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Abstract: Single well productivity is an important index of oilfield production planning and eco-
nomic evaluation. Due to fracture-vuggy reservoirs being characteristically strongly heterogeneous
and having complex fluid distribution, the commonly used single well productivity prediction
methods for fracture-vuggy reservoirs have many problems, such as difficulty in obtaining reservoir
parameters and producing large errors in the forecast values of single well productivity. In this
paper, based on the triple medium model, the Laplace transform and Duhamel principle are used to
obtain the productivity equation of a single well in a fracture-vuggy reservoir. Secondly, the seismic
attributes affecting the productivity of a single well are selected using the Spearman and Pearson
correlation index calculation method. Finally, the selected seismic attributes are introduced into the
productivity equation of the triple medium model through the interporosity flow coefficient and
the elastic storativity ratio, and the undetermined coefficients under different karst backgrounds are
determined using multiple nonlinear regression. From these, a new method for predicting single
well productivity of fracture-vuggy reservoir is established. In order to verify the feasibility of the
new method, based on the actual production data of a fracture-vuggy reservoir in Xinjiang, the new
single well productivity prediction method is used to predict the productivity of 134 oil wells. The
results show that the new productivity prediction method not only reduces calculation workload,
but also improves the accuracy of productivity prediction, which contributes to a good foundation
for future oilfield development.

Keywords: single well productivity prediction; fracture–vuggy reservoir; triple medium model;
three-dimensional seismic attribute; multivariate nonlinear regression

1. Introduction

Carbonate oil–gas fields account for more than 50% of the world’s total oil and gas
reserves, and carbonate oil and gas production account for more than 60% of the world’s
total oil and gas production. Therefore, carbonate oil–gas fields are a primary area of
research [1,2]. China’s Xinjiang oil field is a typical fracture-vuggy carbonate reservoir,
located in the Kuche and Luntai counties of the Xinjiang Uygur Autonomous Region. It is
the largest oil field in the Tarim Basin, and its main exploration and development strata are
Ordovician fracture-vuggy carbonate reservoirs [3,4]. Fracture-vuggy carbonate reservoirs
are characterized by extremely complex, porous caverns and fracture structures, large scale
differences, and serious heterogeneity in the reservoir space [5–7]. Relying on traditional
methods of reservoir productivity prediction, when a single well productivity prediction is
carried out for a carbonate reservoir, the resulting prediction produces significant error.
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There are a number of commonly used prediction methods for single well productivity
in fracture-vuggy carbonate reservoirs. One, machine learning, mainly utilizes support
vector machines and neural networks, etc. This approach is based on learning the un-
derlying patterns between an individual well’s productivity and its influencing factors,
utilizing them to predict and judge unknown sample points, and in turn predict the well’s
productivity [8–12]. A second is the discrete medium numerical simulation method; this
model can accurately describe the connectivity of karst caves and fractures and the flow
law of fluid in various flow channels [13]. However, discrete media numerical simulation
has strict requirements with respect to computer hardware and numerical simulation
technology, leaving it unsuitable for large scale use in oil fields [14–19]. A third method,
equivalent continuum numerical simulation, is based on continuum theory. The fractured
reservoir is simulated as anisotropic equivalent continuum with symmetric permeability
tensor [20–22]. However, this method is not applicable to all fracture-vuggy reservoirs,
and the equivalent continuum model cannot accurately describe the local seepage char-
acteristics of fractures and caves, nor accurately reflect the real state of water drive in
reservoirs [23]. All of the above methods are based on reservoir-related parameters such as
permeability, porosity, capillary pressure, and relative permeability curves. The accuracy of
productivity prediction depends on the accuracy of these parameters. However, there are
certain errors in the acquisition of relevant parameters for fracture-vuggy reservoirs, which
lead to large errors in the calculated results of such methods. Allen G. Hunt et al. [24]
proposed a prediction model to describe the seepage in porous media, and Eric J R Parteli
et al. [25] presented a self-organized model for the growth of two- and three-dimensional
percolation clusters in multi-layered structures.

In this paper, a new method of single well productivity prediction, based on its seismic
attributes, is proposed for the first time. In the high precision, three-dimensional seismic
exploration of fracture-vuggy carbonate reservoirs, there are a lot of “beaded” seismic
reflection waves. According to previous drilling data from the Xinjiang oilfield, there are
also a lot of beaded seismic responses deep in the middle of such fields. The high precision
3D seismic reflection of earthquakes can be divided into beaded reflection, disordered
strong reflection, flake reflection and weak reflection. Of these, beaded reflection is the
strongest in terms of reflected energy and amplitude, and it characteristically has a small
lateral extension range and large difference in vertical distribution. Beaded reflections
occur when the properties of rock inside a reservoir (containing large amounts of oil
and gas, large karst caves, and substantial porosity) differ significantly from those of
surrounding rock. This variable density in seismic profile appears as a red and black
beaded or granular shape [26]. The locations of high-producing wells in fracture-vuggy
carbonate reservoirs are correspondent with “beaded-reflection” in seismic attribute [27], so
“beaded—reflection” is an important reference for selecting well locations in fracture-vuggy
carbonate reservoirs [28]. Although high precision 3D seismic methods can determine such
well locations, it cannot predict the productivity of a single well. If a correlation formula
interrelating the 3D seismic attributes and the productivity of a single well were established,
prediction accuracy of the productivity of a single well would be greatly improved.

With respect to circumstances such as those shown in Figure 1 and based on the
triple medium model proposed by Wu Yushu et al. [29], the productivity equation of a
single well for prediction in fracture-vuggy reservoirs was obtained by using the Laplace
transform and the Duhamel principle. Then, the Spearman and Pearson correlation index
calculation methods were used to select the seismic attributes that effect the productivity of
a single well; the selected seismic attributes were introduced to the productivity equation
for triple media by the interporosity flow coefficient and the elastic storativity ratio. Multi-
variate nonlinear regression was used to determine the undetermined coefficients under
different karst background conditions, establishing a new method for predicting single
well productivity in fracture-vuggy reservoirs. Finally, multiple linear regression and BP
neural networks, support vector machines (SVM), and similar methods are compared with
the proposed new productivity calculation method; the results show that the proposed
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method can more accurately predict single well productivity, and is thus better suited to
carbonate reservoir development, providing cost-effective technical support for planning
future oilfield development.
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Figure 1. Beaded reflection.

2. Construction of Productivity Prediction Model for Fracture-Vuggy Reservoir

The triple medium model mainly includes karst caves, fractures, and bedrocks, as
shown in Figure 2. The presuppositions and conditions of the fracture-vuggy reservoir
productivity prediction model are as follows:

(1) The reservoir is infinitely homogeneous and has isotropic permeability;
(2) The well is produced at constant pressure;
(3) The reservoir fluid is single phase;
(4) The seepage law satisfies Darcy’s law and the compressibility coefficient is constant.
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Figure 2. Triple medium reservoir model.

The triple medium mathematical model was established on the basis of fractured-
vuggy reservoir proposed by Wu Yushu et al. [29]. The governing equations of the three
seepage media are as follows:

fracturesystem:
K3

µ
∇2 p3 = φ3C3

∂p3

∂t
+ q∗1 + q∗2 (1)

bedrocksystem:
K1

µ
∇2 p1 = φ1C1

∂p1

∂t
− q∗1 (2)
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Karstcavesystem:
K2

µ
∇2 p2 = φ2C2

∂p2

∂t
− q∗2 (3)

We define a dimensionless variable:

rD =
r

rw
; tD = − K3t

µr2
w(φ3C3 + φ1C1 + φ2C2)

pDj(rD, tD) =
2πK3h

µ
[pi − pj(r, t)](j = 1, 2, 3)

In the formula:

tD − dimensionless time; pDj − dimensionless pressure;
pi − initial formation pressure, MPa; qj − inter− porosity flow factor;
Pj(r, t)− instantaneous formation pressure, MPa;
rD − dimensionless radius;
Kj − permeability, µm2; φ− porosity; µ− fluidviscosity, MPa•s;
rw −wellboreradius, m; h− reservoirthickness, m; ωj − elasticstorativityratio.

When the stratum is infinite, the Laplace transformation of tD is simplified as follows:

∂2PD3

∂r2
D

+
1

rD

∂PD3

∂rD
−
[

ω1sλ1

ω1s + λ1
+

ω2sλ2

ω2s + λ2
+ (1−ω1 −ω2)s

]
PD3 = 0 (4)

At the bottom of the well (rD = 1), when s is small, the solution is asymptotic when tD
is large (tD > 50):

pD3(1, tD) =
1
2
[{ln tD + Ei(−ξ1tD) + Ei(−ξ2tD)− Ei(−δ1tD)− Ei(−δ2tD) + 0.809}] (5)

According to Duhamel’s principle, the product of the production solution under
constant pressure and the pressure solution under constant pressure is:

q̃D =

√
s f (s)K1

[√
s f (s)

]
sK0

[√
s f (s)

] (6)

simplified as

q̃D =

√
s f (s)K1

sK0
(7)

When s is very small, the equation of the relationship between the production and the
elastic storativity ratio of fractures and karst cave and the interporosity flow coefficient
are obtained:

q̃D = −

s ln


√√√√√s

(1−ω1−ω2)

(
s+

(
1

2(1−ω1−ω2)

[(
λ2
ω2

(1−ω1)+
λ1
ω1

(1−ω2)
)
−
√(

λ2
ω2

(1−ω1)+
λ1
ω1

(1−ω2)
)2
−4(1−ω1−ω2)

(
λ1λ2
ω1ω2

)]))
(s+ λ1

ω1
)√√√√√

((
s+

(
1

2(1−ω1−ω2)

[(
λ2
ω2

(1−ω1)+
λ1
ω1

(1−ω2)
)
+

√(
λ2
ω2

(1−ω1)+
λ1
ω1

(1−ω2)
)2
−4(1−ω1−ω2)

(
λ1λ2
ω1ω2

)])))
(s+ λ2

ω2
)

+ 0.5772− ln 2


−1 (8)

S is the complex variable of Laplace in the formula

f (s) = a(s + ξ1)(s + ξ2)/[(s + δ1)(s + δ2)]
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a = 1−ω1 −ω2; b =
λ2

ω2
(1−ω1) +

λ1

ω1
(1−ω2); c = λ1λ2/ω1ω2

ξ j =
1
2a

[
b + (−1)j

√
b2 − 4ac

]
; δj = λj/ωj(j = 1, 2)

The elastic storativity ratio of the cave is ω1, and the interporosity flow coefficient is
λ1. The elastic storativity ratio of the fracture is ω2, and the interporosity flow coefficient is
λ2. Elastic storativity ratio and interporosity flow coefficient are two important variables in
the productivity equations of fracture-vuggy reservoirs; in this paper, the seismic attribute
is introduced into the productivity equation of fracture-cavity reservoirs by establishing
the functional relationship between the seismic attribute, elastic storativity ratio and
interporosity flow coefficient. Assuming:

ω1 = a1x1 + a2x2 + · · ·+ anxn (9)

ω2 = b1x1 + b2x2 + · · ·+ bnxn (10)

λ1 = c1x1 + c2x2 + · · ·+ cnxn (11)

λ2 = d1x1 + d2x2 + · · ·+ dnxn (12)

In the formula: x1, x2 . . . xn is the preferred seismic attribute, and a1, a2 . . . an, b1, b2 . . .
bn, c1, c2 . . . cn, d1, d2 . . . dn is the undetermined coefficient in the equation. Substituting
the four hypothesized Equations (9)–(12) into Equation (8), the productivity evaluation
equation of fracture-vuggy reservoir is obtained: q = f (x1, x2 . . . xn, a1, a2 . . . an, b1, b2 . . .
bn, c1, c2 . . . cn, d1, d2, . . . dn).

3. Productivity Prediction Method for a Single Well

With respect to differences in a reservoir’s geological background, the Xinjiang oil field
can be divided into four areas: fault area, Ming river area, under river area, and complex
karst area. Because the main controlling factors for different geological backgrounds
differ, seismic attributes also differ when predicting the productivity of a single well in its
respective area. In order to optimize the seismic attributes suitable for each area, we adopt
a statistical correlation coefficient method in this paper. The Pearson product moment
correlation coefficient, sometimes referred to as PMCC, is used to measure the correlation
between two variables, X and Y, and its value range is [−1, +1]. The Spearman correlation
coefficient, often expressed by the Greek letter ρ, uses the monotone equation to evaluate
the correlation between two statistical variables. When there are no duplicate values in the
data and both variables are completely monotonically correlated, the Spearman correlation
coefficient is +1 or −1.

The main seismic attributes that affect the productivity of a single well are: distance,
RMS, frequency attenuation percentage, beading area, frequency attenuation coefficient,
sweet spot minimum, and sweet spot maximum. Spearman correlation coefficient calcula-
tions and Pearson correlation coefficient calculations were used to analyze the degree of
influence from seismic attributes on oil well productivity. In this paper, the data of 134 oil
wells were statistically analyzed, and the correlation between seismic attributes and oil
well productivity was analyzed. Finally, the three seismic attributes with the strongest
correlation to the fault, Ming river, under river, and complex karst areas were selected as
the seismic attributes of the prediction method established in this paper.

The Pearson and Spearman methods were used to analyze the correlation between
dynamic data and seismic parameters of four regions of the Xinjiang oil field, and the
results, shown in Table 1, were obtained. In Table 1, the closer the absolute value of the
correlation coefficient is to one, the stronger is the correlation between the two.
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Table 1. Correlation analysis table of seismic attributes and dynamic data.

Individual Well
Producing Rate

Correlation
Coefficient X1 X2 X3 X4 X5 X6 X7

fault area
Pearson −0.401 −0.095 −0.064 0.718 0.692 0.294 −0.222

Spearman −0.473 −0.132 0.037 0.676 0.475 0.434 −0.278

under river area
Pearson −0.11 0.116 −0.247 0.875 0.853 0.815 0.012

Spearman −0.113 0.139 −0.167 0.725 0.743 0.745 0.001

Ming river area Pearson −0.11 0.116 −0.247 0.875 0.853 0.815 0.012

Spearman −0.113 0.139 −0.167 0.725 0.743 0.745 0.001

complex karst
area

Pearson −0.38 0.805 0.75 0.829 0.527 −0.354 0.000

Spearman −0.411 0.791 0.612 0.737 0.237 −0.335 0.000

According to Table 2, the distance, the bead area, and the frequency attenuation
coefficient were selected as the seismic attribute parameters to predict the production of a
single well in the fault area. The bead area, frequency attenuation coefficient, and sweet
spot minimum were selected as the seismic attribute parameters to predict the production
of a single well in both the under river and Ming areas. Frequency attenuation percentage,
bead area and frequency attenuation coefficient were selected as the seismic attribute
parameters to predict the production a of single well in the complex karst area.

Table 2. Seismic attribute corresponding table.

fault
area

X1 distance

Ming river
area

X1 distance

X2 RMS X2 RMS

X3
frequency attenuation

coefficient X3
Frequency attenuation

coefficient

X4 beaded area X4 beaded area

X5
rate of amplitude

change X5
rate of amplitude

change

X6 sweet spot minimum X6 sweet spot minimum

X7 sweet spot maximum X7 sweet spot maximum

under
river
area

X1 distance

complex
karst area

X1 RMS

X2 RMS X2
frequency attenuation

coefficient

X3
frequency attenuation

coefficient X3 beaded area

X4 beaded area X4
rate of amplitude

change

X5
rate of amplitude

change X5 sweet spot minimum

X6 sweet spot minimum X6 sweet spot maximum

X7 sweet spot maximum

In order to verify the accuracy of the new single well productivity prediction model,
134 oil wells in the Xinjiang oilfield were forecasted. Table 3 shows the regression results
of the undetermined coefficients of the nonlinear equation of single well productivity in
the fault area, the under river area, the Ming river area and the complex karst area. The
results obtained from the new well productivity prediction equation were compared with
actual production data. As can be seen in Figure 3, the prediction data of 33 sampled wells
selected from the fault area were 85% accurate compared with actual field data; 48 sampled
wells selected from the under river area were 87% accurate in comparison; 23 sampled
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wells selected from the Ming river area were 80% accurate in comparison; 30 sampled wells
selected from the complex karst area were 80% accurate in comparison.

Table 3. Production calculation results.

Area Parameter Estimated Value Parameter Estimated Value

fault area

a1 −2.50015 c1 1.090775
a2 −13.2065 c2 −1.92896
a3 20.33426 c3 −85.7551
b1 0.047811 d1 −0.00572
b2 0.060151 d2 −0.00717
b3 0.008436 d3 −0.00086

under river area

a1 −2.50015 c1 1.0907751
a2 −13.2065 c2 −1.928956
a3 20.33426 c3 −85.75511
b1 0.047811 d1 −0.005718
b2 0.060151 d2 −0.007175
b3 0.008436 d3 −0.000859

Ming river area

a1 3.29385 c1 59.76628
a2 −0.05509 c2 3.13136
a3 −3.80572 c3 5.747533
b1 3.732016 d1 −0.75274
b2 1.359635 d2 −0.19553
b3 −2.70759 d3 0.55742

complex karst area

a1 3.29385 c1 59.76628
a2 −0.05509 c2 3.13136
a3 −3.80572 c3 5.747533
b1 3.732016 d1 −0.75274
b2 1.359635 d2 −0.19553
b3 −2.70759 d3 0.55742
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4. Comparison with Other Methods

In this paper, three of the most commonly used methods were selected from the
many methods of single well productivity prediction. First, multiple linear regression,
that is, multiple influencing factors as independent variables for the linear representation
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of the dependent variable; second, nonlinear regression using BP neural networks that
include an input layer, a hidden layer, and an output layer in which the upper and lower
layers are fully connected and there is no connection between nodes in each layer [30];
third, support vector machines, which are based on statistical learning theory and seek the
best trade-off between the complexity and learning ability of the model, based on limited
sample information, in order to achieve the best promotion ability [31].

Modelled against actual data from the Xinjiang oilfield, when these three main meth-
ods (multiple linear regression, BP neural networks, support vector machines) were used to
predict the productivity of a single well and their results were compared with the proposed
new method of single well productivity prediction, it was apparent that the new method
achieved the highest accuracy and widest application scope among the the Xianjiang
oilfield’s four areas (see Table 4).

Table 4. Comparison of various methods.

Oil Region Precision Oil Region Precision

fault area

multiple linear
regression 78.05%

under
river area

multiple linear
regression 69.17%

BP neural network 62% BP neural network 70.95%

support vector
machine 72.25% support vector

machine 82.46%

multivariate
nonlinear regression 85% multivariate

nonlinear regression 87%

Ming
river area

multiple linear
regression 75.57%

complex
karst area

multiple linear
regression 73.78%

BP neural network 75.57% BP neural network 71.08%

support vector
machine 72% support vector

machine 77.50%

multivariate
nonlinear regression 80% multivariate

nonlinear regression 80%

5. Conclusions

(1) In this paper, a new method for predicting single well productivity of fracture-
vuggy reservoirs based on optimized seismic attributes was established by using multivari-
ate nonlinear regression based upon the triple medium model.

(2) In this paper, the Spearman correlation index calculation method and the Pearson
correlation index calculation method were used to screen seismic attributes of four reservoir
areas in the Xinjiang oilfield, and three seismic attributes with the greatest influence on the
productivity of a single well were selected from each area.

(3) In this paper, a new single well productivity prediction method was used to
predict the productivity of 134 oil wells. Compared with actual production data, the fitting
accuracy reached greater than 80%. Thus, it was shown that this new method of single well
productivity prediction has higher fitting accuracy, reinforcing technical support for single
well productivity prediction.

(4) The results of the new single well productivity prediction method were compared
with those of similar methods, such as multiple linear regression, BP neural networks, and
support vector machines. The results showed that the fitting accuracy of these other meth-
ods is weaker, with most failing to reach 80%. It was shown that the productivity prediction
method proposed in this paper can more accurately predict the productivity of a single
well and so contribute to a solid foundation for the planning future oilfield development.
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