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Abstract: Considering nonlinear variation of working fluid’s specific heat with its temperature,
finite-time thermodynamic theory is applied to analyze and optimize the characteristics of an irre-
versible Atkinson cycle. Through numerical calculations, performance relationships between cycle
dimensionless power density versus compression ratio and dimensionless power density versus
thermal efficiency are obtained, respectively. When the design parameters take certain specific
values, the performance differences of reversible, endoreversible and irreversible Atkinson cycles are
compared. The maximum specific volume ratio, maximum pressure ratio, and thermal efficiency
under the conditions of the maximum power output and maximum power density are compared.
Based on NSGA-II, the single-, bi-, tri-, and quadru-objective optimizations are performed when the
compression ratio is used as the optimization variable, and the cycle dimensionless power output,
thermal efficiency, dimensionless ecological function, and dimensionless power density are used as
the optimization objectives. The deviation indexes are obtained based on LINMAP, TOPSIS, and
Shannon entropy solutions under different combinations of optimization objectives. By comparing
the deviation indexes of bi-, tri- and quadru-objective optimization and the deviation indexes of
single-objective optimizations based on maximum power output, maximum thermal efficiency, max-
imum ecological function and maximum power density, it is found that the deviation indexes of
multi-objective optimization are smaller, and the solution of multi-objective optimization is desirable.
The comparison results show that when the LINMAP solution is optimized with the dimensionless
power output, thermal efficiency, and dimensionless power density as the objective functions, the
deviation index is 0.1247, and this optimization objective combination is the most ideal.

Keywords: irreversible Atkinson cycle; nonlinear variable specific heat; NSGA-II; multi-objective
optimization; finite time thermodynamics

1. Introduction

More and more thermodynamic research have focused on the optimal performance of
given thermodynamic process and the optimal configuration of a thermodynamic process
with a given target extremum, which is defined as finite-time thermodynamics (FTT) [1–4].
The applications of FTT include many aspects, and the two major aspects are optimal
configurations [5–21] and optimal performances [22–53] studies.

Many scholars have carried out a lot of research on the performance optimizations
of the internal combustion engine cycles by using FTT theory; especially see the review
article by Ge et al. [54]. For the Atkinson cycle (AC), when the working fluid’s (WF’s)
specific heats (SHs) are constants [55–62], linear [63–69], and nonlinear [70–76] variable
with its temperature, many scholars have analyzed and investigated its performance
characteristics (PC) by taking into account the different cycle design parameters with
different optimization objectives.
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When the WF’s SHs are constants, Chen et al. [55] investigated the thermal efficiency
(η) at maximum power density (Pd) criterion of a reversible AC without any losses. Rashidi
and Hajipour [56] analyzed the influences of cycle intake air temperature, maximum tem-
perature, and compression ratio on the power output (P) and η PC of a reversible AC,
and compared the optimal characteristics with those of Otto and Diesel cycles. Hou [57]
derived the P and η PC of an endoreversible AC with heat transfer loss (HTL). Refer-
ences [58,59] derived the P and η PC of an irreversible AC by considering HTL and friction
loss (FL). Zhao and Chen [60] derived the P and η PC of an irreversible AC with internal
irreversibility loss (IIL) and HTL. Ust et al. [61] further considered IIL on the basis of
reference [55], and studied the influences of IIL and cycle temperature ratio on the optimal
Pd PC of an irreversible AC. Shi et al. [62] further considered FL, HTL, and IIL on the basis
of reference [55], and studied the influence of three losses on the Pd PC of an irreversible
AC. The analysis results revealed that the engine designed by maximum Pd criterion is
smaller in size and more efficient.

When the WF’s SHs are linear variable with its temperature, Al-sarkhi et al. [63]
optimized Pd PC of a reversible AC. Patodi and Maheshwar [64] compared the optimal
performances under the maximum P, maximum Pd, and maximum effective P criterions
of a reversible AC. Ge at al. [65,66] derived the P and η PC of endoreversible [65] and
irreversible [66] ACs. Lin and Hou [67] derived the P and η PC of an irreversible AC by
taking into account the FL and HTL as the fuel energy percentage. Hajipour et al. [68]
optimized the P and η PC of an irreversible AC by taking into account the FL, HTL, and IIL,
and compared the results with those of Dual cycle and Dual-Atkinson cycle. Shi et al. [69]
investigated the Pd PC of an irreversible AC by taking into account the FL, HTL, and IIL
and compared the cycle maximum specific volume ratio, η and pressure ratio under the
maximum P and maximum Pd criterions.

When the WF’s SHs are nonlinear variable with its temperature, Ge et al. [70] de-
rived the P and η PC of an irreversible AC by taking into account the FL, HTL, and
IIL. Ebrahimi [71] investigated the P and η PC of an irreversible AC by considering
the influences of average piston speed, equivalent ratio, and cylinder wall temperature.
Zhao et al. [72] analyzed the impacts of average piston velocity on the P, η, and Pd PC of
an irreversible AC. Gonca [73] compared the optimal performances of an irreversible AC
under effective P and effective Pd criterions. Ebrahimi [74] analyzed the impact of volume
ratio of the removal process on the P and η PC of an irreversible AC. Zhao and Xu [75]
obtained the P, η, and Pd PC of an irreversible AC by taking into account the influences of
cycle parameters, geometric conditions, and operating variables, and compared the results
with those of the Otto and Miller cycles. Ahmadi et al. [76] analyzed and optimized the η,
ecological performance coefficient and ecological function (E) PC of an irreversible AC.

The research mentioned above have focused on single-objective optimization, but
different optimization criteria may generate conflicts and lead to different results. Multi-
objective optimization (MOO) has better coordination capabilities. NSGA-II is an effective
algorithm for solving MOO problems, and it is widely used in the optimization of different
cycles under different working conditions [77–95].

Ahmadi et al. [77,78] carried out MOO of solar powered engines [77] and solar disc-
Stirling engines [78] by considering the P, η, and entropy generation rate as objective
functions. Ahmadi et al. [79,80] also performed MOO of irreversible Stirling [79] and Erics-
son [80] refrigerator cycles by considering the cooling load and coefficient of performance
as optimization objectives. Ahmadi et al. [81] used Pd, η and exergy loss density as objective
functions to perform MOO of fuel cell-Braysson combined heat engine. Joker et al. [82]
used P, Pd, E density and exergy loss rate as objective functions to perform MOO of
Brayton cycle hybrid system. Ghasemkhani et al. [83] performed MOO of endoreversible
combined cycles under different heat exchangers. References [84–87] performed MOO
on the performance of thermal and economic investment cost of organic Rankine cycle.
References [88,89] performed MOO on the dimensionless P (P), η, dimensionless E (E), and
dimensionless Pd (Pd) of endoreversible [88] and irreversible [89] closed modified Brayton
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cycles. References [90,91] carried out MOO of chemical reactor by considering the entropy
generation and production rate as optimization objectives. Sadeghi et al. [92] performed
MOO of solar hydrogen production plant by taking into account exergy efficiency and
exergy cost of product as optimization objectives. References [93,94] carried out MOO on
the total pumping power and entropy generation rate in ocean thermal energy conver-
sion system [93] and surrogate models [94]. Shi et al. [64,95] optimized the AC [64] and
Diesel cycle [95] PC under the condition of constant WF’s SHs, and obtained four-objective
optimization results based on NSGA-II.

From the references mentioned above, there is no report about the Pd performance of
an irreversible AC with nonlinear variable WF’s SHs with its temperature, and MOO for
AC is also rarely presented. Based on the model established in references [62,70], this paper
further analyzes the maximum Pd PC of an irreversible AC under the condition of nonlinear
variable WF’s SHs with its temperature and compare the results with those obtained under
the condition of the maximum P. Based on NSGA-II, the single-, bi-, tri-, and quadru-
objective optimization results will be obtained when the compression ratio is used as the
optimization variable and the P, η, E, and Pd are used as the objective functions. Three
decision-making methods are selected to analyze the optimization results and the best
choices under different conditions are obtained. Compared with reference [62], a further
step made in this paper is to perform single-, bi-, tri-, and quadru-objective optimization of
different optimization objective combinations for an irreversible AC when the WF’s SHs
are nonlinear variable with its temperature.

2. Cycle Model and Performance Parameters

Figure 1 shows the T − s diagram (a) [62] and p− v diagram (b) of the irreversible
AC. An irreversible AC contains an adiabatic compression process 1→ 2 , an isometric
process 2→ 3 , an adiabatic expansion process 3→ 4 , and an isobaric process 4→ 1 . The
processes 1→ 2 s and 3→ 4 s are reversible processes without considering the IIL.
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Figure 1. (a) T s  representation of Atkinson cycle [62]. (b) p v  representation of Atkinson cy-
cle. 

Figure 1. (a) T − s representation of Atkinson cycle [62]. (b) p− v representation of Atkinson cycle.

In the early research [62], the WF’s SHs were assumed to be constants, but in the actual
cycle, accompanying with the combustion reaction, the nature and composition of WF will
change. For this reason, the variable SH model can be used to obtain more accurate results.
When the cycle-working-temperature range is 300 K− 3500 K, the nonlinear variable SH
model is defined as [85]

Cp = 7.2674× 10−10T2 + 4.2166× 10−6T1.5 − 1.23134× 10−5T + 9.1698× 10−4T0.5

+ 38.5787− 4.3848× 105T−1.5 + 8.8827× 106T−2 − 6.4148× 108T−3 (1)

According to the relationship between constant pressure SH and constant volume SH,
one has

Cv = Cp − R (2)
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Then, the constant volume SH of the cycle is

Cv = Cp − R = 7.2674× 10−10T2 + 4.2166× 10−6T1.5 − 1.23134× 10−5T + 9.1698× 10−4T0.5

+ 30.2642− 4.3848× 105T−1.5 + 8.8827× 106T−2 − 6.4148× 108T−3 (3)

where R = 8.3145J/(mol·K) is the WF’s gas constant. The heat flux rate supplied to the
AC is

U = Qin

=
.

m
∫ T3

T2
CvdT =

.
m
∫ T3

T2
(7.2674× 10−10T2 + 4.2166× 10−6T1.5 − 1.23134× 10−5T + 9.1698

×10−4T0.5 + 30.2642− 4.3848× 105T−1.5 + 8.8827× 106T−2 − 6.4148× 108T−3) dT
=

.
m[2.422× 10−10T3 + 1.6866× 10−6T2.5 − 6.1567× 10−6T2 + 6.1132× 10−4T1.5

+ 30.2642T + 8.7696× 105T−0.5 − 8.8827× 106T−1 + 3.2074× 108T−2]T3
T2

(4)

where
.

m is the molar flow rate of the WF.
The heat flux rate transferred to the environment is

Qout = −
.

m
∫ T1

T4
CpdT =

.
m
∫ T4

T1
CpdT

=
.

m
∫ T4

T1
(7.2674× 10−10T2 + 4.2166× 10−6T1.5 − 1.23134× 10−5T + 9.1698

× 10−4T0.5 + 38.5787− 4.3848× 105T−1.5 + 8.8827× 106T−2 − 6.4148× 108T−3) dT
=

.
m[2.422× 10−10T3 + 1.6866× 10−6T2.5 − 3.0783× 10−6T2 + 6.1132× 10−4T1.5

+ 38.5787T + 8.7696× 105T−0.5 − 8.8827× 106T−1 + 3.2074× 108T−2]T4
T1

(5)

For the two irreversible adiabatic processes 1→ 2 and 3→ 4 , the IIL is defined as
the irreversible compression and expansion efficiencies [62,70]

ηc = (T2s − T1)/(T2 − T1) (6)

ηe = (T4 − T3)/(T4s − T3) (7)

According to reference [70], the adiabatic process can be decomposed into numerous
infinitely small processes. It is approximately considered that each infinitely small process
has a constant adiabatic index. When the temperature of the WF changes dT and the
specific volume changes dV, one has

TVk−1 = (V + dV)k−1(T + dT) (8)

Changing Equation (8) one can obtain:

Cv ln(Ti/Tj) = −R ln(Vi/Vj) (9)

where the temperature in Cv is the logarithmic average temperature between states i and j,
and T = (Ti − Tj)/ ln(Ti/Tj).

The cycle compression ratio γ and maximum temperature ratio τ are defined as

γ = V1/V2 (10)

τ = T3/T1 (11)

Therefore, for the two adiabatic processes 1→ 2 s and 3→ 4 s of an irreversible AC
with WF’s SHs as nonlinear variable with its temperature, one has

Cv ln(T2s/T1) = R ln γ (12)

Cv ln(T4s/T3)− R ln(T1/T4s) = −R ln γ (13)

According to the reference [62], the HTL rate and the power loss due to FL are
expressed as

.
Qleak = B(T2 + T3 − 2T0) (14)



Energies 2021, 14, 4175 5 of 23

Pµ = dWµ/dt = −µ(dx/dt)2 = −µv2 = b(γ− 1)2 (15)

where b = µx2
2/(∆t12)

2, the heat transfer coefficient is expressed as B, the ambient temper-
ature is expressed as T0, the work consumed by friction loss is expressed as Wµ, the friction
coefficient is expressed as µ, the piston position at the minimum volume is expressed as x2,
and the power stroke time is expressed as ∆t12.

The P and η of the AC are, respectively

P = Qin −Qout − Pµ

=
.

m[2.422× 10−10(T3
1 + T3

3 − T3
2 − T3

4 ) + 1.6866× 10−6(T2.5
1 + T2.5

3 − T2.5
2 − T2.5

4 )− 6.1567
× 10−6(T2

1 + T2
3 − T2

2 − T2
4 ) + 6.1132× 10−4(T1.5

1 + T1.5
3 − T1.5

2 − T1.5
4 ) + 30.2642(T3 − T2)

− 38.5787(T4 − T1) + 8.7696× 105(T−0.5
1 + T−0.5

3 − T−0.5
2 − T−0.5

4 )− 8.8827× 106(T−1
1 + T−1

3
− T−1

2 − T−1
4 ) + 3.2074× 108(T−2

1 + T−2
3 − T−2

2 − T−2
4 )]− b(γ− 1)2

(16)

η = P/(Qin + Qleak)

=
.

m[2.422× 10−10(T3
1 + T3

3 − T3
2 − T3

4 ) + 1.6866× 10−6(T2.5
1 + T2.5

3 − T2.5
2 − T2.5

4 )− 6.1567

× 10−6(T2
1 + T2

3 − T2
2 − T2

4 ) + 6.1132× 10−4(T1.5
1 + T1.5

3 − T1.5
2 − T1.5

4 ) + 30.2642(T3 − T2)− 38.5787(T4 − T1) + 8.7696× 105

(T−0.5
1 + T−0.5

3 − T−0.5
2 − T−0.5

4 )− 8.8827× 106(T−1
1 + T−1

3 − T−1
2 − T−1

4 ) + 3.2074× 108(T−2
1 + T−2

3 − T−2
2 − T−2

4 )]− b(γ− 1)2

.
m[2.422× 10−10(T3

3 − T3
2 ) + 1.6866× 10−6(T2.5

3 − T2.5
2 )− 6.1567× 10−6(T2

3 − T2
2 ) + 6.1132× 10−4(T1.5

3 − T1.5
2 ) + 30.2642

(T3 − T2) + 8.7696× 105(T−0.5
3 − T−0.5

2 )− 8.8827× 106(T−1
3 − T−1

2 ) + 3.2074× 108(T−2
3 − T−2

2 )] + B(T2 + T3 − 2T0)

(17)

According to the definition of Pd in references [55,62], one has

Pd = P/vmax = P/v4 (18)

The entropy production rates resulting from the HTL, FL, and IIL are defined as

σq = B(T2 + T3 − 2T0)[1/T0 − 2/(T2 + T3)] (19)

σµ = Pµ/T0 = b(γ− 1)2/T0 (20)

σ2s→2 =
.

m
∫ T2

T2s
CvdT/T

=
.

m[3.6337× 10−10(T2
2 − T2

2s) + 2.8111× 10−6(T1.5
2 − T1.5

2s )− 1.23134× 10−5(T2 − T2s)

+ 1.8339× 10−3(T0.5
2 − T0.5

2s ) + 30.2642 ln(T2/T2s) + 2.9232× 105(T−1.5
2 − T−1.5

2s )

− 4.4413× 106(T−2
2 − T−2

2s ) + 2.1382× 108(T−3
2 − T−3

2s )]

(21)

σ4s→4 =
.

m
∫ T4

T4s
CpdT/T

=
.

m[3.6337× 10−10(T2
4 − T2

4s) + 2.8111× 10−6(T1.5
4 − T1.5

4s )− 1.23134× 10−5(T4 − T4s)

+ 1.8339× 10−3(T0.5
4 − T0.5

4s ) + 38.5787 ln(T4/T4s) + 2.9232× 105(T−1.5
4 − T−1.5

4s )

− 4.4413× 106(T−2
4 − T−2

4s ) + 2.1382× 108(T−3
4 − T−3

4s )]

(22)

The entropy production rate produced by the exhaust stroke is

σpq =
.

m
∫ T4

T1
CpdT(1/T0 − 1/T)

= (
.

m/T0)[2.422× 10−10(T3
4 − T3

1 ) + 1.6866× 10−6(T2.5
4 − T2.5

1 )− 6.1567× 10−6(T2
4 − T2

1 )

+ 6.113× 10−4(T1.5
4 − T1.5

1 ) + 38.5787(T4 − T1) + 8.7696× 105(T−0.5
4 − T−0.5

1 )− 8.8827
× 106(T−1

4 − T−1
1 ) + 3.2074× 108(T−2

4 − T−2
1 )]− .

m[3.6337× 10−10(T2
4 − T2

1 ) + 2.8111
× 10−6(T1.5

4 − T1.5
1 )− 1.2313× 10−5(T4 − T1) + 1.8339× 10−3(T0.5

4 − T0.5
1 ) + 38.5787

ln(T4/T1) + 2.9232× 105(T−1.5
4 − T−1.5

1 )− 4.4413× 106(T−2
4 − T−2

1 ) + 2.1382× 108(T−3
4 − T−3

1 )]

(23)

The total entropy production rate due to HTL, FL, IIL and exhaust process is
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σ = σq + σµ + σ2s→2 + σ4s→4 + σpq
= B1(T2 + T3 − 2T0)[(1/T0)− 2/(T2 + T3)] + b(γ− 1)2/T0 +

.
m[3.6337× 10−10(T2

2 − T2s
2 − T2

4s
+ T2

1 ) + 2.8111× 10−6(T1.5
2 − T1.5

2s − T1.5
4s + T1.5

1 )− 1.23134× 10−5(T2 − T2s − T4s + T1) + 1.8339
× 10−3(T0.5

2 − T0.5
2s − T0.5

4s + T0.5
1 ) + 30.2642 ln(T2/T2s)− 38.5787 ln(T4s/T1) + 2.9232× 105

(T−1.5
2 − T−1.5

2s − T−1.5
4s + T−1.5

1 )− 4.4413× 106(T−2
2 − T−2

2s − T−2
4s + T−2

1 ) + 2.1382× 108(T−3
2

− T−3
2s − T−3

4s + T−3
1 )] + (

.
m/T0)[2.422× 10−10(T3

4 − T3
1 ) + 1.6866× 10−6(T2.5

4 − T2.5
1 )− 6.1567

× 10−6(T2
4 − T2

1 ) + 6.1132× 10−4(T1.5
4 − T1.5

1 ) + 38.5787(T4 − T1) + 8.7696× 105(T−0.5
4 − T−0.5

1 )

−8.8827× 106(T−1
4 − T−1

1 ) + 3.2074× 108(T−2
4 − T−2

1 )]

(24)

According to the definition of E in references [96–98], one has

E = P− T0σ

=
.

m[2.422× 10−10(T3
3 + 2T3

1 − T3
2 − 2T3

4 ) + 1.6866× 10−6(T2.5
3 + 2T2.5

1 − T2.5
2 − 2T2.5

4 )− 6.1567
× 10−6(T2

3 + 2T2
1 − T2

2 − 2T2
4 ) + 6.1132× 10−4(T1.5

3 + 2T1.5
1 − T1.5

2 − 2T1.5
4 ) + 30.2642(T3 − T2)

−38.5787(2T4 − 2T1) + 8.7696× 105(T−0.5
3 + 2T−0.5

1 − T−0.5
2 − 2T−0.5

4 )− 8.8827× 106(T−1
3

+ 2T−1
1 − T−1

2 − 2T−1
4 ) + 3.2074× 108(T−2

3 + 2T−2
1 − T−2

2 − 2T−2
4 )]− .

mT0[3.6337× 10−10(T2
2 − T2

2s
−T2

4s + T2
1 ) + 2.8111× 10−6(T1.5

2 − T1.5
2s − T1.5

4s + T1.5
1 )− 1.23134× 10−5(T2 − T2s − T4s + T1)

+ 1.8339× 10−3(T0.5
2 − T0.5

2s − T0.5
4s + T0.5

1 ) + 30.2642 ln(T2/T2s)− 38.5787 ln(T4s/T1) + 2.9232
× 105(T−1.5

2 − T−1.5
2s − T−1.5

4s + T−1.5
1 )− 4.4413× 106(T−2

2 − T−2
2s − T−2

4s + T−2
1 ) + 2.1382× 108(T−3

2
− T−3

2s − T−3
4s + T−3

1 )]− B1(T2 + T3 − 2T0)[1− 2T0/(T2 + T3)]− 2b(γ− 1)2

(25)

According to the treatment method in the references [55,62], the P, η, E, and Pd are
defined as

P = P/Pmax (26)

Pd = Pd/(Pd)max (27)

E = E/Emax (28)

When the compression ratio γ, the cycle initial temperature T1, and the maximum
temperature ratio τ are given, the numerical solutions of temperatures at each state point
and cycle performances can be obtained.

3. Performance Optimization with the Maximum Power Density Criterion

According to reference [62], the values of the cycle parameters can be determined:
.

m = 1 mol/s, T0 = 300 K, T1 = 350 K, B = 2.2 W/K, τ = 4.28− 6.28, b = 20 W.
Figures 2 and 3 show the effect of cycle maximum temperature ratio (τ) on cycle

dimensionless power density versus compression ratio (Pd − γ) and cycle dimensionless
power density versus thermal efficiency (Pd − η), respectively. It can be noticed that there
is an optimal compression ratio (γPd

) to make Pd reach the maximum. As the τ increases
from 5.78 to 6.78, the γPd

increases from 8.3 to 9.0, and increases by about 8.434%. The ηPd

corresponding to the cycle maximum Pd increases from 0.4330 to 0.4579, and increases by
5.75%. It shows that under the maximum Pd criterion, the increases of the γPd

and ηPd
of

the cycle are accompanied with the increase of the τ.
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Figures 4 and 5 show the characteristic relationships of Pd − γ and Pd − η with
different loss combinations. In Figure 4, when only considering the FL, comparing curves 1
and 2, the FL increases from 0 to 20 W, the γPd

will decrease from 31.4 to 10.9 and decrease
by 65.287%. When only considering the IIL, comparing curves 1 and 1′, the IIL increases
(from 1 to 0.94), the γPd

will decrease from 31.4 to 18.5, and decrease by 41.083%. When
considering both FL and IIL, comparing curves 1 and 2′, the IIL increases (from 1 to 0.94)
the FL increases from 0 to 20 W, the γPd

will decrease from 31.4 to 9.1 and decrease by
71.019%. It can be seen that the decrease of the γPd

of the cycle is accompanied with the
increases of the cycle losses.
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In Figure 5, when only considering the FL, comparing curves 1 and 2, the FL increases
from 0 to 20 W, the ηPd

will decrease from 0.7114 to 0.5611 and decrease by 21.13%. When
only considering the HTL, comparing curves 1 and 3, the HTL increases from 0 to 2.2 W/K,
the ηPd

will decrease from 0.7114 to 0.6371 and decrease by 10.44%. When only considering
the IIL, comparing curves 1 and 1′, the IIL increases (from 1 to 0.94), the ηPd

will decrease
from 0.7114 to 0.5618 and decrease by 21.03%. When considering HTL and FL at the same
time, comparing curves 1 and 4, the HTL increases from 0 to 2.2 W/K and the FL increases
from 0 to 20 W, the ηPd

will decrease from 0.7114 to 0.5213 and decrease by 23.72%. When
considering HTL and IIL, comparing curves 1 and 3′, the HTL increases from 0 to 2.2 W/K
and the IIL increases (from 1 to 0.94), the ηPd

will decrease from 0.7114 to 0.5122 and
decrease by 28.00%. When considering FL and IIL, comparing curves 1 and 2′, the FL
increases from 0 to 20 W and the IIL increases (from 1 to 0.94), the ηPd

will decrease from
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0.7114 to 0.4791 and decrease by 32.65%. When considering FL, HTL, and IIL at the same
time, comparing curves 1 and 4′, the FL increases from 0 to 20 W, the HTL increases from
0 to 2.2 W/K, and the IIL increases from 1 to 0.94, the ηPd

will decrease from 0.7114 to
0.4459 and decrease by 37.32%. It can be seen that the decrease of the ηPd

of the cycle is
accompanied with the increases of the cycle losses.

Figures 6–8 show the compared results of the cycle η, maximum specific volume ratio,
and pressure ratio under the maximum P and maximum Pd criterions when there are three
losses. Comparing with the maximum P criterion, the η and maximum pressure ratio
under the maximum Pd criterion are higher, while the maximum specific volume ratio
under the maximum Pd criterion is smaller. Therefore, the engine designed based on the
maximum Pd criterion is smaller in size and more efficient.
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4. Multi-Objective Optimization

In actual cycle, there is no point at which the P, η, E, and Pd are optimized at the same
time. Therefore, when solving the MOO problem, it is very important to take into account
the trade-offs between the interests of different objectives, and obtain the Pareto optimal
solution that simultaneously satisfies multiple different or even contradictory goals. The
Pareto frontier is defined as the solution set of the optimization objectives. Figure 9 shows the
algorithm diagram of NSGA-II [62]. When taking the compression ratio as the optimization
variable and taking the P, η, E, and Pd as the optimization objectives, the single-, bi-, tri-,
and quadru-objective optimization results are obtained. The optimal solution is obtained
by comparing the magnitude of the deviation indexes obtained by LINMAP, TOPSIS, and
Shannon entropy solutions.

The optimization problems are solved with different optimization objective combi-
nations, which forms different MOO problems. The one quadru-objective optimization
problem is as follows:

max


Pd(γ)
η(γ)
E(γ)
Pd(γ)

(29)

The four tri-objective optimization problems are as follows:

max


P(γ)
η(γ)
E(γ)

, max


P(γ)
η(γ)
Pd(γ)

, max


P(γ)
E(γ)
Pd(γ)

, max


η(γ)
E(γ)
Pd(γ)

(30)

The six bi-objective optimization problems are as follows:

max
{

P(γ)
η(γ)

, max
{

P(γ)
E(γ)

, max
{

P(γ)
Pd(γ)

, max
{

η(γ)
E(γ)

, max
{

η(γ)
Pd(γ)

, max
{

E(γ)
Pd(γ)

(31)

Table 1 lists the results of the MOO based on LINMAP, TOPSIS, and Shannon entropy
solutions under different combinations of optimization objectives, and lists the results of
single-objective optimization corresponding to the maximum P, maximum η, maximum E,
and maximum Pd, and the corresponding deviation index. Figures 10–20 show the Pareto
frontiers of different combinations of single-, bi-, tri-, and quadru-objective optimizations.
The diamond represents the corresponding points of Shannon entropy solution, and the
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positive and negative triangles represent the corresponding points of LINMAP and TOPSIS
solutions, respectively.

Energies 2021, 14, 4175 11 of 24 
 

 

 
Figure 9. Flow chart of NSGA-II [62]. 

The optimization problems are solved with different optimization objective combi-
nations, which forms different MOO problems. The one quadru-objective optimization 
problem is as follows: 

( )
( )

max
( )
( )

d

d

P

E
P


 













 (29)

The four tri-objective optimization problems are as follows: 

( ) ( )( ) ( )
max ( ) , max ( ) ,max ( ) , max ( )

( ) ( ) ( ) ( )d d d

PP P
E E

E P P P

   
     

   

  
  

   
   
  

 (30)

The six bi-objective optimization problems are as follows: 
( )( )( ) ( )( )( )

max , max , max , max , max , max
( )( ) ( )( ) ( )( ) dd d

P EPP
PEP PE

   
   

     
     

      
 (31)

Table 1 lists the results of the MOO based on LINMAP, TOPSIS, and Shannon en-
tropy solutions under different combinations of optimization objectives, and lists the re-
sults of single-objective optimization corresponding to the maximum P , maximum  , 
maximum E , and maximum dP , and the corresponding deviation index. Figures 10–20 
show the Pareto frontiers of different combinations of single-, bi-, tri-, and quadru-objec-
tive optimizations. The diamond represents the corresponding points of Shannon entropy 
solution, and the positive and negative triangles represent the corresponding points of 
LINMAP and TOPSIS solutions, respectively. 

  

Figure 9. Flow chart of NSGA-II [62].

Energies 2021, 14, 4175 13 of 24 
 

 

Positive ideal point —— 0.9999 0.4465 0.9998 0.9999 —— 
Negative ideal point —— 0.9564 0.4335 0.8895 0.9470 —— 

 
Figure 10. Quadru-objective optimization on dP E P   . 

 
Figure 11. Tri-objective optimization on P E  . 

Figure 10. Quadru-objective optimization on P− η − E− Pd.



Energies 2021, 14, 4175 12 of 23

Table 1. Outcomes of decision-making methods for MOO and single-objective optimizations.

Optimization
Methods Decision Methods

Optimization
Variable Optimization Objectives Deviation

Index

γ
¯
P η E Pd D

Quadru-objective
optimization (P, η,

E and Pd)

LINMAP 7.5172 0.9865 0.4450 0.9997 0.9890 0.1250
TOPSIS 7.5172 0.9865 0.4450 0.9997 0.9890 0.1250

Shannon Entropy 9.1311 0.9564 0.4459 0.9345 0.9999 0.5266

Tri-objective
optimization (P, η

and E)

LINMAP 7.1952 0.9907 0.4438 0.9958 0.9839 0.1395
TOPSIS 7.2939 0.9895 0.4442 0.9978 0.9856 0.1307

Shannon Entropy 7.5582 0.9859 0.4451 0.9998 0.9896 0.1253

Tri-objective
optimization (P, η

and Pd)

LINMAP 7.5054 0.9866 0.4449 0.9999 0.9888 0.1247
TOPSIS 7.5485 0.9860 0.4451 0.9999 0.9894 0.1252

Shannon Entropy 9.1297 0.9564 0.4459 0.9349 0.9999 0.5247

Tri-objective
optimization (P, E

and Pd)

LINMAP 7.4763 0.9871 0.4449 0.9996 0.9883 0.1249
TOPSIS 7.4763 0.9871 0.4449 0.9996 0.9883 0.1249

Shannon Entropy 9.1314 0.9564 0.4459 0.9345 0.9999 0.5279

Tri-objective
optimization (η, E

and Pd)

LINMAP 7.8916 0.9808 0.4459 0.9966 0.9936 0.1457
TOPSIS 7.8817 0.9809 0.4459 0.9968 0.9935 0.1450

Shannon Entropy 9.1320 0.4459 0.9344 0.9345 0.9999 0.5269

Bi-objective
optimization (P

and η)

LINMAP 7.0477 0.9924 0.4431 0.9920 0.9812 0.1609
TOPSIS 7.0330 0.9926 0.4431 0.9915 0.9809 0.1639

Shannon Entropy 8.4845 0.9700 0.4465 0.9764 0.9983 0.2074

Bi-objective
optimization (P

and E)

LINMAP 7.1705 0.9910 0.4437 0.9952 0.9835 0.1423
TOPSIS 7.1705 0.9910 0.4437 0.9952 0.9835 0.1423

Shannon Entropy 7.5573 0.9859 0.4451 0.9998 0.9896 0.1252

Bi-objective
optimization (P

and Pd)

LINMAP 7.4628 0.9872 0.4448 0.9980 0.9882 0.1248
TOPSIS 7.5003 0.9867 0.4450 0.9999 0.9887 0.1248

Shannon Entropy 9.1277 0.9564 0.4459 0.9350 0.9999 0.5241

Bi-objective
optimization (η

and E)

LINMAP 7.7359 0.9832 0.4456 0.9989 0.9919 0.1328
TOPSIS 7.7259 0.9834 0.4456 0.9990 0.9918 0.1318

Shannon Entropy 7.5597 0.9859 0.4451 0.9998 0.9896 0.1252

Bi-objective
optimization (η

and Pd)

LINMAP 8.8286 0.9630 0.4463 0.9566 0.9996 0.3968
TOPSIS 8.8388 0.9628 0.4463 0.9559 0.9996 0.4011

Shannon Entropy 9.1297 0.9564 0.4459 0.9349 0.9999 0.5247

Bi-objective
optimization (E

and Pd)

LINMAP 7.8949 0.9807 0.4460 0.9965 0.9936 0.1463
TOPSIS 7.8857 0.9813 0.4459 0.9967 0.9935 0.1427

Shannon Entropy 9.1334 0.9563 0.4459 0.9999 0.9999 0.5276

Maximum of P —— 5.8100 0.9999 0.4338 0.8928 0.9478 0.7326

Maximum of η —— 8.5000 0.9697 0.4465 0.9756 0.9984 0.2752

Maximum of E —— 7.5900 0.9853 0.4453 0.9998 0.9902 0.1260

Maximum of Pd —— 9.1300 0.9571 0.4459 0.9372 0.9999 0.5120

Positive ideal point —— 0.9999 0.4465 0.9998 0.9999 ——
Negative ideal point —— 0.9564 0.4335 0.8895 0.9470 ——
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Figure 20. Bi-objective optimization on E− Pd.

The deviation indexes of maximum P, maximum η, maximum E, and maximum Pd
are 0.7326, 0.2752, 0.1260, and 0.5120, respectively. For the quadrur-objective optimization,
Figure 10 shows the Pareto frontier for P − η − E − Pd. It can be noticed that with the
increase of η, the P and Pd increase, and the E first increases and then decreases. The
deviation indexes (0.1250, 0.1250, 0.5266) obtained by the LINMAP, TOPSIS, and Shannon
entropy solutions are smaller than those of single-objective optimization. It means that the
results obtained by four-objective optimization are more perfect than single-objective opti-
mization. In addition, when taking P, η, E, and Pd as the objective functions, the deviation
indexes obtained by LINMAP and TOPSIS solutions are the same, and the optimization
results are more desirable than those obtained by the Shannon entropy solution.
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For tri-objective optimization, Figures 11–14 show the Pareto frontiers for P − η − E,
P− η − Pd, P− E− Pd, and η − E− Pd. It can be noticed that with the increases of η, the
P and Pd increase, while the E first increases and then decreases. With the increase of Pd,
the P decreases, the η increases, and the E first increases and then decreases. The devia-
tion indexes obtained by different decision-makings are smaller than those obtained by
single-objective optimization, and which is the same as that obtained by quadru-objective
optimization. When taking P, η, and E as the objective functions, the deviation index
obtained by the Shannon entropy solution is smaller. When taking P, η, and Pd as the
objective functions, the deviation index obtained by the LINMAP solution is smaller. When
taking P, E, and Pd as the objective functions, the LINMAP and TOPSIS solutions get
the same deviation indexes, and the optimization results are more desirable than those
obtained by the Shannon entropy solution. When taking η, E, and Pd as the objective
functions, the deviation index obtained by the TOPSIS solution is smaller and the result
is better.

For bi-objective optimization, Figures 15–20 show the Pareto frontiers for P− η, P− E
.
,

P− Pd, η − E
.
, η − Pd, and E− Pd. It can be noticed that the η, E, and Pd decrease with the

increase of P, the E and Pd decrease with the increase of η, and the Pd decreases with the
increase of E. The indexes obtained by different decision-makings are smaller than those
obtained by single-objective optimization, and the conclusion is the same as that obtained
by tri- and quadru-objective optimization. When taking P and η or taking Pd and η as the
objective functions, the deviation index obtained by the LINMAP solution is smaller. When
taking P and E or taking η and E as the objective functions, the deviation index obtained
by the Shannon entropy solution is smaller. When taking P and Pd or taking E and Pd as
the objective functions, the deviation index obtained by the TOPSIS solution is smaller and
the result is better.

By comparing the deviation indexes obtained under various conditions, the results
show that the solution obtained by MOO is more desirable, and the deviation indexes are
smaller. In addition, when the LINMAP solution is optimized with P, η, and Pd as the
objective functions, the deviation index is 0.1247, the contradiction obtained is the smallest,
and the result is the best. In practical applications, the optimal plan can be selected from
the Pareto frontier, and the design can be optimized according to the actual requirements
of the decision-maker.

5. Conclusions

Through FTT analysis, this paper performs the performance analyses of the irreversible
AC under the maximum Pd criterion when the WF’s SHs are nonlinear variable with its
temperature. The results of the η, maximum specific volume ratio and pressure ratio
obtained under the maximum Pd criterion are compared with those under the maximum P
criterion. Based on NSGA-II, when the compression ratio is the optimization variable and
the P, η, E, and Pd are the optimization objectives, the single-, bi-, tri-, and quadru-objective
optimization results are obtained. The optimal solution is obtained by comparing the
deviation indexes of LINMAP, TOPSIS, and Shannon entropy solutions. It can be noticed
that:

(1) There is an γPd
to maximize the Pd. With the cycle maximum temperature ratio

increases, the γPd
and ηPd

corresponding to the Pd will increase. With the increases of
HTL, FL, IIL, the γPd

and ηPd
corresponding to the cycle maximum Pd will decrease.

(2) Under the maximum Pd criterion, the η will be higher and the size will be smaller.
(3) Compared with single-objective optimization, MOO has less contradictions and

conflicts. Comparing the results of single-, bi-, tri-, and quadru-objective optimization,
when the LINMAP solution is optimized with P, η, and Pd as the objective functions,
the contradiction is smaller and the result is more perfect.
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Nomenclature

B Heat transfer loss coefficient (W/K)
Cp Specific heat at constant pressure (J/(mol·K))
Cv Specific heat at constant volume (J/(mol·K))
E Ecological function (W)
k Adiabatic index (-)
.

m Molar flow rate (mol/s)
P Power output (W)
Pd Power density

(
W/m3)

Q Heat transfer rate (W)
R Gas constant (-)
T Temperature (K)
Greek symbol
γ Compression ratio (-)
η Thermal efficiency (-)
ηc Irreversible compression efficiency (-)
ηe Irreversible expansion efficiency (-)
µ Friction coefficient (kg/s)
σ Entropy generation rate (W/K)
τ Cycle maximum temperature ratio (-)
Subscripts
in Input
max Maximum value
out Output
Pd Max power density condition
η Max thermal efficiency condition
0 Environment
1− 4, 2 s, 4 s Cycle state points
Superscripts
– Dimensionless

Abbreviations

AC Atkinson cycle
FL Friction loss
FTT Finite time thermodynamics
HTL Heat transfer loss
IIL Internal irreversibility loss
MOO Multi-objective optimization
PC Performance characteristics
SH Specific heats
WF Working fluid
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