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Abstract: Important changes are underway in the U.S. power industry in the way that electricity is
sourced, transported, and utilized. Disruption from extreme weather events and cybersecurity events
is bringing new scrutiny to power-system resilience. Recognizing the complex social and technical
aspects that are involved, this article provides a meta-level framework for coherently evaluating
and making decisions about power-system resilience. It does so by examining net-zero carbon
strategies with quantitative, qualitative, and integrative dimensions across discrete location-specific
systems and timescales. The generalizable framework is designed with a flexibility and logic that
allows for refinement to accompany stakeholder review processes and highly localized decision-
making. To highlight the framework’s applicability across multiple timescales, processes, and types
of knowledge, power system outages are reviewed for extreme weather events, including 2021 and
2011 winter storms that impacted Texas, the 2017 Hurricane Maria that affected Puerto Rico, and a
heatwave/wildfire event in California in August 2020. By design, the meta-level framework enables
utility decision-makers, regulators, insurers, and communities to analyze and track levels of resilience
safeguards for a given system. Future directions to advance an integrated science of resilience in
net-zero power systems and the use of this framework are also discussed.

Keywords: meta-level framework; resilience; power system; extreme weather; decision-making;
policy; regulation; stakeholder; United States

1. Introduction

Important changes are underway for the United States (U.S.) power system in terms
of decarbonization, new technological options, and shifting patterns of power consump-
tion [1]. Changes that were not anticipated 10 to 15 years ago are occurring: in the way
the system is owned and operated; how its architecture functions; the manner in which
generation technologies, costs, and fuel prices interact; as well as how the markets and
regulatory environment have evolved [1].

Natural and anthropogenic threats to the electricity grid have also been increasing in
frequency and magnitude [2–4]. Extreme weather events, such as heatwaves and wildfires
in the western United States, hurricanes in the Gulf of Mexico and eastern coastal region,
plus extreme cold throughout the United States, have contributed to increases in the
frequency and duration of power outages in the United States. [3,5] Between 2001 and 2010,
65 extreme weather events occurred in the U.S. that were estimated to cost $1 billion or
more in damages (CPI-adjusted [6]. By contrast, the total increased to 135 for the period
between 2011 and 2020 [6]). In 2020, a new annual record was set with 22 extreme weather
events that cost a billion U.S. dollars each. This shattered the previous annual record of 16
events that occurred in 2011 and 2017 [6]. More recently in February 2021, a winter storm
in North America broke 2000 records for low temperatures [7].
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In response to these challenges, resilience is seen as increasingly prioritized in utility
plans, yet there is no standard definition for resilience with energy systems in the United
States (see Table A1 in Appendix A). For the purposes here, resilience is defined as the
ability of a system to withstand or recover from low-frequency, high-impact events.

The U.S. Department of Energy recently estimated power outages are costing Amer-
ican businesses roughly $150 billion a year [8]. From the perspective of consumers, the
Government Accounting Office estimates outage costs could total nearly $500 billion annu-
ally by the end of the century [9]. When risks from cyber, physical, and electromagnetic
attacks are also factored in, the demands on electricity planning expand by orders of
magnitude and complexity [10–12]. With such conditions, utilities may invest billions
in resilience. In addition to there not being a standard definition for resilience, there is
no agreed-upon approach among utilities and regulators to characterize risk in resilience
planning and investment choices [13]. The unpredictability of events, the difficulty in
representing impacts, and the diversity of the locational profiles add to the complexity
of operationalizing system measures for resilience objectives. Combining the advancing
commitments to net-zero carbon with resilience considerations and other evolving condi-
tions translates to power-system decision-making looking quite different from just a few
years ago.

Recognizing the above complexities, the aim of this article is to assist utility decision-
makers, regulators, and others to more fully scope, evaluate, and monitor resilience of
power systems in the context of decarbonization. The article supports analysis and decision-
making by putting forward a meta-level framework for tracking and integrating assess-
ments in a systematic, yet flexible way.

This article is structured as follows. Recent developments in the United States relating
to decarbonization and resilience are reviewed, with an emphasis on power systems. Next,
the way in which resilience is overseen through key U.S. energy regulation or policy, and
planning is examined to highlight interjurisdictional complexity and how there is no one
authority in this domain for the U.S. power systems. Common indicators that are used to
firm up the operationalization of resilience are then considered. A meta-level framework
is subsequently outlined, integrating qualitative, quantitative, and geospatial factors to
evaluate and monitor knowledge and complexity for a system’s resilience. The framework
accounts for a temporal-spatial process in decision-making and stakeholder engagement
that includes the consideration of key independent variables and potential preferences or
sensitivity to these. Examples of recent, extreme weather events in Texas, Puerto Rico, and
California power markets are reviewed to highlight the applicability of the framework. Key
considerations for further use and future questions for additional study are then discussed.
It is worth noting the framework may be used for power systems with any fuel mix as well
as other critical infrastructure, systems, and sectors.

2. Decarbonization in Energy Systems: Technology and Policy Conditions

In 2020, an unprecedented $500 billion was invested worldwide in low carbon assets,
despite the economic disruption caused by the COVID 19 pandemic [14] Within the U.S. en-
ergy system, studies indicate deep decarbonization is feasible by or before the mid-century
in power, transportation, and heating and cooling [15–21]. Industrial priorities in energy
research and development, such as with advanced nuclear technology, present potentially
pivotal ways to enable long-term net-zero carbon energy resource mixes. In the meantime,
falling prices for distributed energy resources (DER), including residential solar and wind
power, electric vehicles (EV), and storage can help attain near-term decarbonization [22].
Levelized energy costs for wind and solar power, for example, have decreased on average
by 70% and 90%, respectively, between 2009 and 2020 [23]. Similarly, costs for electric
vehicle batteries have fallen 15% annually from 2010 to 2020 with EVs projected to reach
parity with internal combustion engine vehicles by 2025 [24].

In line with the above, robust new federal policies are being outlined in the U.S.
to shift the economy to a 50–52% reduction of greenhouse gases from numbers in 2005
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by 2030 to attain 100% no-carbon pollution electricity by 2035, electrify the federal fleet,
and improve the grid [25–27]. To date, these policies are aspirational until enshrined in
enabling legislation, such as negotiated legislation or congressional budget reconciliation,
among other options. These federal measures build on state and local policies including
zero-emission credits which value the low carbon baseload premium that nuclear plants
bring to regional power mixes [28] and renewable portfolio standards (RPS) which specify
the percentage of electricity that is supplied by renewable energy. Thirty states plus
Washington, D.C. and three territories have adopted RPS policies. Another seven states
plus one territory have renewable energy goals [29]. Most electric utilities have pledged to
shift to zero-carbon systems by mid-century [30]. With the U.S. federal momentum in 2021
emphasizing decarbonization, utilities are asked to deliver decarbonized power earlier by
2030 or 2035 and to absorb parts of an electrified fleet amidst questions about cost and
who pays.

Accompanying the above shifts, more DER that are often non-dispatchable are being
added to the U.S. power system; meanwhile, some coal and nuclear power plants are being
retired before their planned lifespan is reached Approximately 95 Gigawatts (GW) of coal
capacity has been retired since 2011 [31]. In 2021, 9.1 GW of electricity capacity is due to be
retired in the United States. Nuclear will account for 54%, and coal will account for 30% [32].
As the share of non-dispatchable energy sources, such as wind and solar photovoltaic
power, increase in the power mix, fewer dispatchable and baseload technologies are
available to provide system stability and inertia. There are several mechanisms to mitigate
this effect through smoothing across regional balancing areas, demand side management,
energy storage, smart grids, etc. Among these options, measures such as storage may
represent additional costs to the system while increasing the system resilience across
all energy technologies. Some may argue that integrating new technological features
introduces uncertainty to systems performance, requires a different form of active control,
and could increase the cyber-attack surface area.

3. The U.S. Power System and Resilience Oversight

Today’s power system in the U.S. is a complex and interdependent ecosystem consist-
ing of more than 10,000 power plants, 642,000+ miles of high-voltage transmission lines,
roughly 56,000 substations, and over 6.3 million miles of local distribution lines [3,9]. An
estimated 70% of the grid’s transmission lines and power transformers are 25+ years old,
60% of circuit breakers are 30+ years old, and the average age of power plants is 30 years
old [3,9,33,34]. This system varies considerably across the country as a result of factors,
such as the scale of the customer base, regional demography and topography, fuel resource
availability, and relations between neighboring countries or jurisdictions [1].

Broad agreement exists on the importance of protecting this system. However, electric
system planners, operators, and decision-makers often need to gain fuller clarity on the
scope of resilience in relation to reliability [1] (Table A1 in Appendix A). Such system con-
siderations frequently cut across jurisdictional boundaries of regulatory and policy actors
(Box 1). With ambiguous accountability for resilience and reliability plus jurisdictional
overlap, power-system actors may encounter situations in which there is no clear guide or
standard in place and muddle through [35].



Energies 2021, 14, 4243 4 of 25

Box 1. Oversight of U.S. grid resilience.

No single entity in the U.S. has the authority to implement a comprehensive approach to grid resilience [4].
The U.S. Department of Energy is the lead agency for federal grid resilience efforts, including conducting
R&D on technology options and providing technical and related guidance to industry and stakeholders [9].
The North American Electric Reliability Corporation (NERC) is responsible for the effective and efficient
reduction of risks to the reliability and security of the North American grid. NERC “develops and enforces
reliability standards; annually assesses seasonal and long-term reliability; monitors the bulk power system
through system awareness; and educates, trains, and certifies industry personnel . . . . NERC’s jurisdiction
includes users, owners, and operators of the bulk power system, which serves nearly 400 million people” [36].
The Federal Energy Regulatory Commission (FERC) by contrast regulates wholesale electricity markets and
interstate electricity transmission, reviews, approves grid reliability standards put forward by NERC, and
issues licenses for constructing hydropower dams among its responsibilities [9].

Individual states have jurisdiction over the retail sale of electricity plus the reliability of the investor-
owned utility distribution systems through standard setting/investment oversight for distribution net-
works [1]. The growth of distributed energy resources and controllable loads complicates the reliability
of local systems with the regulatory boundaries of FERC and the states now also overlapping [1].

A National Academy report characterizes the federal-state-local scopes by indicating federal oversight
and regulation of resilience pertains to analysis of resilience risk; whereas, the state and local analog relates to
the authority to support utilities’ direct investment in resilience [1].

Generally, there is a shared view that reliability relates to local, more common, and
smaller disruption; whereas, resilience refers to the ability to withstand or recover from a
high-impact event geographically and temporally widespread [13,37]. Conventional met-
rics for reliability are fairly accepted within the U.S. as with System Average Interruption
Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) (Box 2).
However, they are not consistently measured. Some jurisdictions exclude unusual events,
like storm-related outages, when reporting power outage statistics [38]. It has been argued
“any definition or metric that is based on measuring outage frequencies, times, extents, or
impacts on customers or systems does not get at the essence of resilience. . . . ” [13].

According to the North American Electric Reliability Corporation (NERC), there is
sufficient resource adequacy across most of the electric grid in North America for the next
decade [39]. The changing power-system profile, however, brings new opportunities and
challenges for resilience planning. Microgrids, for instance, provide critical stability and
restart capabilities during disruptive events, as was seen with Hurricane Sandy [2]. The
increased use of inverter-based DER, such as solar, wind, and storage, also translates to
less system inertia, low-fault currents, and a reduction of other grid services currently used
to provide system reliability without system design change [2,40,41]. A more integrated
approach could facilitate decarbonization plus system strengthening against disruptive
events.
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Box 2. Reliability and resilience metrics.

Reliability

Transmission [2,42,43]:

• Loss of Load Expectation (LOLE) calculates the amount of capacity that needs to be installed to meet the desired reliability
target;

• Loss of Load Probability (LOLP) measures the probability that a system’s load will exceed the generation and firm power
contracts available to meet that load;

• N-1 indicates a system is able to withstand at all times an unexpected failure or outage of a single system component (i.e., a
single contingency situation) such as the failure of a transformer or a lightning strike that causes a transmission line outage.

Distribution [44–46]:

• System Average Interruption Duration Index (SAIDI) is the system-wide total number of minutes per year of sustained outage
per customer served;

• System Average Interruption Frequency Index (SAIFI) measures how often the system-wide average customer was interrupted
in the reporting year;

• Customer Average Interruption Duration Index (CAIDI) tracks the total duration of an interruption for the average customer
during a given time period;

• Momentary Average Interruption Frequency Index (MAIFI) is the number of momentary outages per customer system-wide
per year;

• Average Service Availability Index (ASAI), or the service reliability index, is the ratio of the total number of customer hours
that service was available during a given time period to the total customer hours demanded.

Resilience [13,47]:

• Interruption Costs compare the cost of kilowatts (kW) during business as usual versus when kWs are not delivered;
• Total Resources Costs value proposed utility investment in energy efficiency;
• System Hardening Costs represent the costs for strengthening a system with redundancies, additional layers, or alternative

configurations;
• Social Costs assess customer benefits and related community benefits, such as ecological impacts, jobs, and/or health effects.

4. Key Contemporary Approaches for Evaluating Resilience

Resilience planning requires an understanding of critical assets within the context of
their broader systems including the people and capabilities to carry out the core functions.
Such planning also requires recognition of interdependencies, such as those between
the power system, transport, natural gas heating, and water. If fuel station pumps and
distribution systems are limited by a power outage, for instance, cascading impacts can
occur across multiple systems. Electricity, like communications, provides an enabling
function for other critical infrastructure [48].

With resilience planning and investment, there is a need to robustly evaluate and plan
in ways that support risk characterization, allow tradeoffs to be identified and weighed,
highlight impact sensitivities of different stakeholders, and inform investment decisions.
Locational priorities, capabilities, resources, and conditions can frame very distinct re-
silience decisions, so utilities need the flexibility of an approach that can be applied across
diverse service areas. Such versatility may lose robustness in terms of locationally specific
depth or relevance of assumptions and priorities. Here, the key will be for the analysts and
decision-makers to tailor the specifics of these dimensions.

Approaches that aim to represent resilience in power systems may include:

1. Interruption costs—typically contrast the cost of kilowatts (kW) during standard use
versus an outlier event when kWs cannot be delivered. These may be represented as
estimates of cost per interruption event, per average kW, and per unserved kWh, as
well as the total cost of sustained electric power interruptions. Real value is difficult
to calculate in advance and is unlikely to represent all the benefits [13];

2. Total resource costs—are used in regulatory proceedings to value proposed utility
energy efficiency investment. If all customer and related community benefits were
covered, this could be a reasonable gauge for resilience [13,47];

3. Social cost—could substitute for the total resource costs indicated above by including
customer benefits [13] and related community benefits. Used in some regulatory
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proceedings, this indicator may entail dimensions like ecological impacts, jobs, and/or
health effects that are quantified yet have inherently qualitative aspects. Since social
cost may be seen by some as outside the scope of utility responsibility, it is not used
universally and may be reflected in related analysis, such as environmental impact
assessments. Importantly, locationally based priorities can vary, so a utility with
different regional service areas may have distinctly different social costs, even if the
total resource costs are the same;

4. Costs of system hardening—represent the costs for strengthening a system with re-
dundancies, additional layers, or alternative configurations. Power systems may em-
ploy measures that: put electric distribution systems underground; place switchyards
above floodplains; utilize gravity-fed rather than pumped potable water supplies;
provide freeze protection for natural gas supply systems; etc.

Following the Fukushima Daiichi accident in 2011, the U.S. nuclear industry and Nu-
clear Regulatory Commission considered, for example, system hardening which: included
revised evaluation approaches for seismic and flooding events; included new equipment to
more effectively handle potential reactor core damage; and centered on strengthening emer-
gency preparedness capabilities [49]. Specific adaptations are evident now, for instance, in
greater use of portable onsite equipment and regional emergency response capabilities.

The above approaches reflect ways to quantify resilience, yet other aspects of decision-
making require judgment that goes beyond simple quantitative metrics. For instance,
good placement is a strategic capability that does not lend itself to quantitative metrics
Tradeoffs about locational aspects can have critical implications for emergency response
or sensitive groups that are not typically well-reflected in quantitative metrics. (Common
practices for fortifying the power system include: standards for distribution lines and
structures; redundancy; segmentation; tree resistant conductors/vegetation management;
fiberglass cross-arms; flood protection; substation firewalls; recovery back-up equipment,
etc. [2]. These can be uniformly monetized, but their locational strength may vary by
placement/geography).

5. Meta-Level Framework for Analysis and Decision-Making

A meta-level framework is put forward for assessing the resilience of locationally
specific power systems that are transitioning with low carbon aims. It serves as a logical
structure for conceptualizing complex layers of information relating to resilience by defin-
ing the cumulative knowledge and gaps of understanding for a given system’s resilience
(A framework is “a logical structure for classifying and organizing complex informa-
tion” [50,51]. It allows for additional practices and tools to be incorporated and provides
the process necessary for evaluation. By contrast, a methodology is “a documented ap-
proach for performing activities in a coherent, consistent, accountable, and repeatable
manner” [51]. A methodology may be less flexible and is based on core principles. Both
assessment constructs apply to what is proposed in this paper. To account for the rigor and
flexibility for varied regional contexts, the term ‘framework’ is used).

As with other areas of basic and applied science that bridge multiple scientific disci-
plines and, in some cases, sectors [52–56], this framework recognizes methods that integrate
capabilities and knowledge from different domains. It is done to support decision-making
and tracking of a complex system in a rational way, in certain respects like multi-objective
analysis or fuzzy logic approaches with flexibility that can be applied with artificial intelli-
gence [57–63].

The framework is based on design principles of built systems. These include principles
such as: resilience transcends scale; diverse and redundant systems are inherently more
resilient; resilience anticipates interruption and a dynamic future; community contributes
to resilience; and resilience is not absolute [64]. For power systems, coverage includes
the baseload versus non-dispatchable balance, supply security of fuel, system agility,
weatherization, cyber-attack surface, etc. and will formally characterize the types and
tiers of specialized and integrated knowledge from diverse perspectives. It builds on an
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approach to assess the current level of understanding of nuclear fuels and materials for use
in nuclear environments [65]. Similar to the technology readiness levels used by the U.S.
Department of Defense, this framework provides a shorthand logic and formal means for
evaluating a system’s resilience with local specificity. In conjunction with the assessment,
bi-directional stakeholder engagement is envisioned throughout the process informing the
assessment tiers and being informed by them.

As shown in Figure 1, the framework represents an evaluation process that increases
the specialization and integration of knowledge of system resilience while accounting
for energy system shifts from the current, business as usual status to increasingly more
aggressive carbon mitigation actions in 2030, 2040, and 2050.
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Figure 1. Resilience analysis of power-systems-in-transition.

With this framework, the tiers of specialized knowledge and integration of system
resilience dimensions are reflected by the following symbolic representations:

ZUY is where the value U denotes the tier of resilience characterization (A to C):

# Tier C defines the initial order and foundation, based on a qualitative review of best
practices, plus expert and stakeholder elicitation, as appropriate;

# Tier B incorporates the knowledge gained from Tier C into assumptions and refined
options for quantitative analysis;

# Tier A represents fuller integrated analysis with more specialized focus on local
considerations;

# “Superscript” Z parameter is employed to describe resiliency dimensions;
# “Subscript” Y denotes the time step (year) that the hypothetical system is deployed

(e.g., C30 is for 2030, C40 is for 2040, C50 is for 2050).

All studies begin with (1) the technology or pathway assessment with additional assess-
ments, namely (2) economic, (3) social/institutional, (4) ecological, and (5) infrastructural)
following, as an example 1B30 (Technology) or 2B30 (Economic) or 3B30 (Social/Institutional)
or 4B30 (Ecological) or 5B30 (Infrastructural). Technology refers, here, to a singular option
or mix of options. It can include a potential pathway, such as with demand response,
that involves coordinated change in practices at specific times, which requires advanced
management techniques. For a given process, the technology pathways would be outlined
in the supporting material. More than one resiliency dimension may be covered at a given
point in the process, and could be denoted as 3–4B30, for instance, for (3) social/institutional
and (4) ecological dimensions being addressed.

Multiple paths can be taken to advance the analysis through qualitative, quantitative,
and integrated assessment tiers (from broad to highly specialized and locationally specific
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detail). The framework accounts for energy systems with increasing shares of low carbon
energy technologies (Current Baseline→ 2030→ 2040→ 2050) with the goal of advancing
the complex characterization of the resilience properties of future energy systems as they
transition toward low or zero carbon by 2050.

As indicated in the paragraph above, the level of resilience characterization is increased
through a progression of three tiers of analysis, starting from C to A:

# (C) Qualitative Analysis—This tier is generally the starting point in the analysis and
includes a review of standards and practices accounting for current and anticipated
regulations, industry-community standards, and expert input from relevant fields
(e.g., low carbon energy technologies, energy system dependencies, economic, so-
cial/institutional, ecology, etc.). It is based on general social and market conditions
for a region and defines low-high importance plus sensitivity to resilience, etc.

Qualitative analysis (e.g., 1C30) includes preliminary prioritization and exclusions ac-
counting for technical expertise and general community preferences and known regulatory
constraints. Preliminary dependencies/interdependencies are identified with other sectors
or systems, including supply chain constraints based on competing demand across power
and gas markets. The balance of baseload versus non-dispatchable power is represented
here.

Scenarios of primary interest are also formulated here. These should account for
desired paths and conditions against which to protect. Rather than a rote process, this is
highly strategic in terms of preliminary goals and threat characterizations (more coverage of
scenarios may be found below). Evaluative methods may include case analysis, stakeholder
engagement, Delphi ranking/matrix scoring, expert elicitation, interviews, surveys, and
analytic hierarchy process, among options. Preliminary filtering eliminates early no-go
options.

# (B) Quantitative—The second tier entails quantitative analysis including modeling of
non-location specific profile markets. Profile markets exhibit the “market attributes”
characteristic of markets and energy systems behaviors in transition. They help
to define deployment boundary conditions, differentiate the importance of energy
system attributes, and can reflect the needs of underrepresented markets that are
economically and/or socially marginalized. Study of the profile markets offers lessons
and provides a basis for energy system deployment in various markets, domestic and
foreign. Scenarios of primary interest are refined based on iterative analysis.

This level of analysis (e.g., 1B30) incorporates insights gained from Tier C then charac-
terizes system performance numerically. It may be used to estimate/test sample projects’
effectiveness or to compare levels across different systems. Scoring reflects the variance
in magnitude and duration from a target level [2]. Analysis may include approaches that
are performance-based, event-specific, and accounting for uncertainty to inform decision-
making.

# (A) Integrated Analysis—The third tier, covering integrated analysis, includes more
nuanced and increasingly specialized assessments of a specific location that incor-
porate and build on results from Tiers C and B. It includes advanced quantitative,
qualitative, and geospatial assessments that mutually inform. The synthesis of mul-
tiple methods is completed in other domains [66–68]. If done well, it allows for the
strengths of the different methods to complement and/or amplify the value of the
process and findings. Scenarios of primary interest are refined, here, based on iterative
analysis.

Deeper quantitative modeling is completed for specific locationally based markets
(e.g., centralized energy hub, remote location, and islands). The tier of analysis (e.g., 1A30)
could be carried out with a study that evaluates the dynamic effects from high-penetration
rates of individual technologies in an integrated energy system consisting of a combination
of energy sources and infrastructure conditions. Examples of modeling tools include
MARKAL and the International Atomic Energy Agency’s (IAEA) Wien Automatic System
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Planning (WASP) as well as other modeling tools. Various shocks to the energy system
can be used to perturbate the modeling to study the range of outcomes. These shocks
may include technical equipment failure, weather-related risks, volatility energy prices,
interruption of a major resource, or attacks on key energy infrastructure [69]. Modeling for
uncertainty can be useful in understanding sensitivities of variables to system behavior,
such as increases in the probabilities of disturbances occurring over time (e.g., from severe
weather- and climate-related events).

Deeper qualitative analysis and geospatial analysis are completed for the specific
locationally based region of study. Coverage includes a more comprehensive review of
capabilities such as expertise and preparedness (i.e., the existence of emergency plans,
personnel training, repair crew availability, and other similar measures) to mitigate, re-
spond, and recover while also accounting for geospatial particularities. An example of
a geospatial consideration would be the siting of backup power for a power plant at a
higher elevation and/or separate location to minimize risk from a disturbance, such as
with flooding. Additional considerations in this tier would include more comprehensive
review of dependencies/interdependencies associated with paths that are deemed more
favorable in Tier B and C and in the corresponding quantitative analysis of the current tier.
Other conditions to evaluate include the sufficiency and geospatial access of capabilities for
the period of study under different constraints. The degree of appropriate weatherization
for the region in another assessment condition. As the number and types of extreme
weather events occur with greater frequency, planning that assumes probability of 100-year
high-impact events should regularly be reevaluated. Recent trends may not be sufficiently
representative.

In addition to the above factors, jurisdictions, and layered forms of decision-making
should be considered, such as with determinations from a public meeting, an advisory
board, or regulatory authority. Outcomes of the framework’s earlier tiered findings may
guide advanced deliberations which may in turn inform the later analysis. Ownership and
operational oversight should also be factored if the resilience evaluation aims to account
for system agility in technical and organizational terms. Resilience during a disturbance
may hinge on clear channels of command and rapid response.

Integrated analysis will ultimately entail prioritizing/ranking and filtering for no-go
options based on more specialized and cross-referenced findings from technical experts,
stakeholder/advisor input, model-qualitative-geospatial informed characterization in other
parts of the framework, and the concurrent tier of the evaluative process.

When combined, the three-tiered analysis formulates an integrated approach with
a progression that accounts for increased specialization, place-based precision, and com-
plexity in relation to a given location. The analysis accounts for the system configuration,
networks, and necessary expertise/capabilities to manage critical assets, essential services,
inextricable links/interconnectedness, interdependencies, and potential for cascade effects
or multiple events. This approach identifies critical assets and their functional relationships
within systems. It prioritizes the consideration of physical and cyber threats, vulnerabilities,
and consequences.

Use of this framework is designed to be done in conjunction with an ongoing process
of resilience monitoring that aims to ask the right questions while using the appropriate
data to answer the questions and interpreting the answer for optimal applicability. This
recognizes situational awareness of the known unknowns and ongoing vigilance with
respect to the unknown unknowns should be part of the process (see Scenarios below).

5.1. Step-by-Step Review of the Framework

To study the resilience of future energy systems, a range of decarbonization energy
strategies are developed that describe the energy transition from the current system to
future configurations in 2030, 2040, and 2050. The strategies outline changes to the energy-
technology mix, system resources (e.g., energy storage), policy-regulatory environment,
and market and community priorities. Strategies are then assessed with the framework.
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As an example, the level of specialized knowledge on resilience performance as the energy
system transitions to low carbon by 2050 could be described by the path:

[1–5C21 → 1–2C30 → 1B30 → 1B40 → 1A40 → 1–5A50] (1)

# The starting point, 1C21, is based on prevailing practices with the current technologies
in the energy mix with technical, economic, social, ecological, and infrastructural
assessments to provide a full baseline producing 1–5C21;

# The next step, 1–5C21→ 1C30, continues with best practices/expert assessment/general
geospatial profiling to evaluate resilience with an emergent low carbon energy system
in 2030. It may for a variety of reasons only initially cover technical and economic
dimensions producing 1–2C30;

# The following step, 1–2C30 → 1B30, adds quantitative analysis of a profile market
considering scenarios up to 2030;

# The next step 1B30 → 1B40 continues the quantitative analysis up to 2040;
# The fourth step 1B40 → 1–5A50, develops into an integrated analysis (including both

quantitative, qualitative, and geospatial elements) of a proposed system’s resilience in
a specific region and market in 2050. It covers technical, economic, social, ecological,
and infrastructural assessments in Tier A to provide a full profile.

Ideally, all dimensions are covered for each tier and time period. However, that
does not always occur in analysis and planning. This framework shows where the fuller
assessment takes place and, importantly, accounts for areas where gaps exist.

In practice, an expert assessment (1C21) could begin by comparing technology options
using specific intrinsic technology measures, as illustrated in Table 1. These measures are
qualitative that is they describe certain resilience characteristics of the technology. Analysis
at this level allows us to understand a technology’s resilience baseline. As an example of
real-time responsiveness, open cycle turbines (OCT) are rated high, nuclear is moderate
to high, and wind/solar are rated low; it is visa-versa with fuel security for wind/solar
is high, whereas OCT is low. This suggests the system resilience is improved through an
offsetting mix of variable renewables, OCT, and nuclear technologies. Intrinsic measures
become more pronounced when stresses are applied by increasing levels of penetration.
For example, at high-penetration rates (e.g., 50–75%), the OCT Fuel Security measure of
“Low” suggests a system would become less resilient due to a greater likelihood of a fuel
shortage.

Table 1. Intrinsic measures of energy technologies.

Intrinsic Measures Open Cycle Turbines Wind/Solar Nuclear Large Plants Nuclear SMRs

Maintenance Requirements Moderate Low High Moderate
Island-Mode Operation High High Low High
Geographic Dispersion Moderate High Low Moderate

Modular Structure Moderate High Low High
Real-Time Responsiveness High Low Low Moderate

Ramping Capabilities High Low Low Moderate
Capacity Factors and Duration Moderate Low High High

Need for Refueling with Regular Use High Low Low Moderate

Using the above framework, the characterization and local knowledge accumulates
as analysis progresses from C to B to A. The collected knowledge includes qualitative,
quantitative, and integrated location-specific results over the study period. The framework
can be used to identify potential analysis gaps, such as when quantitative modeling is per-
formed (Tier B) but requires a specialist’s review (Tier C) to define the system uncertainties
associated with novel technology systems or configurations.

A more holistic characterization of resilience using the framework should factor for the
following resiliency dimensions under dynamic conditions and across multiple timeframes:



Energies 2021, 14, 4243 11 of 25

1. Technical Resilience—The technical resilience of an energy system focuses on the
potential disruption to the hardware and software plus energy/power inputs and
outputs. In the case of a power system example, this accounts for factors including
generation, transmission, and distribution by supplementing traditionally static sys-
tem performance measures to factor behaviors under changing contexts. It simulates
complex interactions incorporating additional resilience dimensions detailed below.
This would principally be evaluated in quantitative and geospatial assessments of
Tiers A and B and factor for conditions like weatherization;

2. Economic Recovery Resilience—The economic recovery resilience of an energy sys-
tem focuses on the potential disruption to the area economy and its capacity to recover.
This may be measured in terms of the impacts on varied sectoral areas of production,
supply, demand, and delivery as well as employment and post-disruption recovery
efforts. It defines the minimum level of recovery investments required to restore
production and delivery levels so that total economic impacts are deemed acceptable
over a stipulated post-disruption duration [70]. This would be primarily evaluated in
Tiers A, B, and C across all methods;

3. Social and Institutional Resilience—The social and institutional resilience of the
energy system focuses on the disruption to society, its capacity and social ecosystem,
as well as its ability to mobilize to recover from a shock. This encompasses people,
plus organizations, rules, and resources. It accounts for regulated versus deregulated
markets. Readiness and adaptive capacity are key, including the community’s ability
to learn, problem-solve, self-organize, and govern with institutions that can partner
and adjust. This would be primarily evaluated in Tiers A and C and would generally
be qualitative in form;

4. Ecological Resilience—The ecological or environmental resilience of an energy sys-
tem centers on the natural system and its ability to recover to a former or new steady
state. The concept of adaptive capacity that is indicated with social and institutional
resilience would apply here as well. This may encompass water, air/emissions,
land/soil, forests/agriculture/biodiversity, etc. This area of focus would be primarily
evaluated in Tiers A, B, and C with all methods;

5. Infrastructural Resilience—The infrastructural resilience of an energy system refers
to the built environment that goes beyond what is covered by technical resilience.
In the case of a power-system resilience study, this would encompass other critical
infrastructure such as communications and transportation systems as well as gasoline
fueling stations—all of which typically require power to function. This would be
primarily evaluated in Tiers A, B, and C across all methods.

5.2. Scenarios

Robust scenario characterization is essential in resilience scoping and risk evaluation
for the framework. A ‘design basis event’ approach, for example, as is done by the nuclear
industry, entails the identifying postulated events that set performance requirements
for the technology, components, and system. Such scenario planning should include
regular updates and a practice of revising, whenever a critical development occurs, or
new condition is recognized. This could include changes to infrastructure or situational
awareness and shifts in decision-making, jurisdiction, or operational control, among factors.
The Fukushima Daiichi accident in Japan, for example, highlighted the importance of
system hardening for multiple extreme weather events, such as a dual earthquake-tsunami
occurrence, as well as for multiple reactor units being impacted concurrently. Design basis
requirements for U.S. nuclear plants were updated to reflect insights gained from this
event [71].

The process should also account for decision-making on acceptability boundaries and
tier ranking. This framework can define specific threshold conditions linked to lower or
higher observable levels of resilience.
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Key scenarios for consideration include extreme weather events, such as severe cold
or heat, wildfires, and hurricanes as well as cyber and physical attacks. Additional design
elements include: sufficient interconnection (with other sources); flexibility of hetero-
geneous (diverse) systems with differing components; hierarchical embedding; reliable
shutdown/startup cycles; supply chain reshoring; backup components, monitoring and
warning systems for detecting precursors; minimum sync-to-grid capacity and load follow-
ing; distributed, equipment design modification; and flexible generations limits on demand
for social stability. Best practices also suggest analysis accounts for the strengths and weak-
nesses of standardization, stability, simplicity, accessibility, reproducibility, preventative
measures, and resiliency to natural events.

As the share of non-dispatchable energy increases in the energy mix, the impacts
on resilience will need to be better understood. For example, with the retirement of
baseload generators, replacement generation can be scaled; so the new generation unit
may be equal to or less than the retired generation capacity, where the load may be
covered, but the resilience of the system may be altered. Using the Meta-Level Framework
described above, strategies can account for improved technical resilience (e.g., hardening
the technology, increasing operational flexibility, and adding system interconnects) while
also evaluating the economic and societal tradeoffs for the given system conditions (e.g.,
buried power lines may protect from hurricanes, but not floods). Energy planners can
benefit from understanding the resilience attributes of low carbon technologies and the
balancing measures that may be needed to maintain the stability as the shares are increased.
Simultaneously achieving low carbon goals while increasing system resilience becomes
a balancing act requiring the valuation of technological, economic, social, ecological, and
infrastructural attributes. Utilization of the Meta-Level Framework provides a key step
towards better characterization and tracking of resilience complexities in future low carbon
energy systems. The ultimate objective of this approach is to develop insight into the
resilience of long-term strategies and the tradeoffs needed (e.g., how much high-carbon
activities should continue versus. be replaced by low carbon technologies and how scalable
are the strategies).

5.3. Examples of Extreme Weather-Power Outage Events

A number of power-system disruptions are detailed to highlight resilience challenges.
Forward-looking applicability of the framework is also discussed.

5.3.1. Winter Storms: Texas (ERCOT) in 2021 and 2011

On February 2021, a winter storm in North America (referenced earlier for breaking
2000 low-temperature records) [7] provides insight into resilience planning for extreme
winter cold. With this event, more than 4.5 million customers were reported as being
without power, and 133 deaths have been linked to date [72,73]. In the Electric Reliability
Council of Texas (ERCOT) market during the period from 14–19 February 2021, sub-
zero temperatures were associated with increased power demand which exceeded the
power supply. Nearly half the region’s power generation went offline with the highest
amount of unavailable capacity during the period equaling 51.2 GW of the 105.7 GW
installed capacity on 16 February 2021 [74] (Figure 2). Thermal capacity, consisting of
natural gas, coal, and nuclear power generation, reflected the largest share of unavailable
power with the majority sourced from natural gas. Renewable generation from wind and
solar power also went offline. Dangerously low frequencies were observed at 59.3 hertz
(Hz) for 4 min and 23 s and could have left Texas with a multi-week black start event
(A safe system frequency level should be around 60 hertz. If the frequency is less than
59.4 hertz for 9+ min, generation will start tripping offline, and there is a risk of the whole
system blacking out [75]). Prior to shedding load, energy prices equaled or surpassed a
systemwide offer cap of $9000/megawatt hours (MWh) (compared to a more standard price
of $22/MWh) [76]. Without sufficient electricity or heat, water pipes froze and ruptured
adding to widespread disruption.
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Figure 2. ERCOT’s reported factors for February storm outage [74].

In addition to unavailable generation and a surge in power demand, insufficient
weatherization was the other initially stated reason for outages [77]. Fuel supplies, namely
natural gas and coal were not able to be delivered, and equipment/instruments froze. The
ERCOT system’s winter peak of 66 GW had roughly 30 MW of thermal plants offline [77].
Scenario planning for a worst-case winter example anticipated 14 GW of thermal power
being unavailable, but more than double was the case in February 2021 [77]. ERCOT had
factored for variable renewable electricity (VRE) outages in its planning, as VREs function
differently in the system [78]. Scenario planning was based on a winter storm in Texas
in 2011.

The referenced 2011 storm affected 4.4 million electric customers in the southwestern
U.S. including customers in Texas that experienced below freezing temperatures and un-
expected rolling blackouts [78,79]. Over a million Texas customers lost service, some for
extended periods with 193 generators going offline in ERCOT due to ice loads and compli-
cations of cold temperatures, including frozen coal piles at generating stations [75,79]. At
the storm’s peak, 14.7 GW of generation was offline (lowest frequency was 59.58 hertz) [75].
Analysis by FERC and NERC highlighted the importance of weatherization and accounting
for interdependencies of electricity and natural gas systems. Specific to reserves, the report
indicated:

. . . the massive amount of generator failures that were experienced raises the question
whether it would have been helpful to increase reserve levels going into the event. This
action would have brought more units online earlier, might have prevented some of
the freezing problems the generators experienced, and could have exposed operational
problems in time to implement corrections before the units were needed to meet customer
demand [78].

After the 2011 outages, guidelines were put forward on weatherization. An aspira-
tional reserve margin was left in place, and there was no regulator-enforced mandate in
order to maintain low-consumer prices [75]. Primary points of recommended change across
the 2011 and 2021 storm outage include weatherization and adequate interconnections
with neighboring markets to import electricity and a capacity market. Table 2 highlights
the differences between the two storms with ERCOT’s power system.
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Table 2. Comparison of ERCOT-related storms [72,75].

Indicators 2011 2021

Generators offline 193 356
Duration of outage 7.5 h 70+ h
Lowest frequency 59.58 Hz 59.3 Hz

Maximum load shed 4000 MW 20,000 MW
Generation unavailable 14,702 MW 51,173 MW

Customers offline 1,000,000+ 4,500,000+

The above ERCOT winter storm events provide a basis for considering how the Meta-
Level Framework could be applied. Drawing from the insights of the February 2021 storm,
ERCOT should undertake a deep and holistic review of its system resilience for 2021 as
new baseline. Given the scale of damages and number of people who were impacted,
integrated resilience analysis should firm up a systematic understanding of the current base
year (C21 → B21 → A21) before expanding future assessments. A deliberative process that
includes customer and expert input is advisable throughout the assessment. This includes
choices about interconnection and weatherization in the infrastructural assessments (5C21)
and decisions about whether the deregulated ERCOT market structure should be revised
(3C21). Local preferences/sensitivities could be identified to narrow the range of acceptable
options:

[1–5C21 →1–5B21 →1–5A21] [1–5C30 → 1B30 → 1B40 → 1–5A40 → 1–5A50] (2)

Tier B should then assess a profile market with grid and fuel distribution dynamics
that include scenarios with considerable fuel supply disruptions and variations in weather-
ization. The presence and absence of a capacity market can be factored. Tier A should then
incorporate the findings from the prior two tiers and extend them with interdependency
analysis, a more in-depth localized focus, and other forms of integration. Interdependency
analysis should assess the level of reliance that water, heating, telecommunications, and
other critical infrastructures have on power and vice versa.

A review of ERCOT’s Report on Existing and Potential Electric System’s Constraints
and Needs from December 2020 indicated that high-industrial load growth, thermal plant
retirements, existing constraints, and the increase in wind, solar, and combined cycle
generation were key points of recent scrutiny [80]. Winter storms do not appear to have
received recent attention. (Additional review of ERCOT planning meeting documents on
the grid operator’s website shows resilience-relevant groups, such as the Grid Resilience
Working Group, focusing on “risks that have a low probability of occurrence but potential
high consequence of impact to the ERCOT System if they were to occur . . . [and] con-
sidering and evaluating practices that may address these risks” [81]. Inspection of the
group’s existing and planned coverage indicates “understanding design events; mitiga-
tion practices; cost recovery mechanisms; interaction with other critical infrastructure;
recovery from conditions like hurricanes; High impact/Low Frequency Events, Black Start
and the Integrated Nature of the Power System, Testing and Hardening Techniques, plus
electromagnetic pulses” [81,82]. Recognizing the natural limits of using meeting agendas
for content analysis, the predominant focus of GRWG meetings appears to have been
electromagnetic pulses). In five scenarios of varying resource mixes and variable renewable
energy penetrations through to 2030, the analysis found system stresses have changed from
historical instances of summer afternoons to alternate times of day and year. The report
also notes the importance of evaluating system conditions other than peak load, indicating
three of the top 10 constraints on the ERCOT system in 2020 were outages tied to hurricane
storms [80]. Based on the experience of two extreme winter storms in 10 years, scenarios
need to more fully account for such weather stresses, and infrastructure needs to account
for fuller weatherization.
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Especially for customers who may have questions about decision-making and are not
privy to the more confidential aspects of planning, the Meta-Level Framework may be used
as a tool to coordinate and summarize where the process is currently headed. Likewise, it
can represent the kinds of analysis and complex local knowledge that is evaluated. It is not
a replacement for tough choices, but it can reflect gaps and more systematically classify
what may be siloed areas of focus.

5.3.2. Hurricane Maria: Puerto Rico in 2017

In September of 2017, Hurricane Maria struck the Commonwealth of Puerto Rico (PR)
at a Category 5 strength [83]. Dumping more than 30 inches of rain on the island, the storm
destroyed the island’s power infrastructure with 100% of customers losing service [83,84].
In what has been deemed the worst blackout in U.S. history (and the world’s second
largest blackout), 3.4 billion customer-hours were lost in electricity service with more than
3000 deaths attributed to the lack of electricity and basic services [84]. In response efforts,
the Puerto Rico Electric Power Authority (PREPA) partnered with the U.S. Department of
Energy, Department of Defense, and Federal Emergency Management Agency. Potable
water, electricity, and cell phone services were restored many months later [84].

Focusing on building and strengthening a new power system (the PREPA power plants
are 28 years older and experience outage rates 12 times higher than the U.S. average [85]),
PREPA’s 2019 Integrated Resource Plan (IRP) recommended segmenting the Puerto Rican
grid into mini-grids (hundreds of MW) and microgrids (1 to 20 MW) with more storage to
increase system reliability and resilience [86,87]. In 2020, a preliminary feasibility study
was also completed to evaluate the potential for small modular reactors (SMRs) and mi-
croreactors [88]. Although nuclear plants were not previously considered for IRP analysis
of the PR generating resource mix, the siting and operation of advanced nuclear plants,
particularly under the auspices of regional or localized grid support and services, were
evaluated to address aspects of resource adequacy, availability, and system performance.
The study identified grid resilience benefits with advanced nuclear generation including
integration with renewables. Reporting indicated that if the grid infrastructure is avail-
able, SMRs and microreactors could operate within a mini-grid or microgrid. However,
the technology would need to be scaled appropriately (i.e., on mini-grids); the reactors
should be limited to a capacity of 100 MW or smaller as well as designing operational
strategies for flexibly bringing online and offline individual SMR units or modules (such as
40–50 MW modules). Reporting also found many SMRs (up to 700 MW) may be too large
for microgrids [88].

The scope of the above, Nuclear Alternative Project (NAP) study was much broader
than energy system resilience; however, it included grid resilience as an objective and
contained several elements consistent with the Meta-Level Framework described in this
paper. The study was designed to increase the level of understanding of the energy system
in Puerto Rico, based on current standards and best practices, expert assessment, and thor-
ough modeling of future energy scenarios, including nuclear plants. It described Puerto
Rico’s current legal and regulatory framework which places a significant weight on con-
cerns over climate change [89] and technology-neutral policy. The study also outlined best
practices for designing resilient energy systems that resist hurricane exposure, evaluating
finance options, performing public surveys on nuclear energy, and for conducting outreach
and educational engagements.

Consistent with the Meta-Level Framework Tiers B and C, several scenarios for future
generation were analyzed including an energy system modernization scenario that in-
cluded natural gas, solar, and energy storage based on the Puerto Rico Integrated Resource
Plan. The NAP evaluated additional scenarios including SMRs and microreactors. In one
scenario, a 600 MW SMR was used to replace the retiring 602 MW heavy fuel oil plant
at Palo Seco [88]. Scenarios required meeting the renewable portfolio standard goal of
achieving 40% of electricity from renewables by 2025, 60% by 2040, and 100% by 2050 [88].
Quantitative analysis was performed using a socio-economic model to evaluate severe



Energies 2021, 14, 4243 16 of 25

weather and seismic resiliency of advanced nuclear reactors and the economic impact on
communities with technical details of SMR resiliency characteristics based on NuScale
studies [90].

The analysis determined that proposed energy mixes for Puerto Rico would need to
be evaluated and judged as an integrated system of how the proposed energy mix impacts
the greatest number of needs across society. The exercise illustrated the importance of
evaluating energy projects for the island from the perspective of the project contribution to
broader overall priorities (e.g., infrastructure resiliency, economy, ecological, and energy).
The NAP recognized a systematic approach is needed to evaluate public opinion of ad-
vanced reactors. As a result, the NAP recommended a detailed dynamic stability study
to evaluate the suitability of SMRs for mini-grid operation and, particularly, the effect of
SMR capacity on mini-grid stability with mini-grid stability criteria. Further, mini-grid
stability criteria may need to be established and stability studies performed [88]. The future
level of analysis described by the NAP resonates with aspects of the “Tier A” described in
this paper.

An illustrative characterization of the PR assessment could reflect:

[1–5C19 →1–5B20 →1,3,5A20] [1–5C25 → 1–3B25→ 1B40 → 1A40 → 1A50] (3)

When communicating with government regulators, insurers, communities, and mem-
bers of industry or making investment choices, the above representation provides a dis-
cernable snapshot of the focus (knowledge types and level of local specialization), temporal
dimensions, and by extension areas to be evaluated.

5.3.3. Heatwave/Wildfire: California in 2020

In mid-August 2020, an intense and prolonged heat wave impacted the western United
States with temperatures 15–30 ◦F above normal, resulting in demand exceeding electricity
resource adequacy and planning targets [91,92]. During this extreme weather event, ten
Western Interconnection balancing authorities declared energy emergencies, including the
California Independent System Operator (CAISO), which ordered the first rolling outages
in 20 years [92–95] (The Western Interconnection is a wide area synchronous grid plus
a major alternating current grid in the United States, spanning from western Canada to
Baja California, Mexico to the Great Plains. In normal operations, power utilities within
this Interconnection are electrically joined together, operating at an average, synchronized
frequency of 60 Hz [96]).

The high and widespread electricity demand across the western United States limited
CAISO’s ability to import from neighboring areas as their balancing authorities served
native loads [94,95]. The supply was also below preseason forecasts for nearly all resource
types, including natural gas, hydropower, wind, and solar [96]. The high heat reduced
thermal generation, as thermal facilities do not tend to function as efficiently in extreme
temperatures [94]. Below average hydropower availability and diminished solar gener-
ation due to wildfire smoke and cloud cover were also among the confounding factors
affecting operations [94]. CAISO’s controlled load shedding of roughly 1800 MW was done
14–15 August 2020. Rotating outages lasted roughly 8–150 min and impacted approxi-
mately 800,000 customers served by the utilities responding to the CAISO directive [92,94].

Prior to the above event, NERC evaluations indicated issues with energy sufficiency
and flexibility for the region. NERC’s 2019 Summer Reliability Assessment stated, “Ex-
treme outages may result in insufficient resources at peak load” [97]. In its 2020 Summer
Reliability Assessment for the region, NERC’s high-risk scenario predicted, “Operating
mitigations and EEAs [Energy Emergency Alerts] may be needed under extreme demand
and extreme resource derated conditions” [98].

Post-event analysis indicated California had a number of pre-existing conditions that
required address: (1) lack of clear accountability for having the resources to power the grid
(similar to the Texas conditions); (2) lack of resources, such as gas-fired plants, pumped
hydro or battery storage, hydropower, or demand side management, to balance solar and
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wind power; (3) closure of disfavored resources before new ones are brought online, such as
with battery storage replacements for natural gas plants; and (4) siloed operations [99]. To
compound the conditions further, California has had 13 of its 20 most destructive wildfires,
and seven of its 20 deadliest ones since 2017 [100–102]. Investor-owned utilities in the state
are projected to spend more than $21.7 billion through 2022 on wildfire mitigation plans
alone [102].

In preparation for the 2021 summer season and in response to a California Public
Utility Directive, California utilities procured additional generating capacity [97,103]. Most
additions are solar photovoltaic generation [95]. Additional resources in the form of storage
are also being integrated, with roughly 600 MW planned to be on-line by summer and an
additional 800 MW planned by 1 August 2021 [95,104]. NERC’s 2021 Summer Reliability
Assessment for the region indicated Western Electricity Coordinating Council (WECC)
risk scenarios identifying the continued risk of energy shortfalls for the WECC California-
Mexico region on the order of 10,180 MWh and “the potential for above-normal peak
demand and resource outage scenarios, similar to those seen in 2020, to result in operating
emergencies in all WECC assessment areas with the exception of the winter-peaking
Canadian province” [95].

Against the above backdrop, California has robust decarbonization aims including a
mandate for 60% of the state’s energy to be sourced from renewable energy by 2030 and
100% of its energy to be carbon emissions free by 2045 [105]. These conditions provide
useful points of reference to illustrate the framework more fully.

Assigning the timeframes of interest to be 2025, 2030, and 2045, with 2021 as the
base year in Figure 3, an assessment is proposed for 2021 with a hypothetical investor-
owned utility in California. A full evaluation of all resiliency parameters is desirable for
2021 and the subsequent milestone years. However, circumstances do not always allow
such coverage. Table 3 details a potential evaluation strategy with sample qualitative,
quantitative, and integrative areas. It is advisable to complete these framework studies
with a review process that may bear similarity to what is used for integrated resource
planning, but which prioritizes resilience and involves actors like local emergency planners,
members of critical lifeline areas/functions, participants from dependent sectors, etc. By
planning the analyses and scenarios, completing and refining the analyses and scenarios as
more information becomes available, and tracking progress of resilience studies using the
framework, the utility can evaluate resilience more systematically and convey progress
or gaps.
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Table 3. Sample tracking in more depth—Framework sections.

Studies Resilience Parameter(s) Research Highlights

Generator readiness 1C21

Qualitative and mechanistic understanding of resilience
behavior and weatherization readiness as a function of ranked

sensitivity and duration of generator outages

Regional priorities and constraints 3–4C21
Qualitative assessment of local preferences, ecological

stewardship objectives and market capabilities

Cascading Failures 1–5B21 → 1–3A21
Integrated modeling of the effect of the power grid’s

structural failure
Environmental Analysis

(air quality)
4A25

Resiliency impacts to air/emissions associated with long-term
changes to ambient temperatures by region

Critical Infrastructure
(communications)

5A25
Integrated assessment of location and sensitivity levels of

communication outages relative to stress points

Notes: Resiliency Dimensions: 1. Technical; 2. Economic Recovery; 3. Social and Institutional; 4. Ecological; 5. Infrastructural. Tiers: A.
Integrated, including Geospatial studies; B. Quantitative, and C. Qualitative.

6. Limits and Advantages of the Framework

In terms of limits to the framework, it identifies gaps in the research but does not ex-
plicitly identify or rank high priority research areas. However, by applying the framework
methodically, the user can gain insights to the key resilience vulnerabilities in the system
and the sensitivity of variables. Advantages of the framework are that it more systemat-
ically accounts for complex and varied dimensions, timescales, and geographic units of
analysis with a flexible approach that can be used in conjunction with decision-making
and stakeholder review processes.

7. Discussion and Conclusions

The importance of advanced resilience analysis is becoming increasingly evident as
energy systems transition with low carbon aims while experiencing increased stress from
severe weather and other disruptors. System vulnerabilities and uncertainties need to be
assessed through a structured analytical framework that conveys levels of integration and
local specificity as well as temporal aspects to understand how to operationalize and gauge
resilience. Holistically understanding resilience can be a major step towards creating an
adaptive system that can minimize or eliminate the most harmful impacts from future
disruptions.

The outlined Meta-Level Framework aims to expand the capacity to study, commu-
nicate, and advance understanding of resilience in conjunction with ongoing vigilance
toward resilience risks. Use of the Meta-Level Framework can improve understanding of
the fuller nature of resilience in future low carbon energy systems by defining the:

• Role of resilience in relation to reliability;
• Standardized logic for communicating the depth of knowledge in terms of analytical

rigor and dimensions of time and place (location specific);
• Gaps in understanding a system’s resilience;
• Critical assets within the context of their broader systems including the people and

capabilities to carry out the core functions;
• Sensitivities of variables to system behavior;
• Dimensionality and interplay between technical, economic, social/institutional, eco-

logical, and infrastructural resilience;
• Resilience qualities of low carbon technologies and the necessary balancing measures

to maintain the stability with increasing shares;
• Early-stage strategies (e.g., scaling technologies) and their impact on achieving long-

term objectives should be factored;
• Value of flexible energy technologies in the energy mix;
• Conditions under which analysis should be updated to address design basis changes,

shifts in decision-making, jurisdiction, and operational control.
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This paper described aspects of the framework’s applicability to a number of system
disruptions using examples from Texas winter storms, Puerto Rico following Hurricane
Maria, and California following a heatwave-wildfire event. These studies provided insights
into lessons learned from system failures that can be used to inform researchers in the
design of future systems with more robust mitigation strategies.

The framework was designed to allow flexible application across different scales with
users equipped to build in uniquely localized considerations. Several uses include:

• Utilities communicating with regulators and insurance companies (and vice versa)
about the current resilience posture and the risks and opportunities moving forward
to 2050 as they decarbonize their energy systems;

• National energy analysts creating the analytical basis for informed decision-making
based on a comprehensive understanding of the impacts over a range of mitigation
options for location-specific energy systems;

• Researchers evaluating profile markets to understand and design resilient systems.

It is important to recognize electric utilities’ behavior toward resilience can be largely
determined by regulatory requirements and market design. These may be evaluated under
the localized focus of institutional considerations within the various tiers in the Meta-Level
Framework. An important step in the research and analysis will be perfecting ways to
more fully represent the weighting of complex determinants and framing the resilience
decision-making. Another important takeaway is that the regulatory playing field could
be improved with greater clarity on how resilience is operationalized versus reliability.
Moreover, there could be a one-stop authority rather than many. Additionally, who pays
for the improvements? Strengthening resilience in some respects is a form of insurance.
Utility owners in private sector expect some form of financial remuneration for attained
resilience.

As the framework is tested with advancing assessments in varied markets, geogra-
phies, and community profiles, questions for additional study and consideration should
also include: how could more dimensionality be introduced while maintaining the formal
logic of the framework; how could the framework be most effectively used in tandem with
public/stakeholder planning; and how could resilience risks, such as those associated with
cyber and physical attacks, be sufficiently operationalized in the analysis.

There is a need for versatility, continuing situational awareness, and some simplicity of
the approach, as regulators, such as FERC, NERC, and public utility commissioners; as well
as utilities and energy planners weigh tough choices about resilience and decarbonization
priorities. Costs do not capture the value of complex tradeoffs. Likewise, dependencies
and place-based limits require sufficient attention. The opportunities and challenges at the
nexus of energy system resilience and decarbonization can become even more amplified
when seen in light of cross-cutting implications in other critical systems, such as water,
agriculture, and transport. Whether focusing on the resilience of energy in relation to all
strategic national assets or strictly within its system, the value of an agile tool for more
complex location-specific understanding cannot be overstated.
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Appendix A

Table A1. Definitions of resilience and reliability by authoritative sources.

Resilience Reliability

NERC Infrastructure resilience is the ability to reduce the
magnitude and/or duration of disruptive events [106].

Reliability consists of two concepts:

(1) Adequacy: the ability of the electric system to
supply the aggregate electrical demand and energy
requirements of the end-use customers at all times,
taking into account scheduled and reasonably
expected unscheduled outages of system elements
[107];

(2) Operating reliability or Reliable operation

- Operating reliability was replaced with security in
2001 when security became synonymous with critical
infrastructure protection [107,108].

- Reliable operation is operating the elements of the
bulk-power system within equipment and electric
system with thermal, voltage, and stability limits, so
instability, uncontrolled separation, or cascading
failures of such system will not occur as a result of a
sudden disturbance including a cybersecurity
incident, or unanticipated failure of system elements
[107].

NARUC Resilience “addresses high-impact events” that “can be
geographically and temporally widespread” [109].

Reliability is about preventing disruptions that are “more
common, local, and smaller” [109].

DOE “The ability of a power system and its components to
withstand and adapt to disruptions and rapidly recover
from them” [37].

“ . . . maintaining the delivery of electric power when there
is routine uncertainty in operating conditions” [37].

FERC See IEEE.
IEEE “The ability to withstand and reduce the magnitude

and/or duration of disruptive events, which includes the
capability to anticipate, absorb, adapt to, and/or rapidly
recover from such an event” [110].

This is the probability a system will perform its intended
functions without failure, within design parameters, under
specific operating conditions, and for a specific period of
time [111].

Broader Definitions • Resilience is the capacity of social, economic, and
environmental systems to cope with a hazardous
event, trend, or disturbance, responding or
reorganizing in ways that maintain their essential
function, identity, and structure while also
maintaining the capacity for adaptation, learning,
and transformation [112];

• Resilience is the ability to prepare and plan for,
absorb, recover from, or more successfully adapt to
actual or potential adverse events [113];

• Resilience of the energy sector refers to the capacity
of the energy system its components to cope with a
hazardous event or trend responding in ways that
maintain their essential function, identity, and
structure while also maintaining the capacity for
adaptation, learning, and transformation [114].
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