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Abstract: As the applications of power electronic converters increase across multiple domains, so do
the associated challenges. With multilevel inverters (MLIs) being one of the key technologies used in
renewable systems and electrification, their reliability and fault ride-through capabilities are highly
desirable. While using a large number of semiconductor components that are the leading cause of
failures in power electronics systems, fault tolerance against switch open-circuit faults is necessary,
especially in remote applications with substantial maintenance penalties or safety-critical operation.
In this paper, a fault-tolerant asymmetric reduced device count multilevel inverter topology produc-
ing an 11-level output under healthy conditions and capable of operating after open-circuit fault in
any switch is presented. Nearest-level control (NLC) based Pulse width modulation is implemented
and is updated post-fault to continue operation at an acceptable power quality. Reliability analysis
of the structure is carried out to assess the benefits of fault tolerance. The topology is compared
with various fault-tolerant topologies discussed in the recent literature. Moreover, an artificial intelli-
gence (AI)-based fault detection method is proposed as a machine learning classification problem
using decision trees. The fault detection method is successful in detecting fault location with low
computational requirements and desirable accuracy.

Keywords: multilevel inverters; power electronics; fault tolerance; fault detection

1. Introduction

The increased adoption of power electronics in all areas in the electrical power domain
has made various feasible innovations such as electric vehicles [1,2], HVDC transmission
systems, large-scale transformation towards renewable energy resources [3]. With the
DC–AC conversion playing a significant role, the development of multilevel inverters
(MLIs) is an essential process. Succeeding the conventional two-level and three-level in-
verter topologies, MLIs possess the advantages of better power quality, efficient conversion,
reduced thermal management, smaller filter size as well as in-built redundancy and voltage
boosting features [4,5]. The classical MLI topologies are the Neutral Point Clamped (NPC),
the Flying Capacitor (FC), and the Cascaded H-bridge (CHB) topologies. Since their incep-
tion, a vast diversity of newer structures has been proposed to eliminate the disadvantages
of classical topologies. They include reduced device count, lower per-unit total standing
voltage, and greater efficiency converters. Recent developments in MLI design are also
focused on EMI, volume, weight and cooling, and packaging requirements [6].

Implementing a large number of power semiconductor switches leads to an increased
susceptibility towards fault and makes monitoring and diagnosis more complex [7]. This
can be unacceptable in safety-critical applications such as onboard power systems. Isolated
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sites with heavy economic penalties for downtime and maintenance or repair such as an
offshore wind farm also demand high reliability [8–10]. Power converters are frequently
operated in high-stress environments and less than optimal cooling management. One
survey on electrical drive systems concluded that 47% of 484 failures were caused by
semiconductor components [11]. Another survey concluded that 37% of unexpected
maintenance routines and 59% of maintenance expenditures are single-handedly caused
by inverters in a 5-year operation period of a 3.5 MW PV system. These figures present the
need for the reliable and fault-tolerant design of MLIs [12].

Switch faults can manifest either as an open-circuit fault or a short-circuit fault. Open-
circuit faults occur through various mechanisms such as bond-wire lift-off, gate driver
failure, or internal connection rapture due to thermal or mechanical shocks [13]. This work
investigates the same. Researchers in this regard have made significant efforts. Reducing
electrical or thermal stress can decrease failure probability. Including redundant states in
the topology can make the post-fault operation possible. An early effort is made in [14] on
an FC topology, compromising with device count and having capacitor imbalance issues,
thus increasing the cost and complexity of the structure. Adding extra legs to individual
modules for modular multilevel converter (MMC) topologies is investigated in [15], with
similar consequences of increased switch count and complexity. Switches in parallel and
an extra capacitor have been added in structure [16] for fault handling capability. It adds to
the circuit size, and the power loss of the converter increases. The use of a high number
of DC sources for producing higher levels is also a disadvantage. A hybrid MLI with
reduced device count is proposed in [17], eliminating some of the drawbacks. However,
the low-level post-fault operation leads to poor power quality, unsuitable for the majority
of applications. Z-source inverter topology has been discussed with fault tolerant feature
in [18].

Likewise, a large number of switches in an MLI further leads to significant challenges
in fault detection. Researchers have devised various techniques for fault detection. A work
proposed in [19] uses voltage vectors of the converter. Similarly, detection works using
switching frequency component magnitude [20], voltage pattern mass center [21], a sliding
mode observer for comparison between the actual state and simulated state [22], and bridge
voltage mean [23] can be noted. Fault detection using output voltage mean can also be
observed in [24,25]. The advent of artificial intelligence (AI) with powerful and low-cost
microcontrollers has made the application of AI techniques ubiquitous in power electron-
ics [26]. Correspondingly, AI techniques have seen significant use in fault detection [27–29].
Although fault detection in CHB-MLIs has been investigated in multiple works [24,29–32],
few works have focused on reduced device count topologies.

On account of the above, this paper proposes a reduced device count asymmetric
multilevel inverter topology capable of producing 11 levels under healthy operation with
fault tolerance across any switch undergoing an open-circuit fault, including across multiple
switches simultaneously in some cases. The proposed fault-tolerant inverter is suitable for
applications with high reliability demands. One application can be in renewable energy
systems in remote or rural areas, where maintenance or repair can be significantly resource-
intensive or delayed. The reduced peak level or power quality can still be useful as a
temporary measure until repair. Another application where fault tolerance is crucial is
vehicles onboard power electronics, where in the case of a fault, reduced power is still
useful to function for a long enough duration to get the vehicle to a safe location. Post-fault
modulation reconfiguration and use of redundant switches is used to handle switch open-
circuit faults in this work. The healthy, under fault and post-fault conditions are examined
and validated through simulation results. Moreover, a fault detection strategy based on
artificial intelligence techniques is also presented, which can localize a fault under varying
load and modulation index conditions. After fault mitigation, continued operation with an
acceptable quality waveform on the output can be performed.
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2. Proposed Structure

The proposed 11-level topology is depicted in Figure 1. Observably, the structure
comprises six unidirectional switches and three bidirectional switches, requiring 12 IGBT
components. A pair of bidirectional switches S8 and S9 are redundant, with these switches
being used exclusively under faulty states. The structure utilizes three DC sources with per
unit magnitudes of 0.5, 1, and 1, respectively. The structure can generate an 11-level output
voltage waveform, with five levels each of positive and negative polarity, respectively, and
a zero level. The switching strategy under healthy operation is described in Table 1, and
the corresponding conduction diagram is presented in Figure 2. The ratio of the magnitude
of the dc sources is as V2 = Vdc and V1 = 0.5Vdc. The total standing voltage (TSV) of the
structure is 20Vdc, with the per-unit TSV having a magnitude of 20/2.5 = 8Vdc.
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Figure 1. Structure of proposed multilevel inverter topology.

Table 1. Switching states for the proposed topology.

S1 S2 S3 S4 S5 S6 S7 V0

1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 V1
1 0 0 0 1 0 1 V2
1 0 0 0 0 1 1 V1 + V2
1 0 0 1 1 0 0 2V2
1 0 0 1 0 1 0 V1 + 2V2
0 1 0 1 0 1 0 0
0 1 0 1 1 0 0 −V1
0 1 0 0 0 1 1 −V2
0 1 0 0 1 0 1 −(V1 + V2)
0 1 1 0 0 1 0 −2V2
0 1 1 0 1 0 0 −(V1 + 2V2)
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3. Fault-Tolerant Strategy

The modulation scheme must be reconfigured after an open-circuit fault is detected
on any of the switches to sustain operation with acceptable output power quality and THD.
The strategy for faults across individual switches is given in Table 2. The open-circuit fault
can result in a reduced output power rating due to the loss of the peak level ±5Vdc in
particular cases.

Table 2. Fault management strategy.

Faulty Switches Levels Preserved Post-Fault Peak Levels Remaining

S1 or S2 ±V2, ± 2V2, zero ±2V2
S3 or S4 ±V2, ±(V1 + V2), zero ±(V2 + V1)
S5 or S6 ±V2, ± 2V2, zero ±2V2

S7 ±V1, ±2V2, ±(V1 + 2V2), zero ± (V1 + 2V2)

The blocking voltages of the switches are given as

S1 = S2 = 2.5Vdc (1)

S3 = S4 = 2Vdc (2)

S5 = S6 = 0.5Vdc (3)

S7 = 2Vdc (4)

S8 = S9 = 3Vdc (5)

The total TSV (total standing voltage) of the structure calculated as the sum of indi-
vidual maximum blocking voltages is obtained as 18Vdc, with the per-unit TSV having a
magnitude of 18/2.5 = 7.2Vdc. The switch voltage stresses do not increase post-fault and
remain at their healthy condition or lower values.
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Modulation Strategy

Implementing a low-frequency modulation technique effectively reduces voltage
transients, snubber requirements, switching losses and has a positive effect on the reliability
of the inverter [33]. Selective harmonic elimination (SHE-PWM) and nearest level control
(NLC-PWM) are two techniques based on low frequency modulation. SHE is better at
reducing the filter size by mitigating the lower order harmonics, but it requires solving
complex transcendental equations which is computationally intensive. Moreover, the
closed-loop implementation of NLC-PWM is simpler. This work uses NLC-PWM in light
of the above issues. The switching angles θi [34,35] are calculated using:

θi = Masin−1
(

2i− 1
N − 1

)
(6)

where MI stands for the modulation index with i = 1,2, . . . (N − 1)/2 (N = number of
levels). The modulation index MI is equal to

Ma =
Vre f

V0
(7)

Post-fault, modulation is reconfigured to generate new switching angles to maintain
the output power quality with reduced or inconsecutive levels.

1. Fault in S1 or S2 or S5 or S6

The generation of levels±V1, ± (V1 + V2), ± (2V2 + V1) cannot be sustained following
a fault that occurs in this situation. The levels ±V2 and ±2V2 are produced post-fault. The
respective conduction diagram under R-L load is shown in Figure 3. The load power rating
is reduced as a result of the loss of the peak level. Modulation reconfiguration can give a
satisfactory output voltage THD.
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2. Fault in S3 or S4

The levels ±V1, ±2V2, and ± (2V2 + V1) are lost in this case. The conduction diagram
following this fault is given in Figure 4. Indeed, the fault leads to a similar reduction in
load power rating.
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3. Fault IN S7

Following a fault in S7, the levels ±V1, ±2V2 cannot be further produced. However,
a fault in this location does not affect the load power rating, as the peak level ±(2V2 + V1)
is preserved. The conduction diagram for this scenario is illustrated in Figure 5.
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4. Reliability Assessment

A reliability assessment is instrumental in evaluating the robustness of a circuit
towards environmental stresses and gradual degradation. It is instrumental in predicting
the expected lifespan of the inverter.

4.1. Component Failure Rate Evaluation

The failure rates of various components are influenced by numerous factors, such
as voltage stress, thermal behavior, environment, as described in MIL-HDBK-217F [36].
The failure rate of a semiconductor switch is derived as:

λs= λb×πT×πA×πR×πS×πQ×πE (8)
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where the base failure rate λb is given as 0.00074. The thermal parameter πT is given by:

πT= exp(− 2114(
1

TJ + 273
− 1

298
)) (9)

where TJ is the junction temperature of the device. The application factor πA corresponds
to switching and is considered as 0.7. The power rating factor πR is given as

πR = Pr
(0.37) (10)

where Pr is the power rating of the switch. The voltage stress factor πS is given using

πR= 0.45 × exp (3.1×VS) (11)

where VS = VCE (applied collector to emitter voltage)/VCEO (rated collector to emitter
voltage with base open). The quality factor πQ is taken as unity for JANTX specifications.
The environment factor (πE) is considered as benign ground environment with a value
of unity.

1. Thermal Power Loss

The non-ideal behavior of switches is manifested in the form of their conduction losses
and switching losses. It, in turn, elevates the junction temperature of the device, resulting
in decreased reliability and efficiency. The total conduction loss in an IGBT diode module
in a fundamental period can be evaluated using Equation (12).

Pc =
Nsw

∑
k=1

1
2π

∫ 2π

0

(
Vswi(t)+Rsiβ(t)

)
dt+

ND

∑
k=1

1
2π

∫ 2π

0
(V Di(t)+RDi2(t))dt (12)

In the preceding expression, Vsw represents the ON-state switch voltage drop, Rs
stands for the ON-state switch resistance; similar terms are denoted for the diode D.
The module current is given by i(t). Further, the switching losses in the module can be
computed by the following equations:

Ps =

[
Ns

∑
k=1

(N ONk
EONk+NOFFkEOFFk)

]
×f (13)

Here, NONk and EONk are taken as the number of transitions to OFF states and the
associated energy loss, respectively, for the kth device, with the second term for ON
transitions. The fundamental frequency is being denoted by f. The total thermal losses as
an algebraic sum of the average conduction and switching losses is given by:

Ploss = Pc+Ps (14)

The Foster thermal model was compiled in the PLECS environment. Figures 6 and 7,
respectively, denote the thermal description of the IGBT module IKW20N60H3 imple-
mented. Heat sinks with reduced thermal resistances are not added. To simulate a
worst-case scenario, the junction-to-ambient thermal resistance of the IGBT module it-
self is implemented for analysis. Following the thermal model, the πR and πT values are
obtained.
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4.2. Reliability Evaluation

The different failure rate parameters, and hence the failure rates of the various switches,
are computed and are described in Table 3. The reliability function of the inverter under
any switch open-circuit faults is evaluated using the following result:

R(t)= (e−λ1t)2(e−λ2t)
2
(e−λ3t)

2
(e−λ4t)

2
+2(1− e−λ1t)(e−λ2t)

2
(e−λ3t)

2
(e−λ4)

2
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Table 3. Device failure rate parameters.

Switches Junction Temp. (◦C) ΠT Power Loss (W) ΠR Vs ΠS λs

S1/S2 248.73 20.82 5.33 1.85 0.41 0.21 λ1 = 0.00421
S3/S4 190.852 12.63 3. 90 1.65 0.33 0.16 λ2 = 0.00172
S5/S6 230 18.01 4.90 1.80 0.08 0.11 λ3 = 0.00184

S7 119.272 5.50 3.39 1.57 0.16 0.11 λ4 = 0.000492
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The first term in the expression is for the healthy operation of the topology. The second
term is for the case of post-fault in either of S1/S2. The third term of the equation represents
conditions after a fault in S3/S4. Similarly, the third term of the equation represents a fault
in one of S5/S6. The equation’s fourth term represents a fault in S7. In a situation where
there is no fault management, the reliability of the inverter is substantially suppressed,
as predictable by Equation (16).

R(t)= (e−λ1t)2(e−λ2t)
2
(e−λ3t)

2
(e−λ4t)

2
(16)

The distinction of reliability between fault management and its lack thereof can be
visualized in Figure 8.
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5. Comparative Analysis

In this section, the proposed topology is assessed competitively concerning fault-
tolerant MLIs mentioned the in recent literature. Multiple parameters for assessment
include the number of DC sources, power semiconductor switches, and levels generated.
The comparison can be visualized using Table 4. The proposed topology shows advantages
in terms of per-unit level device utilization and component requirements with the addi-
tional benefit of improved reliability. The literature works compared with the proposed
topology include [16–18,37–41]. While the DC source requirement in [18,39] are same as the
proposed topology, still they can produce only seven level output voltage. The topologies
presented in [17,38,40,41] utilizes two DC sources, but they can only produce a maximum
level of 5, 5, 7, and 9 respctively. Moreover, although the switch requirement in [17,37–40]
is less compared to proposed topology, the ouptut voltage levels generated are also quite
a bit lower. Comparison with a CHB topology with DC sources ±Vdc, ±2Vdc, ±2Vdc is
also included. The CHB topology exhibits only partial fault tolerance in terms of post-fault
peak level availability and reduced performance in case of faults in multiple switches while
requiring 12 active IGBTs compared to 8, as in the case of the proposed topology. Consider
a three-CHB with DC sources ±Vdc, ±2Vdc, ±2Vdc. The proposed topology can continue
to produce a five-level output of 0, ±2Vdc, ±4Vdc in the event of both S1-S2, both S5-S6, and
even all four S1, S2, S5, and S6 simultaneous failure by employing the redundant switches
S8 and S9, while the loss of four switches will catastrophically affect the performance of
the CHB inverter. Moreover, only eight IGBTs are active in the proposed topology during
healthy conditions, and the other four are redundant, which results in higher reliability
than the three-CHB inverter comprising 12 active IGBTs.
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Table 4. Comparative assessment.

Topology No. of Dc
Sources

No. of
Capacitors

No. of Power
Diodes

No. of
Switches

Fault Toler-
ant/Reliable

No. of
Levels

Binary CHB (1-2-2) 3 0 0 12 YES (partial) 11
[16] 4 0 0 20 YES 5
[17] 2 0 2 8 YES 5
[37] 1 2 2 8 YES 5
[38] 2 0 0 8 YES 5
[18] 3 0 0 12 YES 7
[39] 3 0 0 10 YES 7
[40] 2 2 0 9 YES 7
[41] 2 1 0 12 YES 9

Proposed 3 0 0 12 YES 11

6. Fault Detection

The proposed fault detection technique involves the acquisition of the mean load
voltage and Root Mean Square (RMS) load voltage supplied by the MLI. The detection
problem is a Multiclass Classification problem in machine learning, with fault location as
the output and mean and RMS voltages as inputs. Various supervised learning classification
algorithms have been developed, namely expert systems, linear regression, artificial neural
networks (ANNs), a support vector machine (SVM), k-nearest neighbour (KNN), fuzzy
logic, and decision trees (DTs). This work implements a decision tree model for the
classification problem. DTs are one of the most versatile and popular models which can
perform both classification and regression. A decision tree is in the structure of a tree,
where each feature is represented as a node. A decision rule is represented as a branch
(link), and each leaf classifies the output. The structure of a DT is depicted in Figure 9.
The basic principle involves asking a series of true/false questions or decisions. Data are
further categorized across every step. Each branch corresponds to a result of the test. Each
leaf node assigns a classification of the output. DTs often mimic the human thinking flow,
making them simple to understand and they help one in interpreting the implications of
the data. The three steps performed are dataset preparation, training, and testing.
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Assuming training vectors xi ∈ Rn, i = 1, . . . l with a label vector y ∈ Rl , the function-
ing of a decision tree involves recursively partitioning the features such that identically
labelled or similar target outputs are aggregated together. Consider the data composed
of Nm samples at node m and symbolised by Qm. A split θ = (j, tm) with j and tm as



Energies 2021, 14, 4302 11 of 21

the feature and partition, respectively, partitions the data into the subsets Qle f t
m (θ) and

Qright
m (θ).

Qle f t
m (θ) =

{
(x, y)

∣∣xj ≤ tm
}

(17)

Qright
m (θ) = Qm/Qle f t

m (θ) (18)

The obtained candidate split is verified by its quality using a loss function H(),

G(Qm, θ) =
Nle f t

m
Nm

H(Qle f t
m (θ)) +

Nright
m
Nm

H(Qright
m (θ)) (19)

The impurity minimisation is performed by the following parameter:

θ∗ = argminθG(Qm,θ) (20)

Recursion is performed for the subsets Qle f t
m (θ∗) and Qright

m (θ∗) until the maximum
allowable depth is achieved that is Nm < minsamples or Nm = 1. For a classification
application implementing 0 . . . (K − 1) outputs for node m, assume that the proportions of
class k outputs in node m given by

pmk = 1/Nm ∑
y∈Qm

I(y = k) (21)

Then, the loss function corresponding to the Gini classification index is given by

H(Qm)∑
k

pkm(1− pmk) (22)

6.1. Dataset Preparation

The mean and RMS values are acquired and are used as input to the model. Multiple
inputs are obtained by varying the DC source voltages by 0%, ±1%, ±2%, ±5%, and ±10%
to account for variations in load and dynamic behavior. Moreover, the above procedure is
repeated for modulation indexes of 1, 0.9, 0.8, 0.7, 0.6, and 0.5. Distinct values across these
parameters are obtained for fault in all seven switches and healthy operation. This gives a
total of 432 input datasets, of which 75% are used for training the model. Selected sample
datasets are displayed in Table 5 for S3 fault conditions. A plot of the total dataset obtained
is shown in Figure 10. Classification 1 to 7 is used for respective faults in switches, with ‘0′

for no fault.

Table 5. Sample dataset features.

Mean Load Voltage RMS Load Voltage Fault in Switch

−45.20 79.29 1
66.56 116.11 2
6.014 122.00 3
−4.72 87.69 4
16.65 108.49 5
−13.75 99.34 6
−0.00014 137.92 7
−3 × 10−6 −3 × 10−6 0 (NO Fault)
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6.2. Training

The training was implemented on a ColabTM computational environment using the
Python Scikit-learn library. Gini index classification was used as a metric. The importance
of the features can be visualized in Figure 11. Observably, the mean voltage is a more
important feature than the RMS values. The obtained decision tree structure is shown in
Figure 12. The tree has 39 nodes and 38 branches with eight leaf nodes determining the
fault location as the output.
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6.3. Testing and Results

After training, testing was carried out to verify the performance of the prediction
model. The Confusion matrix obtained post-training is given as:

13 0 0 0 0 0 0 0
0 11 0 0 0 0 0 0
0 0 12 0 0 0 0 0
0 0 1 8 0 0 0 0
0 0 0 0 16 0 0 0
0 0 0 0 0 15 0 0
0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 15


(23)

The diagonal values are the correct predictions, and the non-diagonal elements are
false positives and false negatives. As a result, the testing accuracy as a ratio of the number
of correct predictions and total predictions was approximately 98.14%. An error of 1.86% is
within satisfactory ranges for load and modulation index variation. Thus, the model can
predict open-circuit fault locations with acceptable accuracy and low computational and
hardware requirements.

The trained classification model was implemented in the MATLAB-Simulink environ-
ment for fault detection on the inverter model. The obtained simulation results are given in
Figure 13. The simulation results indicate that the fault is detected within one fundamental
period.

The method can also be expanded for multiple switch faults. The advantages of the
given method include the requirement of only two measured signals, mean and RMS
voltage, from the inverter, thus requiring minimal additional sensor and signal processing
hardware requirements. Thus, the proposed method can work with minimal cost and
complexity.
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7. Results and Discussion
7.1. Simulation Results

The operation of the proposed topology was verified in the MATLAB-SimulinkTM

R2016b environment on an Intel® CoreTM i5-3210M 2.50 GHz platform. The simulation
parameters are listed in Table 6. Results under both normal and faulty operation are
presented with the execution of the NLC-PWM modulation control. The load voltage
and load current waveform and their respective harmonic profiles are given in Figure 14.
The load voltage, load current, and the switch current waveforms in the scenario of S1/S2
or S5/S6 fault are shown in Figure 15. Similarly, the corresponding waveforms for faults in
S3/S4 and S7 are shown in Figures 16 and 17, respectively.

Table 6. Simulation and reliability model parameters.

IGBT-diode module IGB20N60H3
Dc source voltages V1, V2 50 V, 100 V

Load 20 Ω, 40 mH
Power 960 W

Modulation NLC
Fundamental Frequency 50 Hz

Heat sink added NO
Initial temperature and ambient 298 K
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7.2. Experimental Verification

The operation of the proposed topology was verified through a hardware prototype
depicted in Figure 18 using NLC (nearest level control) at 50 Hz fundamental frequency
with Table 7 parameters. IGBTs IGB20N60H3 were used as switches. TMS320F28335
was used as the controller while TLP250H gate drivers were implemented. The output
waveforms were displayed in a Yokogawa DL1640 oscilloscope. A total input DC source
voltage of 50 V with V1 = 10 V and V2 = 20 V was fed to the module. An EN50160 power
analyzer was used to determine the harmonic distortion in the load voltage waveforms.
A load of 20 Ω + 50 mH was connected at the output. The output waveforms for S1 open-
circuit fault for modulation indexes MI = 1 and MI = 0.7 are given in Figure 19. Similarly,
the output waveforms for S3 fault and S7 fault are given in Figures 20 and 21, respectively.
The fault-tolerant operation was successful, even with the variation of MI. Moreover, the
waveform distortion arising from the open-circuit fault was corrected in one fundamental
period. The harmonic spectrum of load voltages for healthy conditions, S1 post- fault,
S3 post-fault, and S7 post-fault, are given in Figure 22. Observably, the THD is higher
post-fault but is at acceptable values and can be supplied to critical loads with low filter
requirements.
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Table 7. Experimental parameters.

IGBT-diode module IGB20N60H3
Dc source voltages V1, V2 10 V, 20 V

Load 20 Ω, 50 mH
Power 125 W

Modulation NLC
Fundamental Frequency 50 Hz

Controller TMS320F28335
Gate Drivers TLP250H
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8. Conclusions

In this paper, an asymmetric multilevel inverter topology is introduced. The fault
tolerance of the proposed topology against switch open-circuit faults due to gating failure
is verified through simulation results. Reliability analysis of the topology is presented to il-
lustrate the advantage of fault tolerance. The topology is compared against previous works
in terms of device count and other parameters to demonstrate its superiority. Additionally,
a fault detection strategy using the supervised machine learning technique decision trees
is put forth. The fault localization model inputs the load mean voltage and its RMS as
diagnostic variables and outputs the fault location. The testing results demonstrate that
the classification model successfully detects the fault location with an accuracy of 0.981481.
Therefore, the fault detection strategy can be expanded to a real-time system in the future
with low computational requirements and minimal additional hardware.
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