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Abstract: Due to increasing demand for clean and green energy, a need exists for fuels with low
emissions, such as synthetic gas (syngas), which exhibits excellent combustion properties and has
demonstrated promise in low-emission energy production, especially at microscales. However,
due to complicated flame properties in microscale systems, it is of utmost importance to describe
syngas combustion and comprehend its properties with respect to its boundary and inlet conditions,
and its geometric characteristics. The present work studied premixed syngas combustion in a
two-dimensional channel, with a length of 20 mm and a half-width of 1 mm, using computational
approaches. Specifically, a fixed temperature gradient was imposed at the upper wall, from 300 K at
the inlet to 1500 K at the outlet, to preheat the mixture, accounting for the conjugate heat transfer
through the walls. The detailed chemistry of the ignition process was imitated using the San Diego
mechanism involving 46 species and 235 reactions. For the given boundary conditions, stoichiometric
premixed syngas containing various compositions of carbon monoxide, methane, and hydrogen,
over a range of inlet velocities, was simulated, and various combustion phenomena, such as ignition,
flame stabilization, and flames with repeated extinction and ignition (FREI), were analyzed using
different metrics. The flame stability and the ignition time were found to correlate with the inlet
velocity for a given syngas mixture composition. Similarly, for a given inlet velocity, the correlation
of the flame properties with respect to the syngas composition was further scrutinized.

Keywords: micro-combustion; syngas; repetitive extinction and ignition (FREI); numerical simula-
tions; flame instabilities

1. Introduction

Due to expanding interest in and development of cutting-edge, highly-effective minia-
turized and portable power generation devices, such as unmanned aerial vehicles (UAVs),
microsatellite thrusters, miniature reactors, and sensors, the demand exists for more ad-
vanced technologies with reduced weight and high durability. Further, the combination
of heat and power microsystems and thermo-photovoltaic applications, in which micro-
combustion systems play a significant role, is advancing [1,2]. Although new energy
resources such as batteries are emerging rapidly, they still have considerably lower energy
densities compared to combustion-based sources [3]. In particular, the density of the energy
stored in a typical hydrocarbon fuel is orders of magnitude higher than that in a typical
lithium-ion battery [4]. Therefore, combustion-based power generation cannot be phased
out immediately, especially in aviation and aerospace applications, and other devices such
as micro satellites, for which weight is a critical and deciding factor. Thus, because combus-
tion has been and remains the most reliable energy source, due to the high energy density
of fossil fuels [5,6], and due to the increasing need for clean, green, and sustainable (CGS)
energy, a critical need exists for an efficient method to sustain such micro-combustion.

Energies 2021, 14, 4190. https://doi.org/10.3390/en14144190 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2118-3232
https://orcid.org/0000-0001-7585-2468
https://doi.org/10.3390/en14144190
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14144190
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14144190?type=check_update&version=1


Energies 2021, 14, 4190 2 of 19

Regarding CGS energy and its compatibility with other power generation systems
based on combustion, numerous studies have been conducted on the application of syn-
thetic gas (syngas), and have proven that syngas is potentially more advantageous than
conventional fuels [7], with advantages ranging from cheaper production to lower emis-
sions [8]. Syngas is mainly produced through gasification of heavy hydrocarbons (CxHy),
biomass, or coal-based feedstocks, with carbon dioxide (CO2) eliminated from the envi-
ronment. The composition of syngas also varies depending on the raw material and the
production process [9–12]. For instance, it exhibits high adiabatic flame temperatures in the
presence of hydrogen (H2) and carbon monoxide (CO) [13]. Furthermore, the combination
of H2 and CO provides a lower flammability limit than methane (CH4) and a higher upper
limit than other hydrocarbons, having a wider flammability range than conventional fuels
such as oil or natural gas. Thus, the presence of H2 and CO in syngas exhibits flame-
retardant characteristics, whereas the presence of inert gases such as nitrogen (N2) and
CO2 reduces the flammability limits of syngas.

Regarding the unstretched laminar burning velocity, SL, using a detailed chemical
kinetics mechanism, Pio et al. [14] studied the effect of syngas composition on reactivity,
adiabatic flame temperature, Ta, energy, and pollutant production rate. Comparing their
work with the data from the literature, the authors of Ref. [14] found that the volumetric
increment of CO2 and CO reduced SL, in addition to which the kinetic effect of CO2 led the
maximum values of SL and Ta to shift towards the stoichiometric compositions. Syngas
explosion properties in closed vessels and the impacts of different operating conditions,
such as the equivalence ratio and syngas composition, on the flame characteristics have
also been the subject of many studies [15–17]. The impact of H2-addition to CH4 on the
properties of syngas combustion was studied by Mardani et al. [18]. It was shown that
H2-enrichment led to higher volumes of the hot regions and faster upstream movement, in
addition to an increase in the distance between the locus of the maximum temperature and
that of the stoichiometric mixture fraction, so that the maximum temperature exceeded the
adiabatic flame temperature. Zhang et al. [19] studied the effect of fuel variability for high
hydrogen-containing syngas and demonstrated a good performance of the combustion
process for certain fractions of H2 and CO. Further, the effects of CO2 and N2 at various
equivalence ratios were compared by Dam et al. [20]. Similarly, the effect of varying syngas
composition (based on different production methods) at different pressures was studied by
Monteiro et al. [21]. Although all the studies listed above showed important contributions
of different fuel components to the combustion properties, the systems of interest were
very large compared to micro-combustors. Wei et al. [22] identified the operating cost as
the major issue for syngas production, which was then suggested to have significantly
reduced unit costs for higher production when industrialized with better manufacturing
and optimization techniques. Research in this area is still in its rudimentary phases as
burning at microscales and macroscales shows different behaviors [23–25]. Therefore,
further research is critically needed to study syngas combustion at microscales.

In a microscale system, the surface area to the volume ratio is higher than that at larger
scales, which promotes heat losses from the system [25–28], thereby reducing the efficiency
of a combustor. Further, a smaller size of the system leads to a reduced characteristic
length scale of the flow and, therefore, a lower Reynolds number. Consequently, the flow is
laminar. Although experimental analysis of combustion at both conventional scales and
microscales is essential to validate the computational or analytical models and results,
numerical simulations allow researchers to minimize the investments in experimental
trials; in particular, preliminary results from numerical simulations can help researchers be
more objective with their experimental setup and analysis. In microscale and mesoscale
combustors, the stabilizing and destabilizing effects of the flame stretch, due to the wall
heat losses, further complicate the analysis.

Various studies have been conducted in the past to sustain the microscale combustion
process by incorporating a bluff body and a cavity into a micro-combustor [29], and some
researchers focused on the impact of the adiabatic walls on the flame stability in micro-
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combustors [30]. In particular, Pizza et al. [31] conducted extensive numerical simulations
to study the characteristics of H2-air combustion in a two-dimensional (2D) channel,
employing various channel heights and inlet velocities of a reactant. Further studies have
been conducted for other fuels, such as methane (CH4) [26,32,33], propane (C3H8) [34–36],
and syngas [24,37,38]. The numerical work of Kousheshi et al. [39] also analyzed the effect
of syngas composition on the engine exhaust, with the reduction of the ignition delay
time, sharper heat release rate, more NOx, and less soot, CO, and unburned hydrocarbon
production obtained for an H2-rich mixture. These computational findings on the flame
instabilities have also been confirmed experimentally [40]. Brambilla et al. [24] studied
lean-premixed, syngas-air combustion in a microchannel of 7 mm height, by varying the
equivalence ratios in the range 0.35 ≤ φ ≤ 0.42, the volumetric CO:H2 ratio from 1:1
to 20:1, and the wall temperatures from 550 to 1320 K. As a result, the steady V-shaped
and asymmetric flames, with the stationary and oscillatory modes, were observed in this
work. Further, the stable flames, in addition to the flames with repetitive extinction and
ignition (FREI), were shown for CH4-air burning in a microchannel of 2 mm diameter by
Maruta et al. [41]. This experimental work investigated how the flame behavior depends
on the equivalence ratio, identifying the stable flames for φ < 1.3, and the FREI were
observed for 1.3 < φ < 1.5. The flat and stationary flames, with the cyclic oscillatory and
the FREI behavior, were also observed for CH4-air and C3H8-air combustion in another
study by Maruta et al. [23], with a fixed temperature gradient maintained at the channel
wall. The phenomenon of repetitive extinction/ignition has been also observed in several
other experimental studies for various fuels such as CH4 [42,43] and ethane (C2H6) [44].

Although syngas combustion at microscales has been studied previously, compre-
hensive studies accounting for detailed chemistry are necessary at these scales to further
scrutinize the combustion characteristics, and the impacts of the mixture composition and
the flow rate on various properties of syngas combustion at such small scales.

The present work is a step in this direction. Specifically, stoichiometric premixed
syngas combustion in a microscale 2D channel was simulated by means of a detailed
San Diego mechanism [45], aiming to scrutinize the flame behavior for various mixture
compositions and inlet velocities. The remainder of the manuscript is organized as follows:
the methodology is explained in Section 2; various combustion phenomena, such as
extinction and ignition, stabilization, and instabilities, are observed and scrutinized in
Section 3; and the conclusions are summarized in Section 4.

2. Methodology

In the following, the governing equations, operating conditions, and metrics guiding
the analyses and conclusions are elucidated.

2.1. Governing Equations

The governing equations are the general balance equations for mass, momentum,
species, and energy, which read:

∂ρ

∂t
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respectively. Here ρ is the density of the system, Cp is the specific heat at constant pressure,

p is the static pressure,
=
τ is the stress tensor, T is the temperature,
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→
F are the
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gravitational and external body forces, respectively; and Ri is the net rate of production
for the ith species in the chemical reactions. The local mass fraction of each species Yi
is predicted by solving the convection-diffusion equation for the ith species, and Vi, hi
and Ωi are, respectively, the diffusion velocity, the specific enthalpy, and the net rate

of production of the ith species, i = 1 . . . N, with the total number of species N.
→
Ji in

Equation (3) represents the diffusion flux of the ith species due to the gradients of the
concentration and temperature. Fick’s law is employed to approximate mass diffusion due
to the concentration gradient:

→
Ji = −ρDi,m∇Yi − DT,i

∇T
T

. (5)

Here, Di,m is the mass diffusion coefficient of the ith species in the mixture, and DT,i
is the thermal diffusion (Soret) coefficient. The simulations were performed using the
commercial CFD package Ansys FLUENT (version 18.2) [46], employing the finite-volume
discretization method. The following model options were chosen in the Ansys FLUENT
simulation setup: pressure-based coupling, absolute velocity formulation, laminar viscosity,
and volumetric species transport model. In addition, the semi-implicit method for pressure-
linked equations (SIMPLE) was used as a numerical scheme to solve the Navier–Stokes
equations. The methods and models employed in this work are widely used and accepted
in the literature.

2.2. Operating Conditions

The computational domain is a 2D channel of length 20 mm and half-width 1 mm,
as schematically shown in Figure 1. It is noted that 2D simulations were preferred in
this work because (i) with the large number of the cases simulated here, it would have
been very challenging (in terms of time and computational resources) to use a 3D domain,
and (ii) although considering 3D impacts could possibly provide further detail of the
combustion characteristics, 2D simulations provide sufficient insights into the fundamental
processes occurring in narrow channels [31–33]. Both extremes of the channel were open,
and the pressure at the inlet and outlet was atmospheric. To save the computational cost
twice, the upper half of the channel was imitated by imposing the axisymmetric boundary
conditions at the lower wall. The upper wall was imposed with a temperature gradient
such that the wall temperature grows linearly, from 300 K at the inlet to 1500 K at the outlet,
to account for the conjugate heat transfer at the wall. The temperature gradient of 60 K/mm
was selected to ensure relatively high exit temperature (1500 K), where auto ignition of
the air/fuel mixtures downstream of the channel can be guaranteed. The inlet mixture
flowed with a uniform velocity profile, with a constant temperature and no-slip boundary
conditions at the wall. A uniform square mesh of cell size 0.05 mm and a time step of 10 µs
were used in all simulations. It is important for the grid resolution to sufficiently resolve
the flame thickness. Although the flame thickness depends on the operating conditions,
including fuel composition, it remains in the same order of magnitude (≈1 mm) for the
different cases studied here. Correspondingly, the selected grid resolution ensures that the
flames are resolved, with around 20 cells inside the thickness of the flame front.
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Stoichiometric premixed combustion of syngas comprised of CO, CH4, and H2 was
considered, with three various mixture compositions, A, B and C, as listed in Table 1.
Various inlet flow velocities were employed, from 0.1 to 3.0 m/s. To calculate the mass
fractions of the species at the inlet, the following global mechanism of syngas combustion
was used:

xCH4 + yCO + zH2 + a(O2 + 3.76N2)→ bCO2 + cH2O + dN2. (6)

Table 1. The syngas mixture compositions studied in this work.

xCH4+yCO+zH2+a (O2+3.76N2)→Products

Fuel Mixture x(%) y(%) z(%)

A 30 5 65

B 70 5 25

C 60 10 30

The indexes x, y, and z in Equation (6) represent the fuel composition, and the coeffi-
cients a, b, c, and d are defined as:

a =
4x + y + z

2
, (7)

b = x + y, (8)

c = 2x + z, (9)

d = 3.76
(

4x + y + z
2

)
. (10)

The chemical kinetics obeys the San Diego mechanism with 46 species and 235 reac-
tions [45].

2.3. Resolution Test

To verify the accuracy of the simulations and to ensure that the results do not depend
on the grid size or time steps, two different resolution tests, for the grid and time resolutions,
respectively, were performed and analyzed as described below.

Grid Resolution. The numerical simulation tool that was used in this work, Ansys
FLUENT, is based on a finite-volume discretization, where the small volumes, also regarded
here as mesh elements, play a very important role in accurately mimicking the physical
phenomena and producing the effective results. The optimum mesh size needs to be
chosen to obtain accurate results by nevertheless utilizing as minimal resources as possible.
Because 2D simulations were of interest in this work, the simulation domain was discretized
with an evenly sized square grid. Numerical simulations were performed over three
different grid sizes: 0.02 mm (fine), 0.05 mm (moderately fine), and 0.1 mm (coarse), with
all other conditions kept identical. To evaluate the simulation performance over these three
grid sizes, the time evolution of the total heat release rate (HRRT) is compared for all cases
(see Figure 2). It is observed that although HRRT experiences some variations depending
on the mesh size, the ignition time (the time when HRRT peaks), determining most of the
combustion parameters, is practically the same for all three meshes. However, the time
it took the software to complete the simulations almost doubled and the memory usage
by the simulation almost tripled as the mesh size was refined from 0.1 to 0.05 mm, and
from 0.05 to 0.02 mm. As expected, the results of the simulations with the finest mesh size
(0.02 mm) were smoother compared to those with other two mesh sizes. Considering the
number of simulations needed for this study, to more efficiently use time and memory
resources, the moderately fine mesh size (0.05 mm) was chosen for all the simulations.
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Figure 2. The grid resolution test for mixture A with the inlet velocity of 1.0 m/s.

Time Resolution. Due to the transient nature of the simulations in this work and, in
particular, the significant variation of most properties with time, it was important to ensure
that the results were not affected by the selected time step. Therefore, a baseline case
was first simulated with various time steps (1, 10, and 50 µs), while all other conditions
were kept identical. Similar to the grid resolution test, the time evolution of HRRT was
compared for all time steps; see Figure 3. The results suggest that the time step of 50 µs
does not allow predicting the ignition time as accurately as the cases of smaller time steps
(10 and 1 µs), whereas the difference is minor when comparing the results associated
with the time steps of 10 and 1 µs. Again, to be most efficient with the time and memory
resources, and to avoid sacrificing accuracy, the time step of 10 µs was selected for all
the simulations.
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It is noted that there are no experimental results in the literature for the operat-
ing conditions, used in this paper, against which the results of this work could be com-
pared. However, similar behavior (such as ignition process or FREI) observed in the
literature [20,23,25,30,42–44] for different fuels and operating conditions, in addition to
the resolution tests conducted here, confirm that the simulation results of this work are
physically possible and valid. Therefore, the findings of this work could inspire future
experiments, while being used as a guidance to design and perform such experiments.

2.4. Metrics

To scrutinize various combustion properties from the raw simulation data, the follow-
ing metrics are introduced:

Heat release rate (HRR): This is a local property in the system, and is calculated by
obtaining the summation of the net heat release rates for all the reactions involved in
each computation cell. Due to the implementation of detailed chemistry in this work,
comprehensive information about all species and reactions is available. Because the heat
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release rate integrates the impact of all species and reactions into one parameter, and it is
known to peak at the flame front, this was chosen as the most precise criterion to demarcate
the flame front and understand its behavior.

Total heat release rate (HRRT): This is the total amount of heat released over the domain.
Ignition time and extinction time: The quantity HRRT explained above varies with time,

and thus the ignition time is defined as the time when HRRT reaches the maximum value
before the flame stabilizes. Similarly, the time at which HRRT becomes minimal (near-zero)
is defined as the extinction time.

Ignition location and length: These quantities are defined based on the temperature
distribution in the simulation domain at the time of ignition.

Stabilization location and flame span: These quantities are defined using the axial tem-
perature distribution after the flame stabilizes.

FREI and FREI period: For lower inlet velocities, flame extinction is followed by igni-
tion. This kind of flame is known as the FREI. For these cases, the time required for a flame
to gain two consecutive ignition incidents is defined as the FREI period (τFREI).

How these metrics are obtained and what they represent physically are elaborated
in Section 3.

3. Results and Discussion

In this section, various combustion phenomena, such as ignition, stable/unstable
flame behaviors, and the impacts of various operating conditions (such as the flow rate
and the fuel composition) on such characteristics, are analyzed.

3.1. Ignition Process

The ignition process, which showed similar behavior for all the simulation runs,
was analyzed as follows: when a syngas/air mixture flows in the channel with an inlet
temperature of 300 K, it is heated up due to the positive temperature gradient imposed
at the wall. Such a preheating facilitates the chain-branching reactions, which trigger
ignition when the temperature is sufficiently high and produce a flame kernel somewhere
downstream the channel. In this work, the ignition process is characterized by the transient
total heat release rate in the domain, HRRT , which is calculated by integrating the local
heat of reaction in the computational domain at each time step,

HRRT = ∑m HRR = ∑m ∑n

.
hr, (11)

where m is the number of cells in the domain and n is the number of species. Because
HRRT varies with time, the ignition time is defined as the time at which HRRT peaks,

tig = t(HRRT)max
. (12)

Similarly, the extinction time is defined as the time at which HRRT falls to near-zero,

tex = t(HRRT=0). (13)

This is further explained by Figure 4, associated with the inlet velocity of 1 m/s
and the mixture composition A, where the time evolution of HRRT is used to determine
the ignition time. Figure 5 complements Figure 4 for further explanation of the ignition
process. Here, the temperature contour plots for the selected time steps in Figure 4 are
provided. Specifically, the chain branching reaction starts at time (a) and goes through time
(b), indicating the beginning of the ignition process. At time (b), HRRT of this system is
maximal, and a flame front is formed, separating the unburnt and burnt mixtures. State (b)
determines the ignition time (tig). From time (b) to time (c), the flame starts propagating
upstream until it either becomes stable or is extinguished, depending on the boundary
conditions, which are discussed in the next sections.
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Figure 5. The temperature distribution at the selected consecutive time steps (a)–(c) for the ignition
process for mixture A with the inlet velocity of 1.0 m/s. The length is measured in meters.

In addition to the ignition time, the ignition location is another metric that was defined
in this work to characterize the ignition process. The axial temperature at the ignition
time is analyzed in Figure 6a, and the temperature contour during the time of ignition is
presented in Figure 6b. The spans over which the positive temperature gradient peaks, to
where the negative temperature gradient peaks, are defined as the ignition locations. That
is, x(ig−st) and x(ig−e) indicate the points where the temperature, respectively, jumps and
drops, abruptly.

xig−st =
(

x( dT
dx )max

)
tig

, (14)

xig−e =
(

x( dT
dx )min

)
tig

. (15)

Further, the difference between these two points defines the ignition length, ∆xig, as

∆xig = xig−st − xig−e. (16)

3.2. Flame Behaviour

After ignition, the flame front propagates downstream. Under the operating conditions
employed in this work, and as the wall temperature decreases towards the upstream, the
V-shaped flame may become stable at a certain location, or it may lose its stability and
go through repeated extinctions and ignitions. These types of behaviors are analyzed
in detail for selected operating conditions in Sections 3.2.1 and 3.2.2. The impact of all
operating conditions used in this work on the ignition process and the flame behavior are
subsequently elaborated in Section 3.3.
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Figure 6. The temperature distribution at the time of ignition for mixture A with the inlet flow
velocity of 1.0 m/s. The length is measured in meters. (a) the temperature profile along the x-axis,
(b) the temperature contour in the simulation domain at the selected time step.

3.2.1. Stable Flames

In the stable modes, the flame propagates further upstream and becomes stable at a
certain location. This behavior is expected in cases with higher inlet velocities (discussed
in Section 3.3), in which flame propagation is balanced with the inlet velocity, resulting in a
stable flame that is not too close to the inlet, where the wall temperature is sufficiently high
to sustain the flame. To scrutinize this process, similar to Figures 4–6, the case with the
inlet velocity of 1 m/s and the fuel mixture composition A is selected. As seen in Figure 4,
HRRT decreases after ignition until it becomes constant, indicating that the flame front has
become stable. This is also confirmed by the temperature contour plots of Figure 5, where
flame propagation eventually stops.

Similar to the ignition process, the properties of a stable flame front are characterized
by the stabilization location. According to Figure 7, the location at which the stable flame
lies is known as the stabilization location, and is obtained from the axial temperature
variation in the domain for the stabilized flame. Here, the starting point of the stabilized
location, x(sz−st), is defined as the location at which the axial temperature grows abruptly.

xsz−st =
(

x( dT
dx )max

)
tst

. (17)

Similarly, the ending point of the stabilized flame, x(sz−e), is the locus with the least
temperature gradient,

xsz−e =
(

x( dT
dx )min

)
tst

. (18)

It is recalled that both these points are obtained at the time tst, when the solution is
converged and the flame front is stabilized. The difference between these points defines
the flame length after the flame stabilization,

∆xsz = xsz−st − xsz−e. (19)

3.2.2. Flames with Repeated Extinctions and Ignitions (FREI)

Under some operating conditions, the flame does not stabilize after the ignition, i.e.,
as it propagates further upstream, towards the inlet, the temperature is not high enough for
the reactions to be sustained, so the flame is extinguished. However, with the continuous
supply at the inlet, the fuel-air mixture subsequently reaches the high-temperature zone
and the flame is ignited again. Such a repetitive scenario has been observed, both compu-
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tationally and experimentally, and is referred to as flames with repetitive extinctions and
ignitions (FREIs) in the literature [20,25,30]. To further understand this process, one of the
operating conditions resulting in such a behavior is chosen (mixture A; the inlet velocity of
0.2 m/s), with the corresponding metrics elaborated.
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Figure 7. The temperature distribution for the stabilized flame for mixture A with the inlet flow
velocity of 1.0 m/s. The length is measured in meters. (a) the temperature distribution along the
x-axis, (b) the temperature contour in the simulation domain at the selected time step.

Figure 8 illustrates the variations of HRRT , accompanied by the temperature contours
of Figure 9, which correspond to the selected time steps of Figure 8. States (a)–(c) describe
the ignition process discussed earlier in Section 3.1. Once ignition is completed, the flame
starts propagating upstream, from state (c) to state (d). In contrast to the stable mode, the
flame front does not stabilize here and continues propagating further towards the inlet,
where the wall temperature is not high enough to sustain a flame. Consequently, HRRT
drops to zero and extinction occurs in state (e). With the continuous premixed fuel-air
flow at the inlet, the premixture ignites again as observed between states (e) and (f). The
flame is then extinguished again, from state (f) to state (h). This repeats periodically. That
is, at lower inlet velocities, the flame propagation speed will not be balanced by the inlet
velocity, resulting in a flame propagating farther upstream. Because the flame is closer to
the inlet, where the wall temperature is not high enough, the heat transfer rates are not
balanced, the flame extinguishes, and the FREI phenomenon happens.
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Figure 9. The temperature contours at the selected time steps for a flame with FREI mode for
mixture A with the inlet velocity of 0.2 m/s. The length is measured in meters. The snapshots (a)–(h)
correspond to the respective markers in Figure 8 for the selected time steps.

3.3. Impacts of Operating Conditions

The aim of the previous Sections 3.1 and 3.2 was to scrutinize the ignition process,
in addition to the stable and FREI modes of syngas combustion after ignition, with the
corresponding metrics defined and elaborated for a number of the cases selected from the
simulation runs performed in this work. A comprehensive and fundamental understanding
of how these syngas combustion properties could be altered due to slight variations
in the operating conditions will help researchers and industries make more informed
decisions before spending time and money on prototypes and tests. In this subsection,
these characteristics are analyzed over a range of operating conditions by varying the flow
rate and the syngas fuel composition.

Findings from this subsection are essentially important in understanding how chang-
ing the fuel composition or the fuel/air mixture flow rate could impact the important
combustion properties, such as the ignition time/delay, the ignition location, the flame
location, and the flame stability.

3.3.1. Impact of the Flow Rate (Inlet Velocity)

Various inlet velocities, in the range from 0.1 m/s to 3.0 m/s, were used to design a
total of eight (8) different cases and characterize the impact of the flow rate on ignition and
the flame behavior. The ignition properties, such as the ignition time, the ignition locations,
and the ignition length, defined in Section 3.1, were computed for each of these eight cases
and are listed in Table 2. It is shown that the ignition time is smaller for the higher inlet
velocities, which is attributed to lower residence times for higher velocities (the fuel-air
mixture reaches the temperatures, required for autoignition, faster). It should be noted that
the ignition times/delays presented in this work are of the order of 10 ms (from 5 to 80 ms),
whereas the selected time step in the simulations is 10 µs, i.e., three orders of magnitude
smaller than the ignition times, which makes it sufficiently fine to resolve the ignition time
in all cases. In addition, although, to the best of our knowledge, there are no experimental
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studies employing the same operating conditions as this work, the ignition times in this
work are qualitatively comparable (being of the same order of magnitude) with the syngas
ignition delays existing in the literature [47].

Table 2. Ignition metrics against inlet velocity for fuel mixture A.

Inlet Velocity
(m/s)

Ignition Time
(ms) Ignition Location (mm) Ignition Length

(mm)

tig xig−st xig−e ∆xig

0.10 77.14 6.35 9.70 3.35

0.15 52.49 6.45 9.80 3.35

0.20 40.56 7.95 11.60 3.65

0.50 18.96 9.95 13.60 3.65

0.75 13.73 12.00 16.00 4.00

1.00 11.17 12.00 16.80 4.80

1.50 8.32 13.60 19.30 5.70

3.00 5.25 16.00 20.00 4.00

The values of the ignition locations xig−st and xig−e indicate that, at higher inlet
velocities, the ignition kernel appears further downstream. Moreover, it is shown that the
ignition length also correlates with the inlet velocity such that the higher the velocity, the
larger the ignition length. Consequently, the mixture requires higher temperatures and
reaction areas to ignite at higher inlet velocities.

After completion of the ignition process, the flame behavior and stability were also
found to depend on the inlet velocity. The results are presented in Figure 10, which shows a
stable flame mode for the intermediate and higher inlet velocities (exceeding 0.2 m/s). For
such stable flames, similar to the ignition time, the time required for the flame to stabilize
also significantly decreases with the inlet flow velocity. In addition to the stabilization
time, the stabilization location and the flame span (xsz−st, xsz−e, ∆xsz) were also obtained
and compared in Table 3. It is shown that for higher inlet velocities, the stable flame (i) is
eventually positioned further away from the inlet, and (ii) has a larger span.
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in a stable mode.

As mentioned previously, in some cases, the flame may not end up in a stable location
after ignition is completed. Here, with smaller inlet velocities (≤0.2 m/s), the flame
experiences a FREI mode. These cases with the FREI mode are further analyzed by
comparing their FREI time periods, τFREI , in Table 4. It is shown that τFREI remains the
same for each given inlet velocity, but diminishes with the reduction in the inlet velocity.
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Table 3. The stabilization location for the stable cases for fuel mixture A.

Inlet Velocity (m/s)
Flame Location (mm) Flame Span (mm)

xsz−st xsz−e ∆xsz

0.50 0.10 1.85 1.75

0.75 0.10 2.35 2.25

1.00 4.00 6.25 2.25

1.50 7.05 9.70 2.65

3.00 10.70 15.35 4.65

Table 4. The FREI period for the corresponding inlet velocities for fuel mixture A.

Inlet Velocity (m/s) 0.10 0.15 0.20

τFRIE (ms) 82.27 55.93 42.00

3.3.2. Impact of Fuel Composition

In this section, the impact of the syngas mixture composition on the ignition and the
flame behavior is analyzed. In particular, three various syngas mixtures of Table 1 are
studied over various inlet flow velocities, ranging from 0.2 to 1.0 m/s. Therefore, a total of
twelve cases are studied.

Figure 11 presents the time variations of HRRT for fuel mixtures A, B, and C at various
inlet flow velocities, in which both the stable flames and the FREI are observed for the lower
inlet velocities for all three mixtures under consideration. As the inlet velocity exceeds
0.2 m/s, the corresponding flame stabilizes. However, the combustion characteristics are
found to depend on both the fuel composition and the inlet velocity.
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In general, the ignition time increases as the inlet velocity decreases; see Table 5.
Although the ignition time does not vary much between various fuel mixtures, the ignition
length is found to be very sensitive to the fuel composition. For example, for any given
inlet velocity, the ignition length, ∆xig, is larger for the fuel mixture A compared to that for
mixture C, and such a correlation is not observed for mixture B. Similarly, for the ignition
location, ignition occurred further from the inlet for the higher inlet velocities in each case,
i.e., it occurs at the locus, where the temperature of the unburnt mixture is higher due to
the imposed temperature gradient at the wall. The ignition location is further from the
inlet for mixtures B and C compared to mixture A.

Table 5. The ignition time and location for all cases.

Velocity
(m/s) tig (ms) xig−st (mm) xig−e (mm) ∆xig (mm)

Mixture A

0.2 40.56 7.95 11.60 3.65

0.5 18.96 9.95 13.60 3.65

0.75 13.73 12.00 16.00 4.00

1.0 11.17 12.00 16.80 4.80

Mixture B

0.2 40.19 8.75 12.20 3.45

0.5 18.66 11.35 15.50 4.15

0.75 13.80 12.15 15.80 3.65

1.0 11.31 12.75 16.80 4.05

Mixture C

0.2 41.20 9.15 12.15 3.00

0.5 19.15 10.35 13.80 3.45

0.75 14.15 12.80 16.55 3.75

1.0 11.65 13.30 17.70 4.40

Table 6 summarizes the combustion characteristics in the cases when the stable flame
has been observed. Here, the stable flame locations for these cases are compared in terms of
their x(sz−st), which is found to be larger for mixture C compared to the other two mixtures
for any given inlet velocity, whereas it is larger for mixture B compared to A. However, the
difference between mixtures A and B exceeds that between mixtures B and C. The same
tendency is also seen for x(sz−e). Further, for mixture A, in addition to the flame being
stabilized closer to the inlet, it is also observed to have a shorter flame span than the other
two mixtures for any given inlet velocity. The fact that these combustion metrics of mixture
A differ substantially from those of mixtures B and C, while the difference between the
combustion characteristics of mixtures B and C is less profound, is attributed to the higher
percentage of H2 in mixture A, which plays a major role in controlling the stable flame
location and length.
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Table 6. The location of the stabilized flame.

Velocity (m/s) xsz−st (mm) xsz−e (mm) ∆xsz(mm)

Mixture A

0.5 0.10 1.85 1.75

0.75 0.10 2.35 2.25

1.0 4.00 6.25 2.25

Mixture B

0.5 0.10 2.20 2.10

0.75 7.15 9.40 2.25

1.0 9.15 11.60 2.45

Mixture C

0.5 0.10 2.20 2.10

0.75 7.50 9.65 2.15

1.0 9.50 12.00 2.50

To further study the impact of syngas composition on the flame behavior, the quantities
HRRT are compared for all three mixtures at two inlet velocities. First, we chose the inlet
velocity of 1.0 m/s, where all three mixtures resulted in stable flames, see Figure 12. Here,
mixture A (containing 65% of H2) provides the largest HRRT peak compared to the other
two mixtures, thereby showing the high energy density of H2. In addition, it took longer
for the flame to be stabilized for mixture A compared to mixtures B and C. Second, we
chose the inlet velocity of 0.2 m/s, where the FREI phenomenon was observed for all three
mixtures, see Figure 13. Specifically, the time evolution of HRRT is depicted in Figure 13
for mixtures A, B, and C, thereby representing the unstable cases, in which each ignition is
followed by the extinction, in a repetitive manner.
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These repetitive ignition times are given in Table 7 for all cases. Here, tig−x represents
the xth ignition time, and tig−y,x represents the difference between the yth and xth ignition
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times. It is observed that the consecutive ignition time remains almost the same for each
case, with a slight discrepancy that can be attributed to numerical artifacts. However, the
FREI cases for mixture A show a higher maximum heat release rate compared to those of
mixtures B and C, which can be attributed to a higher hydrogen composition in mixture A
because H2 possesses higher energy density. Similarly, it is seen that τFREI is smaller for
mixture A. Thus, the burning process of mixture A can be regarded as an oscillating flame.
However, τFREI increases for mixture B by 2.0 ms, whereas for mixture C, τFREI decreases
by 2.0 ms, which cannot be ignored. As we know, mixture C differs from the other two
mixtures in terms of the CO percentage (i.e., it has almost twice the amount of the other
two). Thus, we can suggest that this significantly higher percentage of CO in mixture C
reduces τFREI , causing the FREI incident to occur more quickly. Among the two mixtures
having the same CO percentage (A and B), mixture B has a higher percentage of CH4 and
a lower percentage of H2; thus, for mixture B, τFREI is observed to be larger by 2.0 ms. A
similar trend can be seen when comparing mixtures C and A. It is observed that although
CH4 and H2 are the main driving forces to generate the FREI behavior, a CO fraction in the
fuel mixture plays an important role in controlling the FREI frequency.

Table 7. Ignition time for the FREI cases given in Figure 13.

tig−1 (ms) tig−2 (ms) tig−3 (ms) ∆tig−2,1 (ms) ∆tig−3,2 (ms)

Mixture A 40.4 84.3 128.6 43.9 44.3

Mixture B 40.2 92.0 146.5 51.8 54.5

Mixture C 41.3 95.6 148.2 54.3 52.6

4. Conclusions

In this work, microscale combustion of syngas mixtures was studied, computationally,
with the use of detailed chemical kinetics. The key agent of conjugate wall heat loss,
which is inherent to microscale combustion, was addressed by imposing a temperature
gradient on the wall, which also preheated the fuel mixture. The flame dynamics and other
combustion characteristics at microscales were studied for various inlet flow velocities
(ranging from 0.1 to 3.0 m/s) and syngas compositions (mixture A: 30% CO, 5% CH4, and
65% H2; mixture B: 70% CO, 5% CH4, and 25% H2; and mixture C: 60% CO, 10% CH4, and
30% of H2). Two different phenomena—the stable flames and the FREI—were observed
with respect to the inlet velocities, such that for high inlet velocities ranging from 0.5 to
3.0 m/s, the flame was stable, whereas for the velocity range from 0.1 to 0.2 m/s, the flame
became unstable and the FREI was observed. The ignition time, ignition location, and
ignition length were analyzed for each case, and the stabilization characteristics, such as
the stabilized flame location for the stable flames, were scrutinized. The ignition time and
location, in addition to the stabilized flame location, where maximum domain temperatures
are expected, are significantly important factors in designing micro-combustion-related
technologies with syngas as a fuel. In particular, conjugate heat transfer/heat losses play
an important role in micro-combustion devices, in which the ratio of the surface area to
the volume is relatively higher than that of the conventional combustion devices. Further,
the FREI properties were calculated and compared for the unstable cases. Regarding the
fuel mixture composition, in the stable cases, mixture A showed more variations in terms
of the total heat release, stabilization time, flame location, and flame span compared to
those in mixtures B and C. Similarly, for the unstable cases, the time difference between the
consecutive ignitions varied for all of the cases. Mixture A, which had a higher percentage
of H2, was found to have a higher total heat release in the domain, and significantly
different characteristics compared to the other two mixtures. This corroborates the major
role and dominance of an H2 fraction in syngas combustion. Similarly, the effect of CO can
be projected in the FREI mode for mixtures B and C in terms of the FREI period (τFREI).
From a practical perspective, because syngas is generated from a variety of sources and
methodologies, and can consist of different species of a wide range of concentrations, the
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findings of this work are critically important in selecting the appropriate composition of
syngas depending on the application.

This research can be further extended in the following directions:

(a) to conduct in situ experiments for the operating conditions used in this work;
(b) to study the impact of the equivalence ratio on the flame behavior and instabilities;
(c) to consider 3D geometries and compare the results with those from 2D simulations; and
(d) to study the geometrical impacts on syngas combustion at microscales, while under-

taking both experimental and numerical analyses over different geometries.
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