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Abstract: Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limi-
tations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV
force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling
control strategies, improving engine design and reducing the negative impact of CCV on engine
operation. This paper presents a new simulation strategy which allows investigation of the impact
of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As
a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid
dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle,
simulation results just prior to each spark timing are taken. Next, simulation results from different
cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle,
and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a
new snapshot. With the combined snapshot, the simulation is continued until the end of combustion.
The results obtained with combined snapshots show that the velocity field seems to have the highest
impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic
energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small
compared to the flow field. This novel methodology is very flexible and allows investigation of the
sources of CCV which have been difficult to investigate in the past.

Keywords: internal combustion engine; combustion; CFD; RANS simulation; cycle-to-cycle
variations

1. Introduction

With increasing legislative pressures to reduce reciprocating engine emissions and
both governmental and consumer pressures for higher fuel efficiencies, reciprocating engine
manufacturers have long been pursuing engine technologies that simultaneously push the
envelope of engine performance, efficiency and emissions reductions. For spark-ignited (SI)
engines, such pressures have resulted in the development of a wide array air charging and
fueling engine technologies that are simultaneously optimized through complex engine
control strategies to deliver on one or more aspects of the ultimate goal of highly efficient,
high power density, low emissions engines. One of the challenges faced with tailoring the
multi-dimensional engine operating envelope is the advanced combustion regimes that
are being developed as a part of the overall engine operating recipes tailored to meet these
challenges. Use of lean burn combustion and exhaust gas recirculation are two common
approaches to improving fuel efficiency while reducing emissions; however, such strategies
also introduce significant combustion sensitivities to the in-cylinder physics resulting in
combustion regimes which are more susceptible to cycle-to-cycle variation (CCV) as the
result of variations the ignition kernel development, kernel growth rates and/or the final
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fully developed turbulent flame as summarized by the reviews by Young [1], Ozdor et al.[2]
and Maurya [3] and extensively noted in experimental studies [3–8]. After understanding
the causes of CCV, the ultimate goal is the development of control strategies to reduce the
magnitude of CCV [9–11].

Prior research has well documented the many factors that may promote CCV and
these may be categorized as physico-chemical sources—flow field, trapped fuel mass, tur-
bulence, dilution, stoichiometry and fuel reactivity and/or compsition; geometric sources—
compression ratio, intake port geometry, spark plug location, spark plug electrode(s)
orientation and spark gap; and operational sources—engine speed, load and ignition sys-
tem performance [1–4,12,13]. Many of the experimental works quantify CCV by computing
the coefficient of variation (CoV) in one or more easily measured metrics including peak
cylinder pressure, location of peak firing-pressure, indicated mean effective pressure (IMEP)
and/or maximum rate of pressure rise or fuel burning rates with peak cylinder pressure
and IMEP being the most common. While these metrics are often easily measured, they
tend to lump the many possible driving sources of CCV into a single net contributing factor
making it challenging to delineate individual contributions of CCV amongst the possible
sources. As a result, recent experimental work has focused on precise measurement of the
development of the ignition kernel as the point of 2% of burn fuel mass (MFB2) and kernel
growth rate as 0–10% (MFB10) as these two phases of the combustion event tend to be more
sensitive to the CCV sources than the fully turbulent flame [5,14,15]. Unfortunately, these
metrics are also more prone to measurement error due to the increased level of accuracy
required in the cylinder pressure measurement and are complicated by the determination
of the cumulative burn mass.

To unravel the complexities associated with the aforementioned strategies for iden-
tifying individual sources of CCV in SI engines, researchers have applied a variety of
statistical and non-statistical analysis methods of the decomposing measured in-cylinder
flow fields into its mean (large-scale) and turbulent (small-scale) components as sum-
marized by Maurya [3] and Sadeghi et al. [16]. The results of such methods are often
difficult to interpret from a physical perspective and, as indicated by Sadeghi [16] and
Roudnitzky et al. [17], most of the methods invoke ad hoc assumptions that can impact the
results of the decomposition, raising questions about the usefulness of such methods.

The early works of Venmorel et al. [18] and Liu et al. [19] and recently the works of
Li et al. [20], Richard et. al. [21], Netzer et al. [22] and Truffin et al. [23] have utilized CFD
simulation tools to understand the sources of CCV under a variety of engine operating
conditions using LES turbulence modeling techniques under the pretense that they may
be required in order to resolve the turbulence scales necessary to capture the impacts of
turbulent flow field on both early flame kernel development and late stage turbulent flame
progression. In their review, Lauer and Frühhaber [24] give an overview of current best
practices in science and industry for turbulence modeling in combustion simulations. On
the other side, the work of Scarcelli et al. [25] has shown that unsteady RANS (uRANS)
turbulence models, with sufficient and practical grid resolutions, can capture many of
the driving metrics of CCV in SI engine combustion. Additionally, modifications to the
turbulence model used in this paper were proposed in the past [26]. To this end, this work
proposes a novel approach for the investigation of the individual contributions of CCV
using a detailed uRANS CFD simulation methodology.

2. Materials and Methods
2.1. Engine Setup

The engine used for the simulation is an INNIO Jenbacher natural gas four valve
engine with premixed gas–air mixture and roughly 2.4 L of displaced volume. Bore and
stroke are 135 mm and 170 mm, respectively. The engine is operated at a speed of 1500 rpm.
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2.2. CFD Simulation Setup

The three-dimensional CFD simulations are performed with the CONVERGE CFD
solver (version 3.0.13; Convergent Science; Madison, WI, USA). The mesh size in the intake
and exhaust ports is 2 mm and 1 mm in the cylinder, respectively. Near-wall refinements
and adaptive mesh refinement (AMR) for the flame front is employed, leading to 0.25 mm
cells at the flame front location. Turbulence is modeled by the two-equation RANS k-ε
RNG turbulence model. Ignition is modeled by an energy deposition at the spark plug
gap of 30 mj each for 0.6 CAD for breakdown phase and 7.6 CAD for arc-glow phase.
Combustion is modeled using the detailed chemistry approach and the GRI Mech 3.0
reaction mechanism [27] for natural gas combustion. An adaptive time step marching
scheme is used to maintain a maximum Courant–Friedrichs–Lewy (CFL) limit within the
domain to 2 during the gas exchange, and 4 during compression, except during combustion,
a constant time step of 10−6 s is used resulting in maximum advection and diffusion CFL
numbers of less than 1.0. Total pressure and temperature are prescribed at the inlet to the
intake port, and static pressure is prescribed at the outlet of the exhaust port. Additionally,
turbulence intensity of 2% and a turbulence length scale of 3 mm were specified at the inlet
to calculate the boundary conditions for k and ε.

2.3. Multi-Cycle Simulations

A total of eleven consecutive engine cycles are simulated, using periodic (one engine
cycle) boundary conditions with first cycle discarded due to initialization effects. The
location and duration of the ignition are not changed. At 5 CAD and 0.5 CAD before spark
timing, snapshots of the simulation are saved allowing for simulations to be restarted
and/or implementation of the recombination strategy as described in the next section.
The uRANS approach is in line with past work to predict CCV of internal combustion
engines [28–30].

2.4. Combination of Simulation Snapshots

The restart files are a snapshot of the simulation at a certain time and allow one
to restart the simulation from this time with minimal or no change in results as shown
in Figures A1 and A2. The process of combining fields from different restart files is not
supported by the CFD code and therefore a small Python script is used to combine fields
from different restart files into a single restart file, a combined snapshot. Figure 1 visualizes
the general idea of the recombinations. The restart files are HDF5 files and can be read and
edited using standard tools from the h5py [31] Python package.

Simulation time

Snapshots / cycles
1 2 3 4 5 6 7 8 9 10

velocity field all other quantities

Combined snapshot

New simulation

Figure 1. One possible combination of restart files: Here, the flow field is extracted from the third
cycle and combined with all other quantities of the fifth cycle. The simulation then starts at the time
when the fifth snapshot was taken.

It should be noted that while restart files (i.e., snapshots) are written at the same crank
angle degree before spark timing of each engine cycle and the geometry and position of
the piston are exactly the same, the mesh is different as a result of AMR being used to
resolve the velocity field during gas scavenging. Thus, the combination algorithm accounts
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for local variances in mesh resolution combining the fields. For example, starting from a
base snapshot where a majority of the instantaneous field quantities will be used without
modification, to replace the instantaneous velocity fields with the values from another
snapshot, here referred to as the velocity snapshot, the following procedure is applied:

1. Extract the mesh data from both the base and velocity snapshot.
2. Extract the velocity field from the velocity snapshot.
3. Interpolate the velocity field, which is defined on the mesh of the velocity snapshot,

onto the mesh of the base snapshot. This is done by looping over all the cells of the
base snapshot and finding the value of the velocity field of the cell of the velocity
snapshot which is nearest to the cell of the base snapshot.

4. Write the newly interpolated field, which is now defined on the mesh of the base
snapshot mesh, into the corresponding data array. Thus, the original, base velocity
field is replaced with the exchange dataset.

3. Results

Due to confidentiality, all data reported here is normalized: The in-cylinder peak
pressures are normalized to the minimum and maximum peak pressure, i.e., a peak pressure
of 100% and 0% correspond to the highest and lowest peak pressure, respectively, and the
reported absolute crank angle degrees are normalized with respect to the ignition timing,
i.e., all reported absolute crank angle degrees in this paper are relative to the ignition.

The multi-cycle uRANS simulation yields ten different in-cylinder pressure traces as
shown in Figure 2. The in-cylinder peak pressure has a coefficient of variation of 1.15%. The
main differences between the cycles are in the peak-pressure and MFB50%. The differences
from cycle to cycle in ignition delay and IMEP are significantly lower and are not considered
in the following sections.
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(b) Rate of heat release.
Figure 2. In-cylinder results for all ten cycles.

To ensure that restarting the simulation does not change the combustion result, a
dry run is performed where no datasets were exchanged and the same combustion event
is re-run using the restart file. These tests show that no significant difference between
results from original and restart simulations existed as shown in Figures A1 and A2 in
Appendix A.

In total, simulations for 16 different combinations are performed and are summarized
in Table 1. For the purpose of this work not all cycles are combined with all other cycles.
Instead, the two extreme cycles with the minimum and maximum peak pressure, cycles 3
and 8, respectively, are selected for restart file combination with the cylinder pressure and
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rate of heat release shown in Figure 3. Additionally, this paper only considers the velocity
and turbulence quantities as exchange datasets.
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(b) Rate of heat release.
Figure 3. In-cylinder results for the two cycles with the lowest and highest pressure.

Table 2 summarizes results for four combustion metrics for 16 simulations using the
combinations listed in Table 1. Respectively, these metrics are peak cylinder pressure (pmax),
crank angle degree after ignition of peak cylinder pressure (CADpmax ), crank angle degree
after ignition for 50% fuel mass fraction burned (MFB50%) and crank angle duration from
10–90% mass fraction burned (MFB10–90%).

Table 1. Overview of the different restart combinations.

Comb. Base Exchange Snapshot Time Exchanged Datasets

1 8 3 5.0 CAD b. ign. velocity
2 3 8 5.0 CAD b. ign. velocity
3 8 3 5.0 CAD b. ign. turbulence (k and ε)
4 3 8 5.0 CAD b. ign. turbulence (k and ε)
5 8 3 5.0 CAD b. ign. velocity close to spark plug (1 cm sphere)
6 8 3 5.0 CAD b. ign. velocity close to spark plug (2 cm sphere)
7 8 3 5.0 CAD b. ign. velocity close to spark plug (5 cm sphere)
8 8 3 0.5 CAD b. ign. velocity close to spark plug (1 cm sphere)
9 8 3 0.5 CAD b. ign. velocity close to spark plug (2 cm sphere)
10 8 3 0.5 CAD b. ign. velocity close to spark plug (5 cm sphere)
11 3 8 5.0 CAD b. ign. velocity close to spark plug (1 cm sphere)
12 3 8 5.0 CAD b. ign. velocity close to spark plug (2 cm sphere)
13 3 8 5.0 CAD b. ign. velocity close to spark plug (5 cm sphere)
14 3 8 0.5 CAD b. ign. velocity close to spark plug (1 cm sphere)
15 3 8 0.5 CAD b. ign. velocity close to spark plug (2 cm sphere)
16 3 8 0.5 CAD b. ign. velocity close to spark plug (5 cm sphere)

Excluding maximum cylinder pressure, the table shows both absolute values and the
percentile in the span from minimum to maximum of the observed range. As previously
noted, cycle 3 has the highest peak cylinder pressure and is thus scaled to 100% while
cycle 8 has the lowest and is scaled to 0%. Due to the inverse relationship between the
combustion metrics and peak cylinder pressure, cycle 3 also has the minimum in the span
for the remaining metrics and therefore each of these are scaled to 0%. Similarly, since
cycle 8 has the lowest maximum cylinder pressure it also has the maximum in the span for
the other metrics and therefore each of these are scaled to 100%.

Figure 4 presents the results from Table 2 showing the following: (a) 10–90% mass
fraction burned versus 50% mass fraction burn, (b) peak cylinder pressure versus location
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of peak pressure, (c) 50% mass fraction burned versus peak cylinder pressure and (d)
10–90% mass fraction burned versus peak cylinder pressure. In each figure the results for
cycle 3 and 8 are plotted as colored square symbols (blue—cycle 3, orange—cycle 8) and
denoted as base. Since cycles 3 and 8 represent either the maximum or minimum observed
combustion metric, they fall at the corners within each figure with cycle 3 always at lower
left or right and cycle 8 at upper left or right. Results for the 16 simulated combinations are
plotted and generally follow a linear relationship between the two base cycle results.
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Figure 4. Visualization of combustion charactersitics. All values are relative to the two extreme cycles. The numbers above
or below the markers correspond to the combination number.
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Table 2. Normalized maximum pressure, CAD after ignition of its occurrence, CAD after ignition of
the mass fraction burnt 50% and combustion duration (MFB10–90%).

Case pmax CADpmax MFB50% MFB10–90%

Cycle 3 100.0% 36.51 0.0% 31.30 0.0% 17.96 0.0%
Cycle 8 0.0% 37.03 100.0% 32.20 100.0% 19.21 100.0%
Comb. 1 88.3% 36.57 10.9% 31.36 7.3% 18.11 12.8%
Comb. 2 4.2% 36.91 77.0% 32.15 95.2% 19.12 92.8%
Comb. 3 19.8% 36.90 74.6% 32.04 82.6% 18.93 77.8%
Comb. 4 75.3% 36.66 29.3% 31.48 20.3% 18.24 23.2%
Comb. 5 25.9% 36.90 74.7% 31.96 73.7% 18.88 74.3%
Comb. 6 72.1% 36.56 9.3% 31.52 24.7% 18.49 42.9%
Comb. 7 82.7% 36.57 11.5% 31.40 11.8% 18.22 20.8%
Comb. 8 48.7% 36.71 38.5% 31.73 48.0% 18.75 63.6%
Comb. 9 72.0% 36.56 10.0% 31.49 21.1% 18.62 53.5%

Comb. 10 77.1% 36.59 15.1% 31.43 15.2% 18.34 30.9%
Comb. 11 63.2% 36.74 44.9% 31.61 35.2% 18.35 31.9%
Comb. 12 32.5% 36.97 88.8% 31.92 68.7% 18.58 50.3%
Comb. 13 12.7% 37.01 96.6% 32.12 91.9% 18.92 76.9%
Comb. 14 48.3% 36.82 60.5% 31.76 52.0% 18.42 37.4%
Comb. 15 30.9% 37.02 97.8% 31.97 75.2% 18.40 35.7%
Comb. 16 7.1% 36.94 83.2% 32.14 93.3% 18.98 82.3%

3.1. Impact of the Velocity Field on the Combustion

The first two combinations, combination 1 and combination 2, extract the velocity of
one of the selected cycles and combine it with all other quantities, excluding the velocity
field, from the other cycle. Figure 5 shows the in-cylinder pressure traces and rate of heat
releases of the two original cycles and the two combinations. The figure shows in-cylinder
pressure is very close to the simulation from which the velocity field is used. The peak
cylinder pressure for combination 1 (base of cycle 8) is increased from 0% to 88.3% and
decreased for combination 2 (base of cycle 3) from 100% to 4.2%.
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Figure 5. In-cylinder results for combinations 1 and 2.

Of particular importance are the results for combinations 1 and 2 which exchange
only the velocity field of the base cycles while retaining the remaining simulation results.
Simply by exchanging the velocity field in the simulation snapshot of cycle 3 with the
velocity field of cycle 8 moves the crank angle combustion metrics (CADpmax , MFB50%) of
cycle 3 from 0% (earliest) to the 75 to 90th (late) percentile and close to cycle 8’s metrics.
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This suggests that the velocity field of cycle 8 plays a significant role in a slowed ignition
kernel development and/or turbulent flame propagation.

Similarly, exchanging the velocity field of cycle 3 in the simulation snapshot of cycle 8
moves the crank angle combustion metrics of cycle 8 from 100% (latest) downward to the
5 to 10th (early) percentile suggesting that the velocity field of cycle 3 plays a significant
role in an accelerated ignition kernel development and/or turbulent flame propagation.
Naturally, this leads to the question of what it is specifically about these two flow fields
that appear to drive either a faster or slower combustion regime. This question is out of
scope for the present work.

3.2. Impact of the Turbulence on the Combustion

Next, the impact of turbulence, the turbulent kinetic energy k and the rate of dissi-
pation of turbulent energy ε are investigated. Figure 6 shows the combinations 3 and 4
which exchange only the turbulence field between cycles 3 and 8. The figure shows that
the turbulence fields at ignition timing do not play a major role in the combustion event.

Ignition
CAD after ignition

In
-c

yl
in

de
r

pr
es

su
re

(b
ar

)

cycle 3
cycle 8
comb. 3
comb. 4

(a) Pressure.

Ignition
CAD after ignition

In
-c

yl
in

de
r

R
oH

R
(J

/d
eg

re
e)

(b) Rate of heat release.
Figure 6. In-cylinder results for combinations 3 and 4.

However, it is arguable that exchanging the turbulence quantities alone is a proper
assessment of the impact of the turbulence on combustion in the context of a two equation
uRANS turbulence model, since velocity and turbulence fields have a complex coupling.
Figure 7 shows that an immediate relaxation of the turbulence to their prior values does not
occur even when the velocity field remains unchanged. Figure 7a shows that the turbulence
intensity of combination 1 is much closer to cycle 8 during the ignition phase. This seems
plausible since k and ε are sourced from cycle 8, and only the flow field comes from cycle
3. Similar results and conclusions can be drawn for the other three combinations that are
shown in Figure 7b for combinations 2, 3 and 4.

3.3. Impact of the Flow Field near the Spark Plug on the Combustion

Since the first four combinations show that the flow field seems to have the most
impact on the combustion, a new combination strategy is considered. For the next combi-
nations, only the flow field in the vicinity of the ignition location (spherical volume with
different radii: 1 cm, 2 cm and 5 cm) is extracted and combined with the flow field in
the rest of the domain and all other quantities of the other cycle. To assess the impact
of changes in the flow field from the initial snapshot to the spark event the time before
ignition when the snapshots are taken is varied from 5 CAD to 0.5 CAD.
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Figure 7. Average in-cylinder turbulent kinetic energy.

Combinations 5, 6 and 7 use the flow field in a spherical volume around the ignition
location of cycle 3 and all other quantities and the flow field outside of said volume of cycle
8. The in-cylinder pressure and rate of heat release are shown in Figure 8. The time before
ignition when the snapshot is taken is 5 CAD. The figure shows that the larger the spherical
volume the closer the cylinder pressure is to cycle where the velocity field is sourced with
the peak cylinder pressures for combinations 5, 6 and 7 of 25.9%, 72.1% and 82.7% for radii
1 cm, 2 cm and 5 cm, respectively with 100% corresponding to the cycle from which the
near spark plug flow field is extracted.
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Figure 8. In-cylinder results for combinations 5, 6 and 7.

Figure 9 shows the in-cylinder pressure and rate of heat release of combinations 8,
9 and 10, which are similar to combinations 6, 7 and 8, respectively; however, the time
of the snapshot is shifted closer to spark timing from 5 CAD to 0.5 CAD before ignition.
The impact of this shift is most pronounced on the results using a 1 cm sphere extraction
volume. In this case the in-cylinder peak pressure increased from 25.9% to 48.7%. The
other two combinations only show a minor change in peak pressure, where combination 9
has almost the same peak pressure as combination 6 (72.0% vs. 72.1%) and combination 10
even shows a significantly lower peak pressure than combination 7 (82.7% vs. 77.1%). This
implies that the flow field between the 2 cm and 5 cm spheres only plays a minor role for
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turbulent flame propagation and that most contributions to CCV are due to the flow field
inside the 1 cm sphere.
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Figure 9. In-cylinder results for combinations 8, 9 and 10.

Combinations 11, 12 and 13, shown in Figure 10, are similar to combinations 5, 6 and
7; only the original cycles are exchanged, i.e., a peak pressure of 0% corresponds to the
cycle where the near-ignition flow field comes from. Again, a larger sphere of exchange
region means a lower peak pressure, going from 63.2% for the 1 cm sphere to 32.5% for the
2 cm sphere and as low as 12.7% for the largest sphere of 5 cm.
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Figure 10. In-cylinder results for combinations 11, 12 and 13.

Combinations 14, 15 and 16 are equal to combinations 11, 12 and 13 with the exception
of the time when the snapshot is taken being shifted to 0.5 CAD before ignition. This leads
to a lower peak pressure, shown in Figure 11, which means that these combinations are
closer to the 0% peak pressure cycles than the combinations with an earlier snapshot time.
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Figure 11. In-cylinder results for combinations 14, 15 and 16.

4. Summary and Conclusions

A novel method for quantifying the individual flow field parameters that impact
CCV in the multi-cycle CFD simulation of spark-ignited engines has been presented. The
method has been applied to a spark-ignited lean burn natural gas engine and reveals
that for this engine and the operating point examined the velocity field has the largest
impact on the combustion behavior. Exchanging velocity fields between the slowest/fastest
combusting cycles can advance/retard crank angle combustion metrics such as location
of peak pressure, 50% mass fraction burned and 10–90% mass fraction burned by 75–90%
of the observed span. Applying the methodology to subsets of the physical domain in
proximity to the spark plug shows that the velocity field in this region also has a significant
impact on the ignition kernel and combustion event.

The methodology indicates that the turbulence field (k and ε) for these uRANS sim-
ulations plays a significantly minor role as compared to the velocity field. However, it is
acknowledged that proper evaluation of the impacts of turbulence may be significantly
limited due to the rapid relaxation of the turbulence field when being introduced into
a new velocity field, as these systems are not decoupled. As shown in Section 3.2, this
relaxation does not take place at least for the average in-cylinder turbulent kinetic energy.
Instead, the resulting k field is in between the two extreme cycles.

The cycle-to-cycle variations are rather low (CoV of pmax is 1.15%) in this study and this
may be attributed to using the RANS turbulence modeling approach, the same boundary
conditions for each engine cycle, same ignition location and/or the same ignition energy
for each engine cycle. Regardless, the methodology presented is capable of identifying
and quantifying the significance of various drivers for slow and fast combustion events,
suggesting it can provide greater insight in instances of much larger CCV.
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CCV cycle-to-cycle variations
CFL Courant–Friedrichs–Lewy
SI spark-ignited
RANS Renolds-averaged Navier–Stokes equations
CFD computational fluid dynamics
AMR adaptive mesh refinement
CAD crank angle degree
MFB mass fraction burned

Appendix A

Results from an ordinary restart, i.e., no datasets are exchanged, showing that restart-
ing the simulation has no impact on the combustion behavior.
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Figure A1. In-cylinder results for cycle 3 and restart of cycle 3.
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Figure A2. In-cylinder results for cycle 8 and restart of cycle 8.
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