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Abstract: The negative impacts of catastrophic fire and explosion accidents due to copper corrosion
problems of oil-filled electrical transformers are still in the spotlight due to a lack of effective methods
for early fault detection. To address this gap, a condition monitoring (CM) procedure that can detect
such problems in the initial stage is proposed in this paper. The suggested CM procedure is based on
identified measurable variables, which are the relevant by-products of the corrosion reaction, and
utilizes an Early Fault Diagnosis (EFD) model to detect and solve the copper corrosion problems.
The EFD model includes a fault trend chart that can track a fault progression during the useful life of
transformers. The purpose of this paper is to verify and validate the effectiveness of the suggested
CM procedure by an empirical study in a power plant. The result of applying this procedure was
early detection of copper corrosion problems in two transformers with suspected copper corrosion
propagation from a total of 84. The corrective action was adding an optimized amount of a passivator,
an anticorrosion additive, to suppress the corrosion reaction at the correct time. The main conclusion
of this study is the importance of early detection of transformer faults to avoid the negative impacts
on societal, company, and individual levels.

Keywords: CBM strategy; condition monitoring; copper corrosion; fault detection; transformer failures

1. Introduction

In recent decades, copper corrosion problems in the mineral oil-filled electrical trans-
formers containing corrosive sulfur compounds have increased significantly [1,2]. The
problem attributes to the formation of sulfur deposits on the internal components, such
as copper windings through their insulating paper in the form of semi-conductive copper
sulfide (Cu2S) [2,3]. The main consequence of these deposits is decreasing the dielectric
property of the insulation system that can lead to partial discharge and arcing phenomena,
which in turn is causing fire and explosion accidents [2,4–6]. The negative impacts of
these accidents are very serious, having resulted in injuries and deaths, contamination
by chemicals and, furthermore, power outages for customers and loss of power plant
profits [4,7,8].

Statistical failure analysis of European substation transformers [9] reported that 5.2%
of the total failures between 2000–2010 were due to improper maintenance, and 0.5% due to
copper corrosion problems. It also reported that 12.8% of these failures caused fire and ex-
plosion accidents. Another international survey [10] over the period of 1996–2010 reported
964 transformer failures of 56 substations from 21 countries, where 13% of these failures led
to negative impacts due to fire and explosion accidents. Such accidents can expose people
to toxic chemical compounds, severe heat, smoke inhalation, and sound pressure [9,11].
The main consequences of transformer fires are the health and safety impacts on people
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from several tons of ejected oil containing toxic chemicals [12]. According to a health
investigation [7], a medical inspection of blood samples of 482 persons exposed to mineral
oil due to a transformer fire accident in Binghamton, NY, USA showed positive results of
toxic chemical compounds, such as polychlorinated biphenyls (PCBs), dibenzo-p-dioxin,
and dibenzofuran both at the time of the accident and one year later. See the chemical
structures [7,13] in Figure 1.

Figure 1. Chemical structures of the toxic chemical compounds into transformer’s mineral oil;
polychlorinated biphenyls (PCBs), dibenzo-p-dioxin, and dibenzofuran.

All these chemical compounds have a serious effect on people’s health, e.g., causing
cancer in addition to other symptoms, such as illnesses of the liver, neurologic system and
skin, damage to cellular proteins, genetic variants, and congenital disabilities [7,12,14,15].

In order to prevent transformer failures and their negative impacts, Condition-Based
Maintenance (CBM) is the common strategy used for high-risk transformers in most
power plants [16]. CBM is defined according to [17–19] as preventive maintenance, which
includes evaluating the transformer condition, degradation monitoring, failure prediction,
and recommendation of corrective actions when a deviation in the performances is detected
based on collected information by Condition Monitoring (CM). CM is defined, according
to [20], as “an activity, performed either manually or automatically, intended to measure at
predetermined intervals the characteristics and parameters of the physical actual state of
an item”. According to [21], applying a relevant CM procedure is considered a vital factor
to achieve cost-effective maintenance of an asset.

In the currently applied CBM strategy for mineral oil-filled electrical transformers,
the oil analysis is based on two measurable variables [3,6,22–26]. The first measurable
variable is the corrosive sulfur compounds, such as dibenzyl disulfide (DBDS) [3,6,27,28].
DBDS concentration is measured by using a chromatography technique according to the
standard method IEC 62697-1 [29], where a microliter of oil sample injects into a Gas
Chromatography-Electron Capture Detector (GC-ECD). The DBDS is detected as a peak
form in a chromatogram, and the concentration, in ppm, is calculated by comparing the
peak area with a reference. The second measurable variable is the corrosive test Covered
Conductor Deposition (CCD) [3,6,23–27], which assesses the oil’s ability for formation
of copper corrosion according to standard method IEC 62535 [30]. In the CCD test, the
sulfur deposit is detected experimentally after heating an oil sample with a Cu-strip
wrapped with paper to 150 ◦C for 72 h. The level of sulfur deposits on the Cu-strip is
evaluated as corrosive or non-corrosive oil. Despite using the current CBM strategy, copper
corrosion problems are still reported [31]. The main gap in the CBM strategy is the lack of
relevant CM procedure to detect early copper corrosion problems [3,4,32]. In this context,
according to the mechanism of corrosion reaction [3], see Figure 2, DBDS can deplete at
high temperatures to form sulfur deposits on the winding only when Cu ions, as a catalyst,
exists in the oil at high temperatures. Hence, monitoring DBDS in the oil is not a definite
evidence of the formation of sulfur deposits on the windings. For example, it can detect
a high amount of DBDS in the oil, which gives a false indication that the oil is corrosive,
but the corrosion reaction may not start due to a deficiency in Cu ions. In contrast, a trace
amount of DBDS can be detected, which gives an indication that the oil is non-corrosive,
but actually there is a possibility of partial or entire DBDS depletion in the formation of
sulfur deposits [3,33]. Besides, the CCD test does not provide accurate information about
these deposits on the copper windings either [3,4].
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Figure 2. Mechanism of corrosion reaction [3]. The copper sulfide deposits on the insulating papers
can form a low-resistance path throughout the layers of the papers and migrate onto the surface of
the copper winding [22].

Investigations carried out by the first author in [3,6] demonstrated two novel findings
that could be used in the development of a CM procedure for reliable and early detection
of copper corrosion problems. The first finding was identifying new measurable variables,
hydrogen sulfide (H2S) gas and toluene, which are the relevant by-products of the corrosion
reaction [3]. Based on this finding, a new reaction mechanism was defined, see Figure 2.
The second finding was utilizing an Early Fault Diagnosis (EFD) model to detect and
solve the copper corrosion problems in the initial stage. The EFD model includes a fault
trend chart that can track a fault progression during the useful life of transformers [3,6].
These findings have been proved and verified for broad fault areas, such as gas generation,
oxidation, and copper corrosion [6].

In order to do a preliminary verification and validation of the suggested CM procedure
for copper corrosion problems, the findings were utilized in an empirical study in a power
plant. The application of the suggested procedure was effective toward detecting the
copper corrosion problems in the initial stage. The benefit was extending the lifetime
of transformers with suspected copper corrosion propagation. Hence, the gap in the
currently applied CBM strategy to detect copper corrosion problems in the initial stage
is fulfilled. However, the findings have not been verified and validated to ensure the
effectiveness toward early prevention of copper corrosion problems for a considerable
number of transformers.

The purpose of this paper is to verify and validate the effectiveness of the suggested
CM procedure by an empirical study in a power plant. The investigation in this paper is
limited to only copper corrosion problems in transformers filled with mineral insulating oil.
Other problems, such as iron or silver corrosion and other insulating oils such as silicon
and ester, are not considered due to a lack of related accident reports. Another limitation
is the applying of the EFD model during the useful life of transformers with insufficient
historical data to track the fault.

2. Materials and Methods
2.1. The CM Procedure

The CM procedure was established according to investigations in [3,6] based on an
integration between three main elements that built the effectiveness toward preventing
early copper corrosion problems in transformers. The first element is monitoring the
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measurable variables. The second is applying the Early Fault Diagnosis (EFD) model.
The last is carrying out corrective actions. The three elements are introduced in detail
as follows:

1. Monitoring the measurable variables: The mechanism of the corrosion reaction was
established in [3] as two reactions. Reaction (1): dibenzyl disulfide (DBDS) depletes
to benzyl mercaptan (BM) at the overheating condition and presence of proton H+.
Reaction (2): The BM decomposes in the presence of Cu ions as a catalyst and proton
H+ at overheating conditions to form sulfur deposits as copper sulfide (Cu2S) on the
copper windings associated with the by-products, H2S gas and toluene; see Figure 2.

As seen from Figure 2, the mechanism shows that depletion of DBDS to BM and at
the same time generation of the by-products, hydrogen sulfide gas and toluene, during
transformer’s useful life are evidence of formation of sulfur deposits on the windings. The
role of Cu ions as a catalyst is vital to complete the corrosion reaction. Accordingly, the
suggested measurable variables that need to be monitored are:

• Corrosive sulfur compounds, dibenzyl disulfide (DBDS) by chromatography tech-
nique, according to IEC 62697-1 [29].

• Benzyl mercaptan (BM) and any other types of mercaptan by chromatography tech-
nique, according to ASTM D5623 [34], or by potentiometric titration, according to
ASTM UOP163 [35].

• Toluene compound by chromatography technique, according to ASTM D5580 [36].
• Hydrogen sulfide (H2S) gas by chromatography technique, according to ASTM

D5623 [34] or by potentiometric titration, according to ASTM UOP163 [35].

2. Applying the Early Fault Diagnosis (EFD) Model: After identifying the transformers
with suspected copper corrosion propagation where H2S gas and toluene are gener-
ated coinciding with depleting DBDS and BM, a fault trend chart can be created based
on measured values of H2S gas and toluene. This chart can track the corrosion fault
progression during the useful life of the transformers. The regular periodic schedule
of oil analysis in a normal condition is annually [37]. As soon the H2S gas and toluene
are generated in the oil, the recommended periodic schedule could be within a three
month interval [3,6] or according to the maintenance plan. The fault trend chart is
based on a novel numerical method in order to track the copper corrosion problems
and select the correct time of corrective actions [6]. The numerical method includes
the following calculations:

• Caution Limit (CL) of the H2S gas and toluene, which were defined as 1 and 2 ppm,
respectively [3].

• Warning Limit (WL), which was estimated as 50% of the CL value as an indication of
starting a fault [6].

• Alarm Limit (AL), which was estimated as 80% of the CL based on an experimen-
tal investigation, showed that the acceptable relative error in the oil analysis and
uncertainty could be up to 20% [38].

• Relative Alarm Threshold (RAT), which is the difference between AL and WL relative
to WL [6]; see Equation (1). For all measurable variables, the RAT value was defined
as 0.60, see Table 1.

RAT = (AL − WL)/WL (1)

• Relative Fault Detection Value (RFDV), which is the difference between the first mea-
sured value (w1) of H2S gas or toluene and WL relative to the WL [6]; see Equation (2):

RFDV = (w1 − WL)/WL (2)

If REDV of a measurable variable ≥ RAT (0.60), it indicates the possibility that copper
corrosion problems have started, according to [6]. Hence, it is recommended that the
measuring frequency be increased, such as once per month [39] in order to calculate the
daily trend of the value.
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Table 1. Calculating the Relative Alarm Threshold (RAT).

Measurable Variable CL WL AL RAT

H2S gas 1.0 ppm 0.50 0.80 0.60
Toluene 2.0 ppm 1.00 1.60 0.60

• Daily Trend (DT%) is the trend of the increase of the measured value per day and is
calculated based on first measured value (w1) and second one (w2); see Equation (3):

Daily Trend, DT% = ((w2 − w1)/w1) × 100)/days number (3)

If the DT ≥ 0.33%, as stated in [39], that is an indication of “copper corrosion progress.”
In this case, corrective action could be recommended to suppress the corrosion reaction.

3. Carrying out corrective action: The main corrective action is adding benzene triazole-
type metal passivators, an anticorrosion additive, to the insulating oil in-service;
Benzo Triazole (called BTA) or Toluiltriazole-dialkylamine (called Irgamet-39). These
passivators are usually recommended to suppress the corrosion reaction throughout
by neutralizing the activity of the catalyst Cu ions [40–42], see Figure 3. The optimal
concentration limit value of BTA and Irgamet-39 are 50 and 150 ppm, respectively [40].
However, exceeding the mentioned optimal concentration limit value can lead to
the formation of a high amount of undesirable flammable hydrogen gas (H2) in the
oil, especially with Irgamet-39 compared with lower amounts when using BTA [43],
see Figure 3, and acceleration of oxidation process in transformers [40]. Hence, an
optimal amount of a passivator should be added at the correct time. On the other
hand, adding a passivator after the values of the H2S gas and toluene have exceeded
their caution limits will suppress further anticipated corrosion reaction but will not
reduce the sulfur deposits which have already occurred on the copper windings [40].

Figure 3. Mechanism reaction of the passivator (BTA) in the process of suppression of the corro-
sion reaction.

2.2. Empirical Study Design

The CM procedure was applied in an empirical study in the Primary Substation
Maintenance Department (PSMD), a power plant for the Ministry of Electricity and Water
in Kuwait, to prove the effectiveness of this procedure for preventing fire and explosion
accidents. The design used in this empirical study included five standard steps according
to [44]. The first step was coordinating a workshop with the PSMD team to address and
discuss the related questions of the copper corrosion problems. The questions focused
on the reasons for the increased rate of transformer fire accidents, the effectiveness of
the current CM procedure, the maintenance strategy used to detect the copper corrosion
problems, and the challenges to prevent such problems. The main challenge in the PSMD
power plant was identified as the gap in the applied CBM strategy due to a lack of relevant
CM procedures for detecting copper corrosion problems in the initial stage. The second
step was studying the suggestions that could be utilized in the investigation to fulfil the
gap. The main suggestion was applying the CM procedure using a new diagnosis model
for early fault detection. In the third step, the relevant data of oil analysis were defined. The
PSMD team provided access to data of 84 nominated transformers with different power
ratings; see Figure 4. The fourth step was linking the data to the proposed suggestion and
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finding the solution to avoid the fault progression to a risky level. The last was creating a
principle for clarifying the findings by using the statistical benchmarks. Another workshop
was coordinated after applying the CM procedure to validate the outcome and ensure that
stakeholder’s needs and requirements were met with the suggested solution.

Figure 4. Classification of the 84 transformers according to the voltage (HV/LV, kV) and operated
power rating, MVA. The voltage is related to the winding where HV = High Voltage in the secondary
winding and LV = Low Voltage in the primary winding. The power rating, MVA = Mega volt-amperes
where 1 mega volt-ampere = 1 million volt-amperes [45]. As seen in the figure, the transformers
are classified according to the voltage, where the lowest transformer primary voltage is 33/11.5 kV
(20 MVA), the medium transformer primary voltage is 132/11.5 kV (30 MVA), and the biggest
transformer primary voltage is 400/33 kV (750 MVA).

3. Results

In this section, the outcome of applying the CM procedure of copper corrosion prob-
lems is demonstrated. The measured values of the measurable variables of dibenzyl
disulfide (DBDS), benzyl mercaptan (BM), hydrogen sulfide (H2S) gas, and toluene of
seven transformers were identified with suspected copper corrosion propagation among
the 84 and were recorded in September 2020. These measured values and the calculated
RFDV are demonstrated in Table 2.

Table 2. Measured values of dibenzyl disulfide (DBDS), benzyl mercaptan (BM), hydrogen sulfide (H2S) gas, and toluene.
RFDV is calculated according to Equation (2). The measured values are the average of three measurements. The average of
Relative Standard Deviations (RSDs) for all was <4%. The uncertainty (Uexp.) of five measurements of hydrogen gas and
toluene was ± 0.07 for mean value 0.50 ppm and ± 0.10 for mean value 1.93 ppm, respectively.

No. Transformer
Serial Number/ID

Voltage
HV/LV, kV

Power Rating,
MVA

Substation
Name

DBDS
(ppm)

BM
(ppm)

H2S Gas w1
(ppm)

Toluene w1
(ppm) RFDV

1 8235120102/Tr2 132/33 300 Fifth ring road 1.0 <0.1 0.20 0.30 <0.60
2 S251625/Tr1 132/11.5 30 Mahbola-A 3.0 <0.1 0.42 0.25 <0.60
3 111353/Tr1 132/33 300 Omirya-W <0.1 0.23 0.30 0.93 <0.60
4 07MD970101/Tr1 132/11.5 30 S. Alabdullah <0.1 0.33 0.10 0.45 <0.60
5 M0036/Tr1 132/11.5 30 Mishref-A 9.0 0.90 0.83 1.62 >0.60
6 M0037/Tr2 132/11.5 30 Mishref-A 6.0 0.80 0.81 1.70 >0.60
7 M0038/Tr3 132/11.5 30 Mishref-A 4.3 <0.1 0.88 1.68 >0.60

By using the numerical method, the RFDV of the H2S gas and toluene for the trans-
formers 1 to 4 was calculated according to Equation (2). The RFDV was <m0.60, which
indicated that the corrosion process was not at the risky level. The recommended action,
in this case, could be “carrying out a new oil analysis with three months interval” [6] or
according to the maintenance plan, to follow up on any increase in the RFDV and collect
historical data. In contrast, the RFDV for transformers 5, 6, and 7 was >0.60, which indi-
cated the possibility of starting copper corrosion problems. In this case, a new oil sample
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was recommended for monitoring H2S gas and toluene after one month, in October 2020,
to calculate Daily Trend (DT%), according to Equation (3). The second measured values
(w2) of H2S gas and toluene, and the calculated DT%, are demonstrated in Table 3.

Table 3. The second measured values (w2) of hydrogen sulfide (H2S) gas and toluene after one
month. DT% is calculated according to Equation (3). The measured values are the average of three
measurements. The average of Relative Standard Deviations (RSDs) for all was <3.5%.

No. Transformer
Serial Number/ID

Toluene
w2 (ppm)

H2S Gas
w2 (ppm)

DT
(%)

5 M0036/Tr1 1.93 0.92 >0.33
6 M0037/Tr2 1.90 0.90 >0.33
7 M0038/Tr3 1.69 0.92 <0.33

As seen in Table 3, the DT of the transformer number 7 was <0.33%, which indicated
that there was no significant trend in the value. Accordingly, the transformer was still
in a safe condition, and the recommended action was “carrying out a new oil analysis
with three months interval” or, according to the maintenance plan, to follow up on any
increase in the trend level. The DTs of transformers number 5 and 6 were >0.33%, which
indicated that there was a trend in the values. Accordingly, copper corrosion problems are
in progress in these two transformers. The appropriate corrective action, in this case, was
adding passivator BTA to suppress the corrosion reaction. The oil analysis was repeated
in January and April 2021, where the result revealed a steady level in the values of the
H2S gas and toluene after adding BTA, which indicated success in preventing the copper
corrosion problems. The progress of copper corrosion problems of these two transformers
during useful life is demonstrated in the fault trend charts (a) and (b) in Figure 5.

Figure 5. Fault trend charts of (a) Transformer 5 (M0036/Tr1) and (b) Transformer 6 (M0037/Tr2). CL = Caution limit,
WL = Warning limit, w1 = first measured value, w2 = second measured value after one month, w3 and w4 = measured
values after adding passivator.

As seen in Figure 5, historical data of H2S gas and toluene before September 2020 were
not available; the dashed line represents estimated values. The first analysis (w1) was in
September 2020 for (a) transformer number 5, which has serial number/ID = M0036/Tr1,
and for (b) transformer number 6, which has serial number/ID = M0037/Tr2. Then after
one month, the second measured values (w2) were carried out to calculate DT, which was
>0.33%. The passivator BTA was added during October 2020. The measured values after
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adding the BTA (w3 and w4) were on a steady level, which indicated no more expected
faults because the corrosion reaction had already been suppressed.

In order to validate the outcome of the verification of the CM procedure in the PSMD
power plant, a workshop was coordinated to discuss the process steps and outcome
of the procedure; see the flow diagram in Figure 6. As seen from the flow diagram,
after applying the suggested CM procedure on the 84 transformers, copper corrosion
problems were detected and solved early in the two transformers. According to the PSMD
stakeholders, this outcome and the proposed solution were effective and met their needs
and requirements. Accordingly, they decided to employ the procedure for all transformers,
around 3900, in all their substations to prevent fire and explosion accidents.

Figure 6. Flow diagram showing the process of the applied CM procedure in the PSMD power plant.
Monitoring the measurable variable was the first step, where H2S gas and toluene were detected
in 7 transformers among 84. The second step was applying the EFD method where the RFDV was
>0.60 in three transformers. After one month, two of these three transformers were diagnosed with
suspected copper corrosion propagation based on DT% which was >0.33. The last step was adding a
passivator BTA to these two transformers to suppress the corrosion reaction. w1 = first measured
value, w2 = second measured value after one month, w3 and w4 = measured values after adding
passivator, EFD = Early Fault Diagnosis, REDV = Relative Fault Detection Value, DT% = Daily Trend,
BTA = Passivator Benzo Triazole.
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4. Discussion

The CM procedure proved to be an accurate approach and useful toward early preven-
tion of copper corrosion problems. The results of this study are summarized and discussed
in the following paragraphs.

The dibenzyl disulfide (DBDS) values in the transformers 3 and 4 were <0.1 ppm
and H2S gas and toluene were detected, see Table 2, which indicates the possibility of
depleting the DBDS entirely during the useful life of transformers. This result shows that
monitoring only DBDS without tracking H2S gas and toluene is insufficient to accurately
evaluate the condition of copper corrosion problems. In the same table, the medium-sized
transformers, numbers 5, 6, and 7, were installed from the same manufacturer and have the
same specifications. This result motivates monitoring all transformers that have the same
manufacturer and specifications if copper corrosion problems are detected in one of them.

Sulfur deposits that have already occurred on the insulating paper of the copper wind-
ings cannot be reduced because the corrosion reaction is irreversible [46]. The serious risk
of these deposits is the deterioration of the insulating papers, which is considered the heart
of the transformers [47]. The only solution, in this case, is the costly investment process
called “rewinding” where the damaged parts of the insulating papers are replaced [48,49].
De-sulfurization treatment process of mineral oils is another solution used to prevent
copper corrosion problems, in addition to adding passivators [50]. For example, handling
the oil with rare earth that has a mixture of aluminium oxide, aluminium silicate, and
soluble metal salts to extract the corrosive sulfur compounds from the oil [51]. Another
example is the filtration of the oil online during the operation through a column containing
a mixture of sulfur scavenging material and polar sorbents [52]. These processes are ade-
quate to remove corrosive sulfur compounds from the oil. However, the source of corrosive
sulfur is not only from the oil, it can also be decomposed continuously from transformers
components such as glues, gaskets, rubbers, etc., which can have sulfur in percentage [24].

The Early Fault Diagnosis (EFD) model based on a novel numerical method was
successfully verified in the empirical study at the PSMD power plant. Other studies
also used numerical methods to increase the effectiveness of maintenance strategy of
transformers, i.e., a Markov Prediction Model (MPM) to evaluate, in general, the current
state of transformers as good or poor based on values of CM parameters and historical
data [53–55]. Another study [56] utilized a statistical distribution model (SDM) to evaluate
the transformer’s deterioration by using a health index (HI%) based also on values of
CM parameters and historical data. Both the MPM and the SDM models provide vital
information of the current status of transformers and can predict their condition in the
future. However, the approaches use very complex numerical methods that are not easily
applicable in practice, and none of them demonstrated a method to detect faults in the
initial stage. On the contrary, the EFD model is easy for maintenance teams to apply and is
relevant for early fault detection.

Recommended future work can include increasing the effectiveness of the CM proce-
dure by using smart technologies and self-conditioning, such as an online sensor device
to detect and collect big data sets of hydrogen sulfide (H2S) gas and toluene during the
useful life of transformers. The development of such a device that triggers an alarm when
the Relative Fault Detection Value (REDV) exceeds 0.60 can help a maintenance team to
monitor the data more effectively.

5. Conclusions

The main conclusion of this study is the importance of early detection of transformer
faults to avoid the negative impacts on societal, company, and individual levels. Identifying
the copper corrosion problems in the initial stage of the PSMD power plant led to deferring
the replacement investment costs of two medium transformers, in addition to avoiding
the negative impacts. The results indicate that relevant measurable variables and early
detection of copper corrosion problems can provide valuable information for the CM
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procedure. In addition, the fault trend chart demonstrated the capability to track the
copper corrosion problems during the useful life of transformers.

The application of the fault diagnosis (EFD) model has highlighted several benefits
that, for example, can contribute to reducing a transformer’s fire rate in the PSMD power
plant in the future. Carrying out sustainable maintenance can extend the lifetime of the
transformers, e.g., the early corrective action for the two transformers with suspected fault
propagation. More research and empirical studies are required to enhance the effectiveness
of the application of the EFD model, not only for transformers but also for other assets that
contain oil, such as turbines, compressors, engines, etc.
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Abbreviations

AL Alarm Limit
BTA Benzo Triazole
CBM Condition-Based Maintenance
CCD Covered Conductor Deposition
CL Caution Limit
CM Condition Monitoring
DBDS Dibenzyl disulfide
DT Daily Trend %
EFD Early Fault Diagnosis
HI Health Index %
H2S Hydrogen sulfide gas
Irgamet 39 Toluiltriazole-dialkylamine
MPM Markov Prediction Model
PCB Polychlorinated biphenyl
PPM Part per million
PSMD Primary Substation Maintenance Department
RAT Relative Alarm Threshold
RFDV Relative Fault Detection Value
RSD Relative Standard Deviation %
SDM Statistical Distribution Model
Uexp. Expanded uncertainty
WL Warning Limit
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