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����������
�������

Citation: Naumov, V.; Pawluś, M.
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Abstract: Efficient vehicle routing is a major concern for any supply chain, especially when dealing
with last-mile deliveries in highly urbanized areas. In this paper problems considering last-mile
delivery in areas with the restrictions of motorized traffic are described and different types of
cargo bikes are reviewed. The paper describes methods developed in order to solve a combination
of problems for cargo bicycle logistics, including efficient packing, routing and load-dependent
speed constraints. Proposed models apply mathematical descriptions of problems, including the
Knapsack Problem, Traveling Salesman Problem and Traveling Thief Problem. Based on synthetically
generated data, we study the efficiency of the proposed algorithms. Models described in this paper
are implemented in Python programming language and will be further developed and used for
solving the problems of electric cargo bikes’ routing under real-world conditions.

Keywords: cargo bicycles; last-mile logistics; MTSP; CVRP

1. Introduction

In 2018, over 50% of the world population lived in cities and produced around 80%
of global gross domestic product. This number is even higher in regions such as Europe,
Latin America, the Caribbean and Northern America, reaching values around 70%. It is
estimated, that by 2030 urban populations are going to increase all around the world to
values exceeding 60% [1] and to 85% by the year 2100 [2]. It is projected that Africa and
Asia that currently has around 40% of the population living in rural areas will increase to
60% by 2050 with mega-cities (with over 10 million inhabitants) will become more common.
Urban freight transportation is one of the key aspects of every city’s economics.

Freight transport creates problems in urban areas, due to high population density.
Modern cities need solutions to reduce external costs such as congestion, pollution and
others, which have increased in the last few years, especially due to the increase in the
supply of goods. Online sales and globalization are leading to new trends in freight
transport, and more goods are expected to be delivered in the near future. In this context,
most of the goods delivered go to city centers. Last-mile logistics is the least efficient stage
in the supply chain, accounting for up to 28% of the total cost of delivery [3]. Therefore,
improving last-mile logistics and significantly reducing externalities are very important
challenges for scientists. New technologies and means of transport, innovative techniques
and organizational strategies allow for more effective last-mile deliveries in urban areas.

Challenges described above led to formulating the concept of “green logistics”. This
idea intends to replace currently used combustion engine vehicles with zero-emissions
technologies such as electric vehicles, cargo bikes, hybrid vehicles, etc. The use of zero-
emission technologies leads to several benefits for logistics service providers and cities
involved such as lower maintenance and operational costs, reduced noise emissions, access
to pedestrian-only zones or access to historical city centers often inaccessible or accessible
in off-duty hours (off-hour delivery) by internal combustion vehicles [4,5]. Due to the high
total cost of ownership electric trucks with a payload of over one ton are not competitive
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over their diesel engine counterparts [6], due to the high purchase cost, lower range in
winter and battery degradation during vehicle lifetime. In consideration of all presented
advantages and limitations, the use of cargo bicycles and cargo e-bikes is very appealing
for last-mile delivery.

The last-mile logistics concept using cargo bikes have been described in [3,7–10].
Location and planning of micro hubs was addressed in [11–13]. Methods for routing cargo
bicycles have been described in [14,15]. Technical requirements for implementing cargo
bicycles were researched in [16]. Last-mile delivery using cargo bikes have been introduced
in many cities around the world including Seoul [15], Vienna, Budapest, Copenhagen [9]
and Rio the Janeiro [17]. Tools for improving bicycle safety, routing and user behavior was
studied in [18]. The difference in travel time between cargo bicycles and cars have been
studied in [19].

In this paper, we aim to develop a theoretical framework for the optimization of
deliveries by cargo bikes under real-world conditions: obtaining the solution that can be
treated as an answer to both the routing problem and packing problem is an extremely
challenging task, as far as two NP-hard (nondeterministic polynomial) problems must be
solved simultaneously.

Routing problem can be addressed by a Travelling Salesman Problem (TSP) [20]
approach, where we aim to create a route that visits all given nodes, minimizing distance.
Creating a feasible packing plan can be tackled by Knapsack Problem (KP) [21] approach.
In knapsack problem we aim to find a packing plan that does not exceed maximum cargo
bicycle payload. Two problems given above are connected by Travelling Thief Problem [22].
This benchmark problem tackles combination and interdependence of two sub problems
namely TSP and KP. In this problem there are n cities, ant the distance matrix between
them is given. There are m items, each with value and weight. There is also maximum
weight constraint, and the travel speed is related to the knapsack current weight.

The paper has the following structure in the next part we depict the categories of
cargo bikes as the means of sustainable transport; a brief review of publications related
to the research problem and the existing tools are presented in the third part; the fourth
part contains the problem description followed by the overview of the developed algo-
rithms; the fifth section introduces a synthetically generated case study of solving the
combined knapsack and traveling salesman problem; the last part offers brief conclusions
and directions of future research.

2. Cargo Bike Categories

The definition, categorization and commercial use cases such as postal, courier ser-
vices, package delivery and passenger transport have been described by Gruber et al. [7].
Cargo bikes can be divided into several categories, according to their frame build, cargo
distribution on the bike, number of wheels and maximum load. Different types of cargo
bikes and variations of them are described in Table 1. Additionally, every type of bike
presented below can be fitted with an electric motor to assist riders (e-cargo bike), espe-
cially when accelerating or going uphill, which will be very useful when servicing densely
populated areas with routes consisting of many short travels with many stops. Electric
variants of cargo bikes mostly have a quickly changeable battery and can go over 100 km
on a single charge [8]. This range is sufficient for servicing city centers.

There are multiple advantages to using cargo bikes instead of delivery trucks for
last-mile delivery, especially in congested city centers. Cargo bikes or e-cargo bikes are
considered no emission vehicles, as no greenhouse gases are emitted when operating this
type of bike. Operation of cargo bikes is mostly noiseless, except for geared motors, which
can produce a barely noticeable sound, but still quieter than combustion engines. E-Cargo
bikes can also be ridden on non-motorized vehicle zones and historical city centers. They
are treated as regular bicycles in the EU and numerous countries in the world. Due to
their small size, they cause less traffic congestion and use much less parking space. They
also do not require driver licenses in EU countries. Small size, being one of the biggest
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advantages of cargo bikes is also one of its biggest drawbacks. Cargo bike compartments
are limited, especially when comes to their cubic capacity. For example, Fiat Ducato L3H3,
being one of the most popular small delivery trucks in Europe has a payload of 1415 kg and
a cargo area cubic capacity of 14.1 m3 [9]. This gives around 100 kg/m3 of cargo density.
We will compare it to Yokler U [10], a cargo bike made especially for last-mile logistics with
a payload up to 150 kg and 1 m3 cubic capacity [10]. Yoklers cargo density is 150 kg/m3.
This comparison clearly states that optimizing cubic capacity is even more important for
cargo bikes, than for conventional small trucks. Another disadvantage of cargo e-bikes is
much lower range than trucks, so only a narrow area can be serviced on a single charge. In
addition, due to regulatory limited maximum motor power (250 W in EU), cargo e-bike
acceleration and top speed are highly dependent on vehicle load, so that also should be
considered when planning cargo bike routes.

Table 1. Categorization of cargo bikes [23].

Name Description Cargo Space Location

Post bike/bakers’ bike

Two wheeled bikes with a frame geometry similar to conventional
bicycle. Cargo can be located in front of the bike and/or behind the
saddle. Main disadvantage of this type of cargo bike is high center of
mass, which may cause stability issue, especially at low speeds with
heavy loads. The maximum transport weight is usually 50 to 70 kg
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As given in the introduction to this paper, solving the combined problem for packing
and routing is not trivial. The software needs to calculate travel routes for multiple bikes
with constraints according to maximum weight, cubic capacity and load-dependent speed
constraints.

As this problem consists of multiple connected sub-problems, it is reasonable to try to
inspect how different combination of solution algorithms affect the final outcomes. The
sub problems consist of Knapsack Problem for finding the feasible packing plan, and
the Travelling Salesman Problem for routing. These problems can also be combined by
use of multiple Capacitated Vehicle Problem (CVRP). All of the problems given above
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are NP-hard, so optimally solving large instances of this problems is not possible due to
computational complexity growing exponentially.

Routing problem can be addressed by a Travelling Salesman Problem approach. This
mathematical description of the problem was formulated in 1930s by Karl Menger is one of
the most studied combinatorial optimization problems. This problem and its generaliza-
tions and combinations such as Multiple Travelling Salesman Problem (MTSP) are widely
adopted in real-life situations such as transport and delivery planning, agriculture, PCB
drilling etc.

This problem can be formulated as follows: there are n cities and the distances between
them are given by a distance matrix D =

{
dij

}
, where dij is the distance between city i

and j. The salesman has to visit each city exactly once and minimize the distance of the
complete tour. The objective function is given in Equation (1):

f (x) = ∑n−1
i=1

(
dxi ,xi+1

)
, x = (x1, . . . , xn). (1)

where x represents a tour, containing all of the cities exactly once. The aim is to find x
which minimizes total tour distance f (x).

Generalization of this problem is Multiple Salesman Problem, where multiple sales-
men are needed to visit a given number of cities exactly once and return to the initial
position with the minimum travelling cost. MTSP is a simplified version of VRP, by means
of not considering the vehicle capacity or customer demands.

Recent approaches to solving the TSP and its generalizations include: Grey Wolf Opti-
mizer [24], Genetic Algorithms [25,26], Swarm Optimization [27], Simulated Annealing [28]
and hybrid approaches [29].

Knapsack Problem (KP) is a NP-hard optimization problem. The problem was first
formulated in 1957 by George Dantzig. In this problem there are m items I1, . . . , Im, which
have a profit pi and weight wi. The knapsack is constrained by maximum weight W it can
support. The aim of the problem is to pick items, maximizing total profit while their total
weight does not exceed the maximum weight.

The problem is modelled as shown on:

maximize g(y) = ∑m
i=1 piyi, y = (yi, . . . , ym), (2)

subject to ∑m
i=1 wi·yi ≤W where y1 =

{
1 when item i is picked,
0 when it is not.

(3)

Vehicle Routing Problem was formulated by Danzig and Ramser in 1959 as a Truck
Dispatching Problem [30]. The problem is defined as follows:

“There is an undirected and complete graph of N locations (N− 1 customers
and a depot) and a fleet of m vehicles. Each edge connecting two locations has
a traverse cost (Euclidean distance). The goal is to visit each customer exactly
once by a vehicle while minimizing the total cost of the routes. Each route must
originate and terminate in the depot”. [30]

Vehicle routing problems define a set of combinatorial optimization problems that
allow optimizing planning for a fleet of vehicles, when vehicles operate trips that have
multiple stops along the route.

There are multiple combinations and generalizations of this problem, including 3L-
CVRP (Capacitated Vehicle Routing Problem with 3D Loading constraint) [31] consisting
of CVRP with mass constraint and 3D packing constraint, SDVRP–Split Delivery Vehicle
Routing Problem [32], 3L-SDVRP–3D Loading Split Delivery Vehicle Routing Problem [33],
3L-CVRPTWSDO–Split Delivery Vehicle Routing Problem with 3D Loading and Time
Windows constraints [34].

Travelling Thief Problem [22] is an approach to create a new benchmark problem, to
better approximate real-world problems. This benchmark problem tackles combination
and interdependence of two sub problems namely TSP and KP. In this problem there are n
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cities, ant the distance matrix between them is given. There are m items, each with value
and weight. There is also maximum weight constraint, and the travel speed is related to
the knapsack current weight. The aim of the problem is to find a tour that visits all of the
cities exactly once and heads back to the starting city, optimizing objective function while
the total weight of the knapsack is not exceeded.

4. Problem Description and Algorithms Overview

In comparison to conventional cargo trucks bikes have more restriction according to
cubic capacity than trucks, that is why it is important to focus on dimension constraints
and not only consider maximum weight as it is in classical Capacitated Vehicle Routing
Problem (CVRP) formulations. It is also important that the overall bike weight (consisting
of rider weight, bicycle weight and cargo weight) will affect acceleration times and top
speed. This is similar to Travelling Thief Problem, but instead of adding weight during trip
the vehicle leaves depot fully loaded, and then it reduces cargo weight at delivery locations
thus increasing its speed.

The problem can be formulated as follows: There are n homogenous cargo bicycles
with maximum cargo compartment dimensions and maximum cargo weight. There also
are m consignments each with its weight, length, width, height and destination coordinates.
Each bicycle must start and end its route in depot which coordinates are given. Bike
maximum speed depends on the bicycle load. The goal of this problem is to find a set
of routes, which allows for serving all consignments and minimizing total time needed
for delivery.

The problem is represented by the set of following interdependent and connected
parameters:

• Bin packing sub-problem:

◦ Parameters:

� Number of bicycles: n
� Maximum bicycle cargo weight: Wmax
� Cargo Bike compartment length: lmax
� Cargo Bike compartment width: wmax
� Cargo Bike compartment height: hmax
� Number of consignments: m
� Weight of each consignment: Wi
� Length of each consignment: li
� Width of each consignment: wi
� Height of each consignment: hi

◦ Solution:

� The solution is a matrix of binary values called packing plan (Xnm )
where: xij = 1 when consignment j is placed inside the bike i or 0 when
its not

• TSP sub-problem:

◦ Parameters:

� Number of consignments: m which corresponds to number of nodes/cities
for classical TSP formulation

� Number of bicycles n
� Coordinates’ vectors coordinatesXm+1 and coordinatesYm+1, where:

coordinatesX0, coordinatesY0 being depot coordinates and coordinatesXj,
coordinatesYj being target coordinates for consignment j. From these
vectors distance matrix can be calculated

� Velocity vc
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◦ Solution:

� The solution is called routes, where single route r consists of visited
nodes for each bicycle

In TSP sub-problem velocity is calculated depending on the current load of the bicycle.
Velocity calculation is carried out in a similar matter as in TTP approaches [22]:

vc = vcmax− load·vcmax− vcmin
Wmax

, (4)

where vcmax and vcmin are maximal and minimal cargo bike velocities.

4.1. Bin-Pack-3D Algorythm

First method used called bin pack 3D is used as benchmark, because it can determinis-
tically calculate routes, find all possible solutions and then choose the best one according
to service times or total distances. It consists of two sub-problems tackled independently,
with problem constraints distributed accordingly. First tackled problem is generating all
possible knapsack combinations as a constraint programming problem. This problem can
be formulated as:

There are n cargo bicycles with capacity ci and maximum cubic capacity voli. There
are also m packages, each having its weight wj, length li, width wi and height hi. The
objective of this algorithm is to find all feasible solutions xij, where:

xij =

{
1 when package j is placed in the bicycle i,
0 when package j is not placed in the bicycle i,

(5)

subject to constraints:
∑n

i=1 xij = 1, (6)

∑m
j=1 wj·xij ≤ ci, ∀i ∈ (1, . . . , n), (7)

∑m
j=1 vj·xij ≤ voli, ∀i ∈ (1, . . . , n). (8)

First constraint Equation (6) ensures that every package is packed on exactly one bike.
Second constraint Equation (7) checks that no bike have exceeded its maximum cargo
weight. Volume constraint Equation (8) is a simplification of 3D packing as this constraint
is computationally faster, than checking 3D packing feasibility for every single package
and bike. Routes fulfilling those constraints will be referenced to as 2D feasible.

After generating all feasible knapsack packing plans, all possible permutations of
routes are calculated for every single bike packing plan obtained from feasible knapsack
generator, with restriction that every route needs to start and end at the depot. In this case
depot is set to be node no. 0 and it is a beginning of the Cartesian coordinates system used
for routing. Every node coordinate is a X or Y distance from the depot. After calculating all
possible route permutations, the route with lowest travel time is taken. This brute force
approach is described in Algorithm 1.

In this deterministic approach all possible TSP routes are calculated. Each TSP route
starts and ends at depot. For each TSP route total transport time is calculated.

After calculating all route times, the results are searched for a minimal total time
solution. When solution is found it is checked for 3D feasibility according algorithm
(packer) described in [21,35]. This algorithm verifies 3D feasibility according to cargo space
and packages dimensions, not only volume. If the solution is found not 3D feasible, next
best solution is found and 3d feasibility check is conducted, until feasible solution is found.
Not every route is checked for 3d feasibility, because 3D packer algorithm is computationally
expensive and there is no need for it especially when best solution has been found.

This algorithm may not be suitable for large data instances due to its data capacity
and computation time. However, it is very helpful as a benchmark, as it checks all possible
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outcomes and can generate optimal solution. That is why it is used to compare CVRP and
TSP-first approaches.

Algorithm 1: Bin-Pack-3D

Input:

1. Consignments–vector consignment number used for indexing
2. Distance matrix–matrix containing distances between consignment target locations
3. Weight–vector, which holds weight of every package
4. Maximum bike load, maximum velocity vcmax and minimum velocity vcmin
5. Packing plan Xm is a vector containing Boolean values for a single bike obtained from

knapsack generator

Output:
Vector containing route with lowest service time, total service time, total distance
Procedure:

1. Create temporary vector nodes used for storing
2. For every xj 6= 0 in packing plan: append temporary vector nodesn with Consignment

number for xj

3. Acquire all permutations of nodes and store it in the permutations matrix
4. For each permutation in permutations:

i. Create variables time = 0, distance = 0 and vector route
ii. Create dataset containing routes, total times and total distances
iii. Calculate initial load for vehicle in route by summing weights of all nodes in nodes
iv. Append route with (0, nodes[0], . . . nodes[n], 0) as every route starts and ends at depot
v. For every node in permutation:

• Calculate vc = vcmax− load· vcmax−vcmin
Wmax

• Acquire Distance matrix[node][previous node] (if no previous node, use depot instead)
• Increase time by distance/vc
• Decrease load by Weight[node]

vi. Append dataset with route, time and distance

5. Search dataset for lowest route time

Return route, distances and time for a route with lowest time

4.2. MTSP-First Algorithm

In this approach at first MTSP routes for all vehicles are calculated without any
restrictions considering weight or cubic capacity using Cheapest Arc method as a first
solution strategy and Guided Local Search as local search metaheuristic. The algorithm of
this experimental approach is described in Algorithm 2.

After calculating possible MTSP routes, every route for every vehicle is verified for
mass and cubic capacity feasibility and rejecting solutions that are not feasible.

Later remaining solutions are verified for 3D feasibility using packer algorithm. When
all solutions are deemed feasible total distances and times for all vehicles in all routes is
calculated. Next, the results are searched for a feasible solution with lowest time. For sake
of documentation and result analysis, all routes were saved instead of removing them from
the memory, which would improve algorithm memory usage for large datasets.

4.3. CVRP-First Algorithm

In this approach at first CVRP routes for all vehicles are calculated with restrictions
considering weight or cubic capacity using Cheapest Arc method as a first solution strategy
and Guided Local Search as local search metaheuristic. Next the 3D feasibility is checked
the same way as in MTSP and Bin Pack approaches. The algorithm for this approach is
shown on Algorithm 3. As in previous approaches non feasible data was not removed for
research documentation purposes.
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Algorithm 2: MTSP-First

Input:

1. Consignments–dataset containing consignment ID, target locations, weights, lengths, widths,
heights and calculated volumes

2. Data model–dataset containing depot location, number of bikes, bike maximum capacity, cargo
compartment length, width, height, maximum and minimum velocity

Output: Feasible route with best travel time
Procedure:

a. Create DistanceMatrix containing Euclidean distances between every node
b. Solve MTSP with time limit of 2 s and save every generated route
c. Check feasibility of generated routes according to weight and cubic capacity constraints and save KP

feasible routes
d. For every KP feasible route check feasibility using packer() function and save 3D feasible routes
e. For every 3D feasible route:

i. Create variables time = 0, distance = 0 and vector route
ii. Calculate initial load for vehicle in route by summing weights of all nodes in the route from

Consignments
iii. For every node in 3D feasible route:

1. Calculate vc = vcmax− load· vcmax−vcmin
Wmax

2. Acquire DistanceMatrix[node][previous node] (if no previous node, use depot instead)
3. Increase time by Distance/vc
4. Decrease load by Weight[node]

iv. Append dataset for 3D feasible routes with route, times and distances

f. Search dataset for lowest route time

Return route, distances for every vehicle, total distance, delivery time for a single vehicle and total time for a
route with lowest time

Algorithm 3: CVRP-First

Input:

1. Consignments–dataset containing consignment ID, target locations, weights, lengths, widths,
heights and calculated volumes

2. Data model–dataset containing depot location, number of bikes, bike maximum capacity, cargo
compartment length, width, height, maximum and minimum velocity

Output: Feasible route with lowest travel time
Procedure:

a. Create Distance matrix containing Euclidean distances between every node
b. Solve CVRP with time limit of 2 s with constraints according to maximum cargo weight and volume.

Save every generated route
c. For every CVRP feasible route check feasibility using packer () function and save 3D feasible routes
d. For every 3D feasible route:

i. Create variables time = 0, distance = 0 and vector route
ii. Calculate initial load for vehicle in route by summing weights of all nodes in the route from

Consignments
iii. For every node in 3D feasible route:

1. Calculate vc = vcmax− load· vcmax−vcmin
Wmax

2. Acquire Distance matrix[node][previous node](if no previous node, use depot instead)
3. Increase time by Distance/vc
4. Decrease load by Weight[node]

iv. Append dataset for 3D feasible routes with route, times and distances

e. Search dataset for lowest route time

Return route, distances for every vehicle, total distance, delivery time for a single vehicle and total time for a
route with lowest time

5. Numerical Results and Discussion

In this chapter we will compare three approaches to the problem formulated in
Section 4. These approaches were chosen to check the impact of interdependence between
sub-problems. First one called Bin-Pack-3D is deterministic method used for generating
all feasible solutions to the given problem, and it is used as a benchmark for comparing
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other combinations of sub-problems. Other two namely: MTSP-First and CVRP are using
metaheuristic algorithms to find feasible solutions.

For experiments a simple dataset was created consisting of 4 bicycles and 7 consign-
ments. Vehicle capacity was set to 100 kg, cargo compartment length is 800 mm, width
was 500 mm and height was 400 mm. The depot was set as point of origin of Cartesian
coordinates system with coordinates x = 0 and y = 0. Bicycle maximum velocity was set
to 25 km/h as it is a legal maximum assisted speed for e-bike in the EU. Minimum velocity
was set to 5 km/h.

Consignment data was set that the total weight and cubic capacity does not ex-
ceed maximum values for all cargo bikes, so that all the consignments can be deliv-
ered. The consignment coordinates x and y were selected randomly in the following
range: {distance ε Z|−1000 ≤ distance ≤ 1000}. Cargo dimension was generated semi-
randomly so that they fit the normal distribution with mean value 320 mm and standard
deviation of 100 mm. Cargo weight was generated in a similar manner but with mean
value of 15.0 kg and standard deviation of 5.0 kg. The generated data is presented in
Table 2. Graphical representation of node locations and best route according to delivery
time is shown on Figure 1.

Table 2. Experiment data.

Consignment 1 2 3 4 5 6 7 8 9 10

X coordinate [m] 322 −348 835 53 346 −340 −482 −696 956 −168
Y coordinate [m] −524 −517 751 −425 529 35 −988 537 535 −602

Cargo weight [kg] 33.257 21.254 25.058 5.188 18.634 7.416 21.037 7.568 26.254 23.697
Cargo length [mm] 103 155 167 252 354 236 384 290 36 219
Cargo width [mm] 484 298 443 280 309 278 194 384 197 164
Cargo height [mm] 204 343 152 521 306 403 778 327 703 328

Energies 2021, 14, 4132 11 of 17 
 

 

 
Figure 1. Node location and route with lowest total time. 

For constraint programing solver and all metaheuristic approaches Google OR-Tools 
[36] libraries were used. The programming was carried out in Jupyter Lab using Python 
3.9.4 as a kernel. 

5.1. Bin-Pack−3D Results 
Using this approach all feasible solutions were achieved. Due to large number of per-

mutations, only best routes according to time were taken into consideration. The histo-
grams for all 2D feasible, time-optimal routes are shown on Figure 2. 

  

(a) (b) 

Figure 2. Histograms for all Bin Pack routes according to (a) time and (b) distance. 

All TSP-optimal routes for all knapsacks have a mean time of 2780 s, maximum 
spread is 855 s and standard deviation of population is 164 s. 

All 2D feasible solutions count was 827,772. They were calculated in 565 s. There were 
41,253,456 route permutations, which were calculated in 298 s. Total algorithm runtime 
was 864 s. Average time of all 2D feasible routes was 2168 s with population standard 
deviation of 168 s and range of 1105 s. Mean distance of all 2D feasible routes was 11,325 
m with population standard deviation of 991 m and range of 6290 m. 

This algorithm managed to find optimal route [[0, 0, 3, 5, 9], [0, 0, 6, 8], [0, 0, 2, 7, 10], 
[0, 0, 1, 4]] with total travel time of 1525 s and total travel distance of 7914 m. Distance of 
optimal solution was also the minimum of all feasible distances. 

Figure 1. Node location and route with lowest total time.

For constraint programing solver and all metaheuristic approaches Google OR-Tools [36]
libraries were used. The programming was carried out in Jupyter Lab using Python 3.9.4
as a kernel.

5.1. Bin-Pack-3D Results

Using this approach all feasible solutions were achieved. Due to large number of
permutations, only best routes according to time were taken into consideration. The
histograms for all 2D feasible, time-optimal routes are shown on Figure 2.

All TSP-optimal routes for all knapsacks have a mean time of 2780 s, maximum spread
is 855 s and standard deviation of population is 164 s.
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All 2D feasible solutions count was 827,772. They were calculated in 565 s. There were
41,253,456 route permutations, which were calculated in 298 s. Total algorithm runtime
was 864 s. Average time of all 2D feasible routes was 2168 s with population standard
deviation of 168 s and range of 1105 s. Mean distance of all 2D feasible routes was 11,325 m
with population standard deviation of 991 m and range of 6290 m.
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This algorithm managed to find optimal route [[0, 0, 3, 5, 9], [0, 0, 6, 8], [0, 0, 2, 7, 10],
[0, 0, 1, 4]] with total travel time of 1525 s and total travel distance of 7914 m. Distance of
optimal solution was also the minimum of all feasible distances.

5.2. MTSP-First Results

After calculating possible MTSP routes, every route for every vehicle is verified for
mass and cubic capacity feasibility and rejecting solutions that are not feasible.

Histograms of total times and distances for all generated routes is presented on
Figure 3.
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With MTSP solver being time-limited to 2 s total of 239 TSP solutions was found,
231 solutions were deemed feasible according to the weight and volume constraint. Total
of 15 solutions were feasible according to packer algorithm thus being 3D feasible. 3D
feasible routes histogram is shown on Figure 4.
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Figure 4. Histograms for 3D feasible MTSP routes according to time (a) and distance (b).

Mean total time for all 3D feasible solutions was 1652 s, with population standard
deviation of 88 s and spread between maximum and minimum time was 305 s. Mean
distance for all those routes was 8376 m with population standard deviation of 392 m and
spread between maximum and minimum distances was 1416 m. All given values were
rounded to a full second or meter accordingly.

Best found route, according to total travel time using MTSP-First algorithm was [[0, 5,
3, 9, 0], [0, 6, 8, 0], [0, 10, 7, 2, 0], [0, 1, 4, 0]] with total time of 1526 s and total distance of
7913 m. This route is shown on Figure 5.
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5.3. CVRP Approach Results

With CVRP solver runtime limited to 2 s it was able to generate 211 solutions, which
were 2D feasible. Histograms of those values according to total travel time and distance
are shown on Figure 6. 28 of those solutions were deemed 3D feasible.

Best found route according to total travel time was [[0, 10, 7, 2, 0], [0, 6, 8, 0], [0, 5, 3,
9, 0], [0, 1, 4, 0]], with travel time of 1525 s and distance of 7 914 m. Average total travel
time of all 3D feasible solutions was 1705 s with population standard deviation of 70 s
and range of 411 s. Mean distance of all 3D feasible routes was 8817 m with population
standard deviation of 398 m and difference between maximum and minimum values of
2095 m. Histograms representing those data are shown on Figure 7.
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As can be seen on Figure 8 the bicycle routes with best total travel time had the same
nodes as the route with minimum total travel distance, but the sequence of node visits was
different.

5.4. Result Comparison

Results, achieved by metaheuristic methods (MTSP and CVRP) were similar to values
calculated deterministically. The results are presented in Table 3.

Table 3. Experiment results.

Parameters
Used Algorithm

Bin Pack 3D MTSP CVRP

Total route time [s] 1525 1526 1525
Total route distance [m] 7914 7913 7914

As can be seen from the numbers in Table 3, for the synthetic dataset used in this
research, the route parameters for the best solution generated by the corresponding algo-
rithms are almost identical, although the shapes of the obtained routes differ insignificantly.
Thus, the main criterion to choose the heuristic method is the time needed to achieve
the result by running the corresponding algorithm: both proposed metaheuristics are
characterized by the calculation time feasible under real-world conditions. However, the
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CVRP approach in contrast with the MSTP heuristics was able to find an optimal solution,
which is why it will be used for further research under real-life applications.
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6. Conclusions

In this work, we deal with a combination vehicle routing problem with 3D loading
constraints and load-dependent time. This approach is similar to CVRP formulated by
Dantzig and Ramser except for additional constraints, namely, speed being dependent
on the load carried by a vehicle as into traveling thief problem. This research is given
by the problem of last-mile delivery with the use of cargo bicycles, which are powered
by the strength of human muscles thus low power so they cannot achieve high speeds
and those speeds will be even lower when the bicycle is fully loaded. Two wheeled cargo
bicycles have capacity lower to their three or four wheeled counterparts, but with the
lighter load it would allow for faster deliveries, due to being less cumbersome to ride in
densely populated urban areas and being less susceptible to traffic congestions.

We have achieved an optimal solution for a given dataset by deterministically calcu-
lating all possible knapsack combinations and calculating the best route according to the
total travel time for each knapsack combination. This deterministic approach was used
as a benchmark for comparing two metaheuristic approaches, the first being CVRP with
total load and cubic capacity and 3D packing feasibility restrictions. The second approach
was made as an MTSP approach with a check for feasibility according to mass, volume and
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3D packing constraints. Testing of algorithms proved that the CVRP approach was able
to produce optimal solutions in 2 s for 4 bicycles and 10 consignments, which concludes
that this approach is better suited for real-life applications with dynamically appearing
consignments and will be further investigated. MTSP approach was not able to produce an
optimal solution.

Future work should enable implementing efficient 3D packing plans with LIFO con-
straints so that packages can be removed without moving other consignments. In addition,
a constraint programming approach to the whole problem will be attempted with various
metaheuristic approaches.
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