calculate the EnE analysis
of this analysis.

4. Results and Discussions

The chosen environmental and analytical conditions of the solar collector and constant
parameters for the analytical approach are shown in Table 5. Collector efficiency was
calculated using Equations (9), (10), and (30) and Tables 2–4. The EnE efficiency values are
presented in Table 5.
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Table 5. EnE efficiency enhancement compared to the base fluid.

Absorbing
Medium

Maximum ηEn Enhancement, (%) Maximum ηEx Enhancement, (%)

ϕ = 2% and Diff.
Volume Flow Rate

ϕ = 3.20% and
V = 1 L/s

ϕ = 2% and V =
2.40 L/s

ϕ = 3.20% and
V = 1 L/s

CuO nanofluid 38.21 16.80 14.86 11.45
TiO2 nanofluid 34.17 9.25 12.64 9.70
MgO nanofluid 34.77 9.71 12.56 9.53
Al2O3 nanofluid 35.32 9.18 11.11 9.35

The maximum enhancement results of EnE analysis are represented in Table 5. It is
showed that the highest level of EnE enhancement was found for CuO/water nanoflu-
ids. The results are similar to available literature [32]. Energetic and exergetic efficiencies
of different nanofluids such as SiO2/water, TiO2/water, Al2O3/water, CuO/water, and
Gr/water, were experimentally investigated by Verma et al. [53]. They found the CuO/water
nanofluids achieved maximum efficiencies. A group of nanofluids (SiO2/water, TiO2/water,
Al2O3/water, GNP/water, and SWCNT/water) were also examined and compared their
efiiciencied by Elcioglu et al. [54]. Additionally, they verified that, the increase in volume
fraction of nanofluids enhanced the absorber’s efficiency for all nanofluids investigated.

Investigating the outputs of Luminosu et al. [43] for the solar collector′s open circuit
mode and the computer simulation of the solar collector developed by Farahat et al. [31]
enables the verification of the findings acquired through the analytic approach. Table 6
compares the analysed exergy efficiency with an experimental work [43], and analytical
analysis [32] and the computer simulation [31] performed in Iran.

Table 6. Comparison among the present analysis, experimental results, and computer simulation.

Tf, in or Ta, (k) IT, (W/m2) S, (W/m2) ∆T, (K) ηEx, (%)

Present analysis (CuO) 300.00 500 420 62.00 3.35
Alim et al. [32] 300.00 1000 500 63.00 3.72

Luminosu and Fara [43] 305.15 788 580 46.00 2.90
Farahat and Sarhaddi [31] 300.00 500 420 58.82 2.95

These findings are in excellent accordance with the literature data of Reference [32].
Our results vary only about 9% with Reference [32], which is well acceptable. The devi-
ation was higher for the others two data of references [31,43] due to their numerical and
experimental parameters were different compared to the present analysis. For example,
the solar radiation and the temperature difference are different from our analysis. It was
realised that the solar radiation and ambient temperature had an impact on the exergy
efficiency, particularly at the high flow rates [21]. The results are also in good agreement
with the recently published experimental study [55]. They reported the maximum exergy
enhancement was about 3.33% which is very close to this study (3.35%) analysis. The
following observations can be noted.

3 As nanofluids replace water as an absorbing medium, the nanofluids’ viscosity,
density, and TC increase, but its specific heat decreases compared to the base fluid
(water). Interestingly, these findings are in agreement with those of Pandey et al. [50].

3 To gain exergy, the entropy generation number is typically expected to decrease. The
entropy generation number decreases when nanofluids are used as agent fluids [51].

3 With an increase in particle concentration, the heat transfer rate is increased [56].

Figure 2 illustrates the changes of the energy efficiency of a FPSC as a function of
the volume flow rate of 1 to 3.8 L/min. It can be seen from Figure 2 that the collector′s
energy efficiency increases linearly and steadily with the increase of volume flow rate.
Equation (9) and input data were used to calculate energy efficiency, considering output
temperature difference constant and 2 vol % nanoparticles. It can be found from Figure 2
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that the collector efficiency increases by 38.21% for CuO/water nanofluid and 34.17%,
33.21, and 32.91% for Al2O3/water MgO/water and TiO2/water nanofluids compared to
the base fluid. These results satisfactorily agree with the results of Yousefi et al. [12] and
Tyagi et al. [11].
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Figure 3 shows the effect of output temperature on energy efficiency. Energy efficiency
was calculated using Equation (9). It can be seen from Figure 3 that the energy efficiency
increases significantly with increasing output temperature of all fluids. Solar collectors
that utilise nanofluids have a higher output temperature, which produces nanoparticles in
the basis fluid, and therefore have greater efficiency. The relevant definition is: “The heat
needed to increase the temperature of a unit mass of a material by one unit of temperature”.
As a result, at a similar heat flow rate, lower specific heat capacity material should offer
higher temperature, as stated in the description.
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The specific heat of nanofluids as a function of nanoparticle volume fraction is shown
in Figure 4. When the nanoparticle volume fraction in the base fluid is higher, the specific
heat is reduced. Due to these reasons, the overall output temperature and efficiency both
increase. Figure 4 demonstrated the CuO nanofluid has a lower specific heat than Al2O3,
MgO and TiO2 nanofluids for a given volume fraction. The relative heat of Al2O3 and TiO2
nanofluid was nearly identical. Even though the specific heat of these nanofluids varied,
they were all above the specific heat of the base fluid. These findings are consistent with
those of Kamyar et al. [57] and Sohel et al. [58].
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The effect of nanoparticle volume fraction on exergy efficiency is illustrated in Figure 5.
Equations (16), (17), (27) and (30) was used to calculate the exergy efficiency. The efficiency
of solar collector increases linearly with the volume fraction. For example, for given
nanoparticles of 3.2 vol %, the efficiency increases by 11.45% for CuO nanofluid, 9.7%
for TiO2 nanofluid, and 9.35% for Al2O3 and 9.53% for MgO nanofluid compared to base
fluid (water).
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Exergy efficiency as the function of fluid volume flow rate is represented in Figure 6.
The efficiency of exergy was determined using Equation (30). The analysis indicates that
the exergy efficiency of a water operated collector is minimum; therefore, a good amount of
irreversibility is present in the solar collector with water as the flowing medium. However,
the figure shows that the exergy efficiency can be increased by using nanofluids as the
flowing medium. As an absorbent medium, CuO nanofluid may be the right choice because
the exergetic efficiency is better compared to the others nanofluids, and water. The TC
of a nanofluid is an increasing function of nanoparticle volume fraction, according to
the Hamilton and Crosser model [59]. It may be explained by increasing the effective
surface area for heat transmission by increasing the volume fraction of nanoparticles.
Additionally, the nanoparticles′ inherent the higher TC that improves the TC of nanofluids.
This phenomenon may account for an increase in exergy efficiency.
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Figure 7 represents the variation of analytically determined exergy efficiency of solar
collectors with nanoparticles volume fraction. A solar collector using CuO/water nanofluid
has the greatest exergy efficiency for the same flow rate as the others nanofluids. The
CuO/water nanofluid along with solar collector, for example, has a 14.12% greater exergy
efficiency than a typical solar collector operating on the water at a 2.4 L/s volume flow
rate. Al2O3 and MgO show approximately equal exergy efficiency but higher than water.
On the other hand, TiO2 provides slightly better exergy efficiency compared to base
fluid, Al2O3 and MgO nanofluids. Thus, the analytical results indicate that the maximum
exergy efficiency can be achieved with collectors using nanofluids as an agent medium.
This improvement was most likely aided by the following factors: At a fixed Reynolds
number, (I) the suspension TC increases as the volume fraction of nanoparticles, and (II) the
nanofluids’ convective heat transfer coefficient is higher than that of the base fluid. Those
similar conclusions were reported by Duangthongsuk and Wongwises [60], Xuan and
Li [61], and He et al. [62]. When the collector absorbent surface area is identical, the mass
flow rates and the specific heat may have a considerable effect on the exergetic efficiency of
solar collectors, according to the exergy efficiency Equation (30).
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Figure 8 depicts the density variations as a function of nanoparticle volume concentra-
tion. Equation (4) was used to compute density. As demonstrated in Figure 8, the mass
flow rate of nanofluid rises as the volume percentage of nanoparticles increases; however,
specific heat has the opposite effect. The following formula was used to determine the
mass flow rate: relation, ṁ = Vρ Where, V represents a volume flow rate in L/min. The
nanoparticles’ density and volume fraction of given geometrical dimensions are responsible
for the variation in mass flow rate.
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For instance, considering the volume flow rate of 1 lit/min, the mass flow rate was
found to be 0.01667, 0.01824, 0.01840, 0.01825, and 0.01933 for water, Al2O3, TiO2, MgO, and
CuO nanofluids, respectively for 3.2% nanoparticles volume concentration. This indicates
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that about an 11.45% increase in the mass flow rate is possible for CuO nanofluid than
water. These findings are in agreement with the results published by Sohel et al. [58].

Although its outlet temperature has a more significant impact on energy efficiency, it
raises the absorber plate temperature, potentially causing exergy loss. According to the
literature, the leading cause of exergy loss in the collector is the temperature difference
between the sun and absorber plate. If the temperature of the absorber plate rises, this
disparity increases as well, resulting in the decrease of collector exergy loss. According to
Jafarkazemi et al. [46], if the flow rate is increased by 0.01 kg/s it results in a significant
reduction of temperature on the absorber plate. The heat loss coefficient reduces with the
reduction of temperature between the absorber plate and the atmosphere, resulting in an
improvement of the collector′s thermal efficiency. The argument is consistently endorsed
by Figure 9. The mass flow rate was substantially improved by increasing the nanoparticle
volume concentration.
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The conventional working fluid and nanofluids can be compared for their contribution
to total heat gain. After determining the thermal efficiency of a solar collector, the possibility
for reducing the collector′s area can be calculated by [63]:

Ac =

.
mCp

(
Tf ,out − Tf ,in

)
ITn

(31)

Figure 10 illustrated the size reduction of FPSC with a different working medium. The
calculation is considered at nanoparticle of 0.032 vol % and volume flow rate of 2 L/min.
The water-CuO working fluids shows the maximum decrease of FPSC size compared to
others working medium. The difference of FPSC size reduction of water-CuO nanofluids
with other nanofluids due to the higher EnE efficiency of water-CuO nanofluids.
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5. Conclusions

The benefits of utilising various nanofluids in a FPSC were investigated in this research,
considering the impacts of volume flow rate, nanoparticles volume fraction, mass flow rate,
density, and specific heat on the solar collector′s EnE efficiency. Based on the results, the
following main conclusions can be drawn.

1. The analytical result shows CuO nanofluid increased the EnE efficiency of a FPSC by
38.21% and 14.86%, respectively.

2. Additionally, the study demonstrated that increasing volume fraction, mass flow rate,
and density could improve EnE efficiency. Whenever the volume flow rate remains
constant, the mass flow rate can be increased by adding nanoparticles into the base
fluid, which has higher efficiency. Specific heat is one of the essential parameters
for efficiency improvement. By reducing the specific heat of a fluid, the efficiency
of a FPSC can be improved. It is simple to do so by suspending a small number
of nanoparticles.

3. CuO nanofluid is a better option for increasing both the EnE efficiency of FPSC.

To reduce the complexity of the analysis, the overall heat loss coefficient, nanoparticle
properties, inlet temperature, pressure drop, area of the absorber plate on the performance
of the collector, heat removal factor, etc., were considered constant. This emphasises that
more study is required for thoroughly investigating the heat transfer performance and
efficiency of FPSC with nanofluids.
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Nomenclature

Ap absorption area, m2

Cp specific heat, J/kg·K
e exergy loss

.
Eg exergy gain rate per unit area, W/m2

FR heat removal factor
F’ collector efficiency factor
g gravitational acceleration, m/s2

IT incident solar energy per unit area, W/m2

k heat conductivity, W/m·K
ṁ mass flow rate, kg/s
P mechanical power, W
.

Q thermal energy rate, W
.

Qu energy gain rate, W
s entropy per unit mass, J/kg·K
S absorbed irradiation, W/m2

T temperature, K
Tc absorber plate temperature, K
U1 overall heat loss, W/m2 K
V volume flow rate, L/min
z height from reference level, m
EnE energy and exergy
FPSC flat plate solar collector
DAC directive solar collector
CNT carbon nanotube
TC Thermal conductivity
ηEn energy efficiency
ηEx exergy efficiency
ηo optical efficiency
τ transmittance
α absorptance
ϕ nanoparticles volume fraction, %
ρ density, kg/m3

σ overall entropy production, J/kg·K
Subscript
a ambient
bf base fluid
dest destruction
fin inlet fluid
fout outlet fluid
np nanoparticles
nf nanofluid
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