
energies

Article

Contribution of Voltage Support Function to Virtual Inertia
Control Performance of Inverter-Based Resource in
Frequency Stability

Dai Orihara 1,*, Hiroshi Kikusato 1 , Jun Hashimoto 1 , Kenji Otani 1, Takahiro Takamatsu 1 ,
Takashi Oozeki 1 , Hisao Taoka 1, Takahiro Matsuura 2, Satoshi Miyazaki 2, Hiromu Hamada 2 and Kenjiro Mori 2

����������
�������

Citation: Orihara, D.; Kikusato, H.;

Hashimoto, J.; Otani, K.; Takamatsu,

T.; Oozeki, T.; Taoka, H.; Matsuura, T.;

Miyazaki, S.; Hamada, H.; et al.

Contribution of Voltage Support

Function to Virtual Inertia Control

Performance of Inverter-Based

Resource in Frequency Stability.

Energies 2021, 14, 4220. https://

doi.org/10.3390/en14144220

Academic Editor: Woojin Choi

Received: 8 June 2021

Accepted: 8 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-9,
Machiikedai, Fukushima 963-0298, Japan; hiroshi-kikusato@aist.go.jp (H.K.); j.hashimoto@aist.go.jp (J.H.);
k.otani@aist.go.jp (K.O.); takamatsu.1849@aist.go.jp (T.T.); takashi.oozeki@aist.go.jp (T.O.);
hisao.taoka@aist.go.jp (H.T.)

2 TEPCO Research Institute, Tokyo Electric Power Company Holdings, 4-1, Egasaki-cho, Tsurumi-ku,
Yokohama 230-0002, Japan; matsuura.takahiro@tepco.co.jp (T.M.); miyazaki.satoshi@tepco.co.jp (S.M.);
hamada.hiromu@tepco.co.jp (H.H.); mori.kenjiro@tepco.co.jp (K.M.)

* Correspondence: oriahra.dai@aist.go.jp

Abstract: Inertia reduction due to inverter-based resource (IBR) penetration deteriorates power
system stability, which can be addressed using virtual inertia (VI) control. There are two types of
implementation methods for VI control: grid-following (GFL) and grid-forming (GFM). There is an
apparent difference among them for the voltage regulation capability, because the GFM controls IBR
to act as a voltage source and GFL controls it to act as a current source. The difference affects the
performance of the VI control function, because stable voltage conditions help the inertial response to
contribute to system stability. However, GFL can provide the voltage control function with reactive
power controllability, and it can be activated simultaneously with the VI control function. This
study analyzes the performance of GFL-type VI control with a voltage control function for frequency
stability improvement. The results show that the voltage control function decreases the voltage
variation caused by the fault, improving the responsivity of the VI function. In addition, it is found
that the voltage control is effective in suppressing the power swing among synchronous generators.
The clarification of the contribution of the voltage control function to the performance of the VI
control is novelty of this paper.

Keywords: frequency stability; inverter-based resource; virtual inertia; grid-forming; grid-following;
PLL; RoCoF

1. Introduction

The increasing penetration of renewable energy resources causes instability in power
systems due to the uncertainty of them. In particular, the total amount of inertia decreases
when inverter-based resources (IBRs) displace large amounts of energy generation from
synchronous generators. In this situation, the phase-angle stability and frequency stability
worsen, and reserve power needs to increase to compensate for the inertia reduction
and to maintain a stable power supply in the future. In addition, the voltage stability is
also affected, because conventional IBRs are not controlled to maintain a voltage, unlike
synchronous generators comprising automatic voltage regulators (AVRs). In some systems,
a voltage support function, which has been recognized as a crucial part in developing an
IBR-dominated system, is required for an IBR that is newly connected to the grid [1,2].
Additionally, the influence on the protection system needs to be discussed. the IBR cannot
provide a large shunt current for a system fault compared with a synchronous machine,
which might cause incorrect fault detection.
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The virtual inertia (VI) control, which makes the IBR act as a synchronous generator,
can be used to address the aforementioned drawback of an IBR. The IBR with VI control
changes its output according to the dynamics of the synchronous generator and contributes
to the power system stability due to its ability to provide an inertial response, frequency
response, and voltage control function similar to a synchronous generator. There are
numerous types of implementation methods for VI control [3–5], which are divided into
two types: grid-following (GFL) and grid-forming (GFM). GFL and GFM are categories
of control of the voltage source converter (VSC) and do not directly mean VI control. The
GFL and GFM types control the IBR to act as the current and voltage sources, respectively.
A detailed common definition of GFL and GFM has not been established and is still
under discussion [6–13]. Moreover, both the GFL-type VI control (VI-GFL) and GFM-type
VI control (VI-GFM) are effective in compensating for the inertia reduction, but VI-GFL
cannot perform well under low inertia conditions. The phase-locked loop (PLL), which
is used in the GFL-type controller for detecting phase angle and frequency at the point of
interconnection (POI), cannot maintain stable operations because of the rapid variation of
the phase angle and frequency caused by a disturbance in such conditions [14–16]. Thus,
VI-GFL alone cannot maintain stability and requires a certain amount of VI-GFM at a high
IBR penetration level.

Several studies on VI control have discussed frequency stability owing to the effect
of inertia reduction on it. The blackout in Australia in 2016 [17] and the power cut in
the UK in 2018 [18] emphasize the importance of countermeasure for frequency stability.
These studies were primarily focused on clarifying the contribution of the VI control to the
reduction of frequency variation. Previous studies [9,19–22] compared various VI control
implementations using a time-domain simulation method. In addition, the implementation
adapted to the characteristics of renewable energy sources [23,24], control parameter
optimization [25], and the estimation of effective inertia [26] have been investigated to
enhance the VI control performance and applicability. Other studies have addressed the
influence on rotor-angle stability [27–30] and small-signal stability [22,31,32].

This study aims to analyze the performance of VI control in reducing the frequency
variation and to clarify the contribution of the voltage control function of the GFL-type
inverter to the performance of the VI-GFL. The voltage control function changes the reactive
power output of the IBR and can be activated simultaneously with the VI-GFL, which
controls the active power output. The activation of the voltage control function is expected
to improve the performance of the VI-GFL, because stable voltage conditions enhance
the active power controllability. However, its effectiveness has not been addressed in
other studies. In this study, the contribution of VI control to the frequency and voltage
stability is analyzed by focusing on the VI-GFL with and without the voltage control
function and the VI-GFM under several conditions with different IBR penetration levels
through electromagnetic transient simulations. The novelty of the paper is to clarify the
performance improvement of the VI-GFL offered by the voltage control function.

The remainder of the paper is organized as follows: Section 2 describes the power
system model for the simulation study. The IBR controller model is explained in Section 3.
Section 4 presents the simulation conditions and control parameters of the IBR. Section 5
presents the simulation results and the VI control performance evaluation. Finally, Section 6
concludes the paper.

2. Power System Model

In this study, the contribution of the VI control was evaluated through three types
of simulations: Step 1, Step 2, and Step 3. The Step 1 simulation is a base case simulation
using synchronous generators and not IBRs. On the other hand, the Step 2 simulation
replaces a part of the synchronous generators with IBRs, which do not have VI control,
to analyze the power system stability without any countermeasures for inertia reduction.
Finally, the Step 3 simulation implements IBRs with VI control to analyze the effectiveness
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of the VI control by analyzing three types of algorithms: VI-GFL with/without the voltage
control function and VI-GFM.

2.1. Network Model

The power system model for the simulation study, which is based on the IEEE 9-bus
system model [33], is described in this section, as shown in Figure 1. As previously stated,
the performance of the VI control was evaluated through Steps 1–3 simulations using
different power system models in each step. The model for the Step 1 simulation was
composed of synchronous generators, and all the power sources—namely, S1, S2, S3,
and SD—were synchronous generators, indicating that this model was a conventional
synchronous generator-dominated system. Meanwhile, in the Step 2 simulation, the power
source S3 was a normal inverter that did not have any controller that contributed to the
frequency regulation instead of a synchronous generator. Finally, the IBR with the VI control
was connected to S3 in Step 3. The three types of VI control methods analyzed in this step
are explained in Section 3. Moreover, the power source SD was a small-scale synchronous
generator that was tripped at a certain time in the simulation as a disturbance. Lastly, the
load was modeled as a constant current for the active load and a constant impedance for
the reactive load. The impedances of the transmission lines and transformers are shown in
Figure 1.
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Figure 1. Power system model.

In this model, the IBR model represented an aggregated one and connected to a
high-voltage bus, while the IBRs were widely distributed, and most of them were actually
connected to the low-voltage class. The purpose of the simulation study was to show how
the IBRs should perform as a mass for power system stabilization.

2.2. Synchronous Generator Model

The simulation of the synchronous generator model with two damping windings
on the q-axis equivalent circuit [33] was performed using PSCAD/EMDC, which is an
electromagnetic transient analysis tool. Both the speed governor and excitation controller
were modeled as controllers for the synchronous generator. In addition, this simulation
study did not include both the secondary control and those with longer control cycles,
because this study focused on the transient system behavior within 10 s after the occurrence
of the disturbance. Figure 2 shows a model of the speed governor and turbine [34]. The time
delay due to the governor, control valve, and turbines was considered in the model. Pre f
was the load reference that was managed by the central control system of the transmission
system operator (TSO). Meanwhile, Figure 3 shows the excitation controller model [34].
The excitation voltage was controlled to maintain the terminal voltage at the reference. In
addition, the power system stabilizer (PSS) model was included in the excitation system to
dampen the short-period oscillations.
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2.3. IBR Model

The IBR was modeled as a three-phase voltage source whose magnitude and phase
angle followed the reference from the IBR controller, as shown in Figure 4. This is called
the average model [35], which is conventionally used in analyzing several phenomena
involving the fundamental wave component at high accuracy but not including the second
and subsequent harmonics. This indicated that harmonics were not addressed in the
simulation. Moreover, the DC power source and capacitance were not modeled based on
the assumption that the DC power source can maintain a constant DC voltage and change
its output required by the IBR controller without any time delay and at a high accuracy.
This assumption was made because this study focused on the influence of inverter control
on the AC power system stability. The IBR model was connected to the power grid model
as power source S3 in the Steps 2 and 3 simulations.
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3. IBR Controller Model

This section presents the inverter controller model. Specifically, Section 3.1 presents
the conventional inverter controller model used in the Step 2 simulation, Section 3.2 shows
the VI-GFL model, and Section 3.3 presents the VI-GFM model.

3.1. Conventional IBR Controller

Inverters for the interconnection of IBRs, such as photovoltaic generations (PVs), wind
generations, and battery energy storage systems (BESSs), are controlled to maintain the
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output power at the control reference given by its upper controller. For example, PVs
and wind generations are equipped with maximum power point tracking (MPPT), and
BESS has an energy management system (EMS) to monitor and control the energy storage
system. Figure 5 shows the controller model of the conventional inverter. In this model, the
voltage and current are dealt with in the form of d- and q-axes components. Specifically,
Figure 5a shows Park’s transformation of the input or output signals of the controller.
The voltage at the POI Vc and the output current IC are input signals and decomposed
into d- or q-axis components. The voltage reference Vre f is the controller output and is
composed of these components through inverse Park’s transformation. The reference phase
angle for Park’s transformation is measured from VC by PLL, as shown in Figure 5b [36].
Meanwhile, Figure 5c shows the main controller as a series connection of the power and
current controllers. The active and reactive power control blocks manage the d- and q-axes
currents through the PI controller, respectively, and the decoupled current control block
manages the voltage reference to ensure that the IBR outputs the desired current [37]. The
current limitation is defined by Equations (1) and (2) to limit the magnitude of the current
reference and not exceed the current capacity.

Id,lmt = Ilmt (1)

Iq,lmt =
√

I2
lmt − I2

d,lmt (2)

where Id,lmt and Iq,lmt are the maximum magnitudes of the d-and q-axes currents, respec-
tively. The d-axis current reference Ic,d,re f is constrained by the maximum available current
Ilmt, while the q-axis current reference Ic,q,re f is constrained by the remaining capacity to
prioritize the active power control. The conventional control changes the output voltage
for the system voltage change to maintain the output power by ensuring that the angle
difference does not change. That is, the output voltage “follows” the system voltage, and
this is because the conventional control is categorized as the GFL-type.
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3.2. Grid-Following-Type Virtual Inertial Control (VI-GFL)

In this study, the VI-GFL model consisted of the VI function and speed governor,
which is the primary frequency controller. Figure 6 shows the controller model of the
VI-GFL, which manages the active power output to be similar to that of the synchronous
generator. The algorithm is based on the dynamics of the synchronous generator shown
below [33].

M
d f (t)

dt
= Pm(t)− Pe(t) (3)

where M is the inertia constant, f is the rotating frequency of the generator, Pm is the
machinery input power, and Pe is the electrical output. M(d f (t)/dt) represents the inertial
response of the synchronous generator. The VI function is performed by the active power
change corresponding to the inertial response. The differentiation of the frequency is
computed in the controller from the measured frequency as the slope between the present
value and the value just before the time window TW . Moreover, a low-pass filter with a time
constant Tf is included to remove noise on the frequency detected by the PLL. The reference
of the VI function ∆PVI is computed by multiplying the virtual inertia constant MVI by
the frequency differentiation. The speed governor function is modeled as a proportional
controller of the frequency, as in the synchronous generator. The reference ∆PGV was
computed using Equation (4).

∆PGV = −KGV{ f (t)− f0}, (4)

where KGV is the governor gain and f0 is the base frequency. The original active power ref-
erence Pre f is modified to P′re f by ∆PVI and ∆PGV . The speed governor of the synchronous
machine has a deadband and responds after the frequency surpasses it, but the gover-
nor function of the VI-GFL does not have it and is expected to respond to a disturbance
very quickly.
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This study focuses on the contribution of the reactive power control in regulating the
voltage to the performance of the VI function. Figure 7 shows the droop voltage controller,
which modifies the reactive power command Qre f based on the control deviation of the
POI voltage with the proportional gain KV,GFL.
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voltage regulation.
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3.3. Grid-Forming Virtual Inertia Control (VI-GFM)

Figure 8 shows the VI-GFM controller model, which is defined by Equation (3) using
a different methodology than the VI-GFL. The frequency deviation ∆ f is computed from
the measured active power P, while the VI-GFL controller computes the active power
command P′re f from the measured frequency at the VI and governor function block. The
governor function of the VI-GFM was also modeled without the deadband, the same as that
of the VI-GFL. The frequency command is transformed by integrating into the command of
the phase angle of the internal induced voltage δre f . The magnitude of the induced voltage
Ere f is managed by the AVR block, thereby maintaining the POI voltage at the reference

Vc,re f modified by the droop controller. The internal induced voltage Eref

(
= Ere f∠δre f

)
is

transformed to the output current order through a virtual impedance block according to
Equation (5), indicating that the controller assumes that the voltage source is connected to
the POI through the impedance rvir + jxvir.

Ic,ref =
Eref − Vc

rvir + jxvir
(5)Energies 2021, 14, x FOR PEER REVIEW 8 of 16 
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The current command Ic,ref

(
= Ic,d,re f + jIc,q,re f

)
is implemented by the current con-

troller. The virtual impedance and current control loop are not mandatory for VI-GFM,
because Eref can be used as a control order to the inverter. The advantage of the config-
uration is that current limitation can be easily implemented, as shown in Figure 5. The
difference between the VI-GFL and VI-GFM is the dependency to the PLL. The VI-GFM
does not need the PLL, except for synchronization at startup, because it uses the internal
phase angle δre f as the reference for Park’s transformation. Therefore, the VI-GFM is not
affected by the instability of the PLL in a low-inertia system.

4. Condition of the Simulation Study
4.1. System Condition

The performance of the VI control was analyzed under certain conditions with varied
IBR penetration rates (20%–80%). Table 1 lists the case indices of the simulation study.
At Step 3, three control strategies were analyzed. The VI-GFL without voltage control
and the VI-GFM were the existing strategies. The VI-GFL with voltage control was the
proposed strategy.
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Table 1. Indices of the simulation study.

Step Source Connected as S3
S3 Capacity Ratio Corresponding to IBR Penetration Rate in Steps 2 and 3

20% 40% 60% 80%

1 Synchronous generator #1-20 #1-40 #1-60 #1-80

2 IBR: conventional control #2-20 #2-40 #2-60 #2-80

3

IBR: VI-GFL w/o voltage control #3-GFL-20 #3-GFL-40 #3-GFL-60 #3-GFL-80

IBR: VI-GFL with voltage control #3-GFL-V-20 #3-GFL-V-40 #3-GFL-V-60 #3-GFL-V-80

IBR: VI-GFM #3-GFM-20 #3-GFM-40 #3-GFM-60 #3-GFM-80

Table 2 lists the power source capacity settings at each IBR penetration rate. The
capacities of power sources S1 and S2 were changed depending on the IBR (S3) capacity
to keep the system capacity the same among the cases. The rated capacity of the power
source model was changed by the rated current while saving the rated voltage.

Table 2. Rated capacities of the generation units at each IBR penetration rate.

Percentage of S3 Capacity 1

(Means IBR PeneTration Rate in Step 2 and 3)
Rated Capacity [MVA]

S1 (SG 2) S2 (SG 2) S3 (Step 1: SG 2, Step 2, 3: IBR)

20% 120 120 60

40% 90 90 120

60% 60 60 180

80% 30 30 240
1 SD is not considered in the percentage. The capacity of SD is 10 MVA in all cases. 2 SG denotes the synchronous generator.

The load condition was assumed to be 81.7% of the system capacity and was dis-
tributed equally to each load. Reactive power loads were set such that the power factor at
each load bus did not change from the value in the original system model. Moreover, SD
had 1.7% of the load, and the remaining 80% was shared among S1, S2, and S3 at the ratio
of the rated capacities.

4.2. Parameter Setting

The parameter of the synchronous generator was set to the original value based on
the IEEE 9-bus system. Figure 1 demonstrates the impedances of the transmission line and
transformer. Table 3 lists the IBR control parameters. The virtual inertia constant MVI and
governor gain KGV were set similarly as S3 in the Step 1 simulation. The voltage control
parameter KV,GFL and KV,GFM were set so that the droop characteristics were not different
between the VI-GFL and VI-GFM. The other parameters were determined by trial and error.
The filter time constant Tf and TV , and time window TW were at risk of causing instability
of the control if too-small values were set. The range of the values that enabled stable
operations depended on the power grid configuration and the other control parameters.

Table 3. Control parameters of the IBR.

Control Parameter Letter Value

GFL/GFM
Virtual inertia constant MVI 4.70 (s)

Virtual governor gain KGV 25.0

GFL

Voltage control gain of VI-GFL KV,GFL 10.0

Filter time constant in RoCoF computation Tf 0.10 (s)

Time window in RoCoF computation TW 0.10 (s)

GFM
Voltage control gain of VI-GFM KV,GFM 0.10

Filter time constant of voltage control TV 0.02 (s)
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5. Simulation Result

This section presents the results of the simulation study. Sections 5.1 and 5.2 present
a detailed discussion of the results for the cases with 20% and 80% IBR penetration rates,
respectively. Section 5.3 discusses the contribution of the VI control to the frequency
stability, considering the transition from a synchronous generator-dominated system to an
IBR-dominated system.

5.1. Twenty Percent IBR Penetration Rate

Figure 9 shows the simulation results for the cases with a 20% IBR penetration rate
(#1-20, #2-20, #3-GFL-20, #3-GFL-V-20, and #3-GFM-20). Figure 9a shows the time variance
of the center of inertia (COI) frequency fCOI , defined as Equation (6).

fCOI(t) =
∑NG

i=1 Mi fi(t)

∑NG
i=1 Mi

(6)

where Mi is the inertia constant of generator #i, fi is the rotating frequency of generator
#i, and NG is the index number of generators. The COI frequency represents the average
frequency of the generators, which is used to evaluate the frequency stability of the whole
power system. The rotating frequency of each synchronous generator includes a component
of eigenoscillation, and it should not be ignored when the local frequency stability or
phase angle stability is discussed. For the stable operation of the power system, both
the COI frequency change and the eigenoscillation should be suppressed. This paper
mainly discusses the whole system frequency stability based on the COI frequency, but the
influence of the VI control on the eigenoscillation is also discussed in this section.

For Step 2, the frequency at the POI of the IBR was not included in the COI frequency
computations, because the IBR had neither inertia nor VI. However, for VI-GFL in Step 3,
the frequency at the POI of the IBR with VI-GFL was excluded from the computation of the
COI frequency, although VI-GFL had a VI, because VI-GFL controlled the phase angle of
the IBR output voltage to follow that of the POI voltage. This indicated that the VI-GFL was
not frequency-independent from the grid frequency. Meanwhile, the frequency at the POI
of the IBR for VI-GFM in Step 3 was included in the COI frequency, computation because
VI-GFM had a unique frequency that was internally independent of the grid frequency.

The frequency in case #2-20 significantly varied after the generator SD trip, compared
with the other cases, because the conventional control did not cover the disturbance, as
shown in Figure 9b, which describes the deviation of the active power output of S3 from
the value just before the disturbance occurred. The VI control quickly responded in a few
seconds and largely reduced the frequency deviation, regardless of its implementation
method. The reduction of the maximum frequency deviation was considered to be a
contribution of the responsivity of the governor function in the VI controls. The governor
function in the VI control could respond without such delay, while the governor of the
synchronous generator took approximately 10 s to cover the power variation for a time
delay in the mechanical part response and the frequency deadband in the controller. Among
the VI controls, the responses to the disturbance showed no significant differences, but
VI-GFM responded more quickly than the other two, because VI-GFL required time to
detect the frequency using the PLL. The influence of the voltage control function on the
VI-GFL performance was not observed. Additionally, the inertia response of S3, a sudden
power increase just after the disturbance occurrence, seemed to be small compared with the
disturbance (5-MW generation loss). In this case, the capacity of S3 was small, and the load
sharing was also small. Another reason was that the load demand decreased by a voltage
dip, because the active power load was modeled as a constant current characteristic.

Figure 9c shows the deviation of the voltage at the POI of S3 from the value just
before the disturbance occurrence. The voltage reduction in all cases was less than 0.35%
of the nominal value (13.8 kV), and a large impact was not observed. This was because
there were synchronous generators with at least 80% of the system capacity, which was
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sufficient to maintain the voltage. Moreover, the voltage reduction was relatively large
for cases #2-20 and #3-GFL-20, because the reactive power did not respond to the voltage
change, as shown in Figure 9d. However, the VI-GFL with voltage control regulated the
reactive power against the voltage variation and suppressed this variation. Immediately
after the disturbance occurred, the voltage variation in #3-GFL-V-20 was larger than that in
#3-GFM-20, but after that, both provided equivalent performances.
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deviation of the voltage at the POI of the IBR, and (d) the deviation of the reactive power output
of S3.
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5.2. Eighty Percent IBR Penetration Rate

Figure 10 shows the results when the IBR penetration rate was 80%. Figure 10a
shows the COI frequency. The frequency variation in #1-80 was larger than that in #1-20.
This was because the system inertia, which was the total kinetic energy, was small in
#1-80 for the small inertia constant of S3. In #2-80, the COI frequency rapidly dropped
after the disturbance and did not recover to a stable state. In a system with low inertia,
the frequency change was too fast for the governor to cover the disturbance, resulting
in frequency divergence. In Step 3 (cases #3-GFL-80, 3-GFL-V-80, and #3-GFM-80), the
frequency variation could be significantly reduced. In particular, VI-GFM reduced the
change rate of the frequency.
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Figure 10. Simulation results of the cases for the 80% IBR penetration rate. (a) COI frequency, (b) the
deviation of the active power output of S3, (c) the deviation of the voltage at the POI of the IBR, and
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Figure 10b shows that the IBR with the VI control responded to the disturbance quickly
and reached the desired sharing level within a second. However, the output power of the
IBR temporarily decreased immediately after the disturbance, because the voltage at the
POI of the IBR decreased, as shown in Figure 10c. Specifically, the voltage at the POI of S3
(synchronous generator) for case #1-80 decreased by a maximum of 0.7%. However, a larger
drop was evident in the other cases, including 1.1% in #3-GFM-80, 2.7% in #3-GFL-V-80,
and 4.9% in #3-GFL-80 and #2-80. The results showed that the voltage control function
for the VI-GFL could effectively improve the transient voltage behavior and active power
response of the VI function. Figure 10d shows that the reactive power response provided
by the voltage control function is as fast as that of VI-GFM and the synchronous generator.

Moreover, the contribution of the voltage control function for the VI-GFL was apparent
in the eigenoscillation among the synchronous generators. Figure 11 shows the frequency
of the synchronous generators. Moreover, the oscillation between S1 and S2 for case #3-
GFL-80 was larger than that in #1-80, but the activation of the voltage control function
reduced the oscillation to the same level as in #3-GFM-80, as shown in Figure 11c,d. Thus,
the synchronizing force acting between the generators was maintained by suppressing the
voltage drop, because it depended on the voltage. Therefore, the voltage control function
for VI-GFL was important for maintaining the frequency stability.
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Figure 11. Frequency of the synchronous generators (IBR penetration rate was 80%) (a) #1-80, (b) #3-GFL-80, (c) #3-GFL-V-80,
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5.3. Comparison among All Penetration Levels

This section presents the results of all the cases briefly using an evaluation index
of the frequency stability and discusses its transition by increasing the IBR penetration
level. The frequency stability is evaluated by the index “Nadir,” which is the frequency
nadir of the COI frequency, as in Equation (7), and “RoCoF,” which is the maximum
change rate of the COI frequency that emerges until the COI frequency reaches Nadir, as in
Equations (8) and (9).

Nadir = min
t

fCOI(t) (7)

RoCoF = max
i=1,2,··· ,K

| fCOI(t0 + i Ts)− fCOI(t0 + (i− 1)Ts)|
Ts

(8)
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K = max
{

n ∈ Z
∣∣∣∣ n ≤ tnadir − t0

Ts

}
(9)

where t0 is the time of disturbance occurrence, tnadir is the time when the frequency
reaches Nadir, and Ts is the length of the time window. The COI frequency is used for
computing the evaluation index to evaluate the average behavior of the system. Moreover,
the time window for the computation of RoCoF is a necessary concept according to several
studies [38,39]. As shown in Figure 10a, the frequency reaches Nadir within 500 ms under
a large IBR penetration. Therefore, the time window Ts was set to 100 ms in this evaluation.

Figure 12 shows the relationship between Nadir and RoCoF for all cases. In Step 1,
Nadir decreased and RoCoF increased as the capacity of S3 increased, owing to the small
inertia constant of S3 compared to those of S1 and S2, which were previously mentioned
in Section 5.2. In Step 2, Nadir decreased and RoCoF increased, because the IBR did not
recover the frequency stability. The results for #2-60 and #2-80 are not shown in Figure 12,
because the frequency is not stabilized in those cases. Finally, in Step 3, Nadir increased
as the IBR penetration rate increased, despite the implementation of the VI function. The
VI-GFM also improved RoCoF drastically from Step 1. This came from the fast responsivity
of the governor function of VI-GFM. As shown in Figures 9 and 10, the response of
the governor control of the VI-GFM was much faster than the synchronous generator,
because the governor of the VI-GFM had no delay and a deadband in the controller, as
explained in Section 3, and it was considered that the fast responsivity helped suppress
the deacceleration of the synchronous generators. The contribution of the voltage control
function was only at most 6.2% at the 80% IBR penetration rate. However, compared with
the results in Step 1, RoCoF was not worse. This indicated that the VI-GFL can maintain
RoCoF at the same level as the synchronous generator-dominated system.
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6. Discussion and Conclusions

There are several types of methodologies in implementing the VI function in IBRs.
The performance of these IBRs with VI controls must be clarified to develop a stable
future power grid that is highly penetrated by IBRs. This study analyzed the frequency
regulation capability of the VI control implemented on both the GFL-type and GFM-type.
In particular, as a novelty of this paper, the analysis focused on the contribution of the
voltage control function available for the GFL-type control to the performance of the VI
control. The simulation study clarified that the voltage control function can reduce the
voltage fluctuation after faults, resulting in an improved active power response of the VI-
GFL. Moreover, the eigenoscillation among the synchronous generators can be suppressed
by the voltage control function. As for the stability of the system frequency, the VI-GFL
performed well in improving the Nadir at the same level as the VI-GFM but could not
improve the RoCoF as much as the VI-GFM. However, the RoCoF was slightly better than
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that in the synchronous generator-dominated system, which indicates the possibility that
VI-GFL can maintain a frequency stability without VI-GFM.

The improvement of the VI-GFL performance on stabilizing the power system and im-
proving the frequency stability discussed in this study is crucial in real-world applications,
because the conventional IBR has a GFL-type controller, and there is a lower barrier for the
adoption of VI-GFL, compared with VI-GFM. Therefore, VI-GFL is expected to be applied
to IBRs in the short- to mid-term future owing to high expectations for the early realization
of the large penetration of renewable energy resources.

However, there are still problems to be solved in order to broaden the adoption
of VI-GFL. In this study, the IBR was modeled as an integrated one composed of so
many units, and high-voltage interconnection was assumed. Meanwhile, in real-world
applications, a large number of small-scale IBRs are connected in various voltage classes.
In those situations, the performances of individual IBR are expected to be different, and
interferences also occur. To analyze the performance of the IBRs with VI functioning at a
high accuracy, the influence of that should be considered. This will be one of the important
future works. In addition, the effectiveness of the VI controls for more critical disturbances
like short-circuit faults needs to be evaluated to clarify the differences between VI-GFL
and VI-GFM.
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