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Abstract: Major changes in the technologies of power generation and distribution systems have
been introduced in recent years due to concern over rapid climate change. Therefore, disturbances
in the large-scale generation, transmission, and distribution of energy are expected to occur in the
near future. This is due to the difficulty in controlling the transmission and distribution of energy
produced from renewable energy sources (RESs), caused by the instability of these sources and the
intermittent nature of their energy. As a result, maintaining the dynamic stability of wind power
flow and control of the network frequency is becoming more challenging due to the high penetration
impacts of RESs. In this paper, a control algorithm using the power-sharing method is proposed
for a wind-based energy storage system to maintain the dynamic stability of wind power flow and
control of frequency in the power network. To maintain the network stability, a storage system
(battery) was installed to store the excess wind power without throwing it into the Secondary/Dump
Load (SL) and minimize losses in power generated by the wind turbine. The results show, the
transient time of wind power flow and the fluctuation rate of frequency are reduced significantly
using a Fuzzy Logic (FL) controller compared to the Proportional Integral Derivative (PID) controller.

Keywords: wind energy; power stability; storage system; secondary/dump load; frequency control;
PID controller; fuzzy logic controller

1. Introduction

In recent years, the percentage of renewable energies on power grids has increased
significantly. This rise was prompted by policies aimed at combating climate change and
securing a sustainable energy supply. The Intergovernmental Panel on Climate Change
(IPCC) reported that: “the production of greenhouse gases, such as nitrous oxide (N2O),
carbon dioxide (CO2) and methane (CH4) are responsible for global warming due to the
evolution of fossil fuels” [1]. The replacement of fossil energy sources by renewable energy
sources (RESs) such as wind, solar, biomass, hydroelectricity, etc., and their integration
into low and high voltage electrical networks is currently the subject of research in several
countries such as the United States, Canada, Germany, and China.

Concerns about climate change caused by the usage of fossil fuels have made re-
newable energy one of the most popular research topics [2]. Around 23.7 percent of the
world’s power is produced by RE. This implies that renewable energy accounts for a quar-
ter of global power generation, with photovoltaic (PV) and wind turbine (WT) systems
accounting for 77% of new renewable energy installations [2]. The main focus in renewable
energy is on microgrids, which are hybrid renewable energy systems that are the subject of
intense investigation. A microgrid is a system that produces clean, sustainable, steady, and
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dependable electricity by combining renewable resources with one or more conventional
power sources [3]. They can be connected to the grid or run independently [2]. Due to the
requirement for a control system to efficiently manage the operation of intermittent renew-
able resources, an energy management system is generally included inside a microgrid [4].
This is mainly achieved by including an energy storage system to increase the effectiveness
and stability of the microgrid.

Recently, several studies have been implemented a fuzzy logic controller to employ
Enegy Management Systems (EMS) on Microgrids. Due to its ability to handle many
tasks effectively and forecast wind speed, solar radiation, load usage, and even the grid’s
health, fuzzy logic is an effective microgrid control, particularly when several functions
are performed on the microgrid [2]. It can regulate many operations in the microgrid,
including load shedding, energy cost reductions, and CO2 emissions [5].

Several studies in the literature used Fuzzy Logic Energy Management System
(FLEMS) to regulate the level of charge of battery energy storage in microgrids of various
topologies in order to extend their lifetime and provide smooth operation [2]. The lifespan
of the battery for a microgrid constituted of PV, WT, and Battery Energy Storage (BES),
and supplying different sorts of loads, can be increased by maintaining the State of Charge
(SOC) of the batteries using FLEMS [6,7]. Considerable achievement in battery lifespan
can also be made by estimating the Fuel Cell (FC) electrolyser and battery power based
on the batteries’ SOC and the FC’s hydrogen tank level using FLEMS for a standalone
microgrid equipped with PV, WT, battery storage, and a FC [8,9]. A FLEMS can also be
used to maximize hydrogen production and optimize power flow and generation in a
microgrid composed of PV, FC and BESS controlled by FLEMS [10]. Furthermore, the grid
power profile can be smoothed in a grid-connected AC microgrid while maintaining the
SOC of the BESS with the lowest possible fuzzy logic rules using an FLMS [11].

Maintaining the SOC of battery storage is one of the key issues of building the EMS
of microgrids of various topologies, as we can see from past research. According to the
research, there are several benefits to using intelligence methods to optimize the FLEMS of
various microgrid topologies [2]. FLEMS optimization allows for more accurate control,
resulting in more efficient operation, reduced backup system costs, and a more balanced
operation between generation and consumption [2]. A number of studies have been
published that have improved the FLEMS of microgrids. Many optimization approaches for
microgrids FLEMS have been utilized. Particle swarm optimization (PSO) [12–14], genetic
algorithm (GA) optimization technique [15], seeker optimization approach (SOA) [16], and
ABC optimization technique [17,18] are all examples of this.

One of the most popular forms of renewable energy today is wind energy [19,20]. How-
ever, the stochastic nature of this energy makes it difficult to integrate it into the power grid,
especially when it comes to large-scale integration into Voltage Source Converter-based
High Voltage Direct Current (VSC-HVDC) power grids. In addition, perfect synchroniza-
tion is required to improve power quality as well as the frequency for keeping the network
stable and robust. The globalization of electricity sectors, which was initiated a few years
back, allows the improvement of new technologies of power generation. Some small-scale
productions of RESs may not be equipped with the transmission lines of electricity [21,22].
The connection of RESs is made straight to the distribution side of the grid and the mi-
crogrid defined as a Distributed Generation (DG). The new prospect with this type of
energy production makes it challenging, which is considered the top area of study in power
system generation.

DG is mainly connected with the same transmission network which is maintained
from the central station. Therefore, different technical problems arise associated with
protection, reliability, harmonics, energy storage, and control systems [21–24]. Due changes
in the environmental parameters, it is difficult to have continuous power generation
from RESs. The fluctuating nature of power generated from these systems, wind in
particular [25], makes it difficult to control, balance, and demand their energy. As a result,
the dynamic stability of network frequency is becoming more challenging due to the
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high penetration impacts of RESs. Under these conditions, many scientists have taken
attempts to find and investigate the main constraints that might happen throughout the
connection made between the power grid and DG. The impacts of one non-renewable and
two renewable types of DG on voltage profiles and power losses on a distribution network
were examined [26]. The conclusion was different types of DG differently influence the
distribution network, and their precise location and size are vital in reducing power losses
and improving voltage stability. Consequently, new mechanisms to analyze the nature of
the variables involved in the new power network such as power stability, current, voltage,
and frequency fluctuations have been established [21–23,27,28]. To improve these variables,
many researchers made efforts to develop the power network control schemes in their
pioneer research. Most of the controllers are based on classical control techniques such as
Proportional Integral Derivative (PID), and Artificial Intelligence Control Techniques such
as Genetic Algorithm, Fuzzy Logic, Neural Network, Particle Swarm, and Linear Quadratic
Regulator Control Techniques [29,30]. To investigate these types of control strategies on
DG-based power systems, literature was carried out to gather information and investigate
the dynamic stability of power flow and fluctuation behavior of frequency caused by
the high penetration of RESs into the grid. To keep the acceptable frequency level in a
DG-based power generation system, the excess power produced by the RESs compared to
the total load demand needs to be thrown in the Secondary/Dump Load (SL). This has
been found to be one of the main drawbacks for a future power plant system [31–33]. In
this paper, a technical rule to store excess energy from the wind turbine and supply it to the
grid in case of power shortage is proposed. The stability of wind power flow depends upon
the natural situation. Therefore, to improve the wind power flow and reduce the frequency
fluctuation of the network, a new control strategy has been developed and proposed to
minimize the transient time of wind power flow as well as the fluctuation behavior of
frequency in the grid. This is achieved by increasing the high penetration of DG using PID
and fuzzy logical controllers.

The contributions of this paper are summarized as follows:

• Designing of a control scheme to share the power between the networks using a
logical algorithm;

• Regulation of the network frequency using a storage system;
• Reduction of the transient time of wind power flow and the fluctuation behavior of

frequency using a fuzzy logical controller;
• Storing the surplus wind power and maintaining a high load demand by supplying it

into the network;
• Comparing the robustness of the fuzzy logic controller over the PID controller to

reduce the fluctuation behavior of frequency in the network.

The rest of the paper is organized as follows: Section 2 describes the modeling of thr
distributed generation grid. Section 3 provides the control algorithm formulation for a
Wind–Diesel Hybrid Power System (WDHPS). Section 4 highlights the control techniques
applied to the network. Section 5 presents the tested scheme connected with a WDHPS to a
power network using a battery-based storage system. Simulation results and performance
evaluations of the proposed method are presented in Section 6, and Section 7 concludes
the paper.

2. Modeling of Distributed Generation Grid
2.1. Wind Turbine

The wind turbine is equipped with an Asynchronous Machine (ASM), with a rated
power of 480 kVA with an inertia of 2 s. The wind DG helps to produce a wind power Pwind
to regulate the velocity of rotation of the ASM shaft to determine its mechanical torque.
Here, the DG is operated at a constant velocity (10 m/s) of the wind power generator. Thus,
it does not have control over its pitch angle [34]. As a function of turbine speed and wind
speed, a 2-D lookup chart is used to measure the output of the turbine torque (Tm). The
characteristics of the wind turbine are presented in Figure 1.
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Figure 1. Operational characteristics of the wind turbine.

2.2. Secondary/Dump Load System

The Secondary Load (SL) helps to control the system frequency by absorbing the
excess wind energy corresponding to the consumer demand. It consists of three-phase
eight sets of resistors grouped in series with Gate turn-off thyristor switches (GTO), shown
in Figure 2a. The nominal power of all sets of resistors, shown in Figure 2b, maintains
binary (8 bit) advancement to absorb the wind power by the SL. The resistive loads can
be varied from 0 to 446.25 kW by steps of 1.75 kW. The SL is only designed to control the
fluctuation of frequency in the power grid by consuming the power produced by the wind
turbine that the battery cannot store [23,27]. GTOs are simulated by ideal switches.

Figure 2. (a) Eight-bit three-phase GTO switches. (b) Operational block diagram of three-phase resistive loads.

2.3. Battery-Based Energy Storage System

A Battery-based Energy Storage System (BESS) with a power converter is shown in
Figure 3a. The BESS is composed of a battery bank. The power (PS-NAME = 150 kW) of
a bridge bidirectional Insulated Gate Bipolar Transistor (IGBT) is regulated in the current
mode. The role of the IGBT is to convert the DC sources to the AC sources in the BESS
interface connecting with an isolated power network. The BESS rated capacity is 390 Ah
with a voltage of 240 V, which can charge and discharge the BESS corresponding to the load
demand of the power network. The control scheme of the Current Controlled Inverter (CCI)
is shown in Figure 3b. The control technique of CCI is carried out in a structure of rotating
dq-coordination. A Phase-Locked Loop (PLL) is used to follow the waveform of grid
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voltage that provides the reference for the coordinate of dq-abc and abc-dq transformation.
The output of the CCI current is calculated and transformed in the rotating frame as well
as the currents (both active and reactive) regulated in four quadrants using a Proportional
Integral (PI) controller. According to the rating of the proportional gain Kp = 1, the integral
gain Ki = 200, and sample time 50 µs, the response time of the CCI is less than 1 min/s.
Therefore, the control of frequency becomes very fast in the power grid [35]. An LC filter
is connected in the CCI to minimize the current ripples. A step-down transformer rated
120 kV/480 V, 150 kVA is used to connect the BESS with an isolated network.

Figure 3. (a) Block diagram of a power converter with BESS. (b) Control scheme of current-controlled inverter.

2.4. Synchronous Condenser

A synchronous condenser (nominal rated power of 300 kVA) generates the voltage
signal to regulate the network voltage when the diesel engine is shut down. The voltage
regulator of the synchronous condenser regulating the excitation of the condenser to supply
the reactive power at a nominal voltage level at different buses is shown in Figure 4. Here,
the primary task of the synchronous condenser is to supply the reactive power in the DG
network [36,37].

Figure 4. The control scheme of a synchronous condenser.

Parameters of the WDHPS network with BESS systems are presented in Table 1.
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Table 1. Parameters for tested WDHPS network.

Sources Symbols/Parameters

Network 480 V, 300 kVA Synchronous Generator

Turbine 480 V, 275 kVA Asynchronous Generator; Wind velocity,
Vnom = 10 m/s; Wind Power, Pnom = 200 kW; Pitch angle 0◦

Load Bus L, load (main) 100 kW, load (Extra) 50 kW, 30 kW, and 45 kW
Secondary/Dump Load Bus SL, vary 0 to 446.25 kW by step of 1.75 kW
Synchronous Condenser Bus SC

Wind Turbine Bus WT
Storage System SS, 240 V, 390 Ah, SOC 50%

Transformer 150 kVA, 120 kV/480 V

3. Control Algorithms for WDHPS

The principle of dynamic stability of wind power flow and the control technique of
frequency in the WDHPS network is presented by a logical algorithm shown in Figure 5.

Figure 5. The control scheme of a synchronous condenser.

To secure the performance of the WDHPS, the system needs an effective control
scheme by using the optimum operating mode to avoid any interruption that occurs during
the wind power flow as well as in the frequency of the network. Therefore, two types of
control schemes should be considered: one is to ensure the dynamic stability of the power
network and reduce the frequency of fluctuations while another is to fulfill the energy
demand with the BESS logical algorithm.

3.1. Control Technique of Frequency in the WDHPS Network

To regulate the network frequency, an instantaneous level of active power must be
generated and consumed by the loads. To maintain the desired level of wind power flow in
the network, the SL absorbs the active power that the BESS cannot store due to its capacity
limitations [27,29,38–40]. In this situation, PT > PL, when PS > 0. Where PS: BESS supplied
power; PT: wind turbine generated power; PL: load consumed power. In case the BESS



Energies 2021, 14, 4111 7 of 18

supplies the energy to the WDHPS, PT < PL when PS < 0. Here, all the surplus wind energy
is absorbed by the SL, 0 < PSL. It can be written as:

PT − PL − PSL − PS = Jω
dω

dt
(1)

where PSL denotes the power absorbed by the SL and J is the inertia of the system,

ω = 2 π f /p (2)

where ω is the velocity (rad/s) of the synchronous machine shaft; p is the poles number
of the synchronous machine. The losses in Equation (1) are not being considered in this
case. Thus, PS < PS_nom and PSL < PSL_nom (converter nominal value). To keep a steady-state
velocity of ASM, we can write:

dω

dt
= 0 (3)

The control strategy of the BESS and SL systems should be coordinated with each other.
The SL should consume the surplus wind power that the BESS cannot store. Therefore,
Equation (1) can be written as:

PT − PL = PSL + PS (4)

Pre f = PS−re f + PSL−re f (5)

PSL−re f = 0 when Pre f < PS−nom (6)

Equation (5) becomes PSL_ref = Pref, if the BESS reaches its maximum capacity (PS_ref).
The SL helps to absorb the wind power if Pref is more than the BESS nominal power.
The PS-Max varies between 0 and PS_nom, by using a Positive Power Limit (PPL) signal.
The power shared between the BESS and the SL is determined by the priority of power
consumption using a logical algorithm (i.e., the SL only consumed the surplus power that
the BESS cannot store) [22,27].

However:
PS−re f = Pre f when Pre f ≤ 0 (7)

PS−re f = PS−Max when Pre f > 0 (8)

In the SL:
PSL−re f = Pre f − PS−Max when Pre f > 0 (9)

PSL−re f = 0 when Pre f (10)

The BESS and SL should recognize the Pref (reference power) simultaneously and
maintain the accuracy at the time of operation. Thus, three types of control techniques
can be implemented [19,23,27]. Using the SL only when the BESS is completely charged,
PS-Max < PT − PL, PS = 0; using the BESS only (0 = PSL) if |PT − PL| ≤ PS_nom; and using
both BESS and SL, if (Pref > 0) PT − PL > 0.

The principle of the frequency control scheme for a WDHPS system and the method
of power sharing between the BESS and SL are represented in Figure 6a,b, respectively.
Here, the three-phase Phase Locked Loop (PLL) collects the error of frequency (which is
the difference between the reference frequency of 60 Hz and the actual network frequency);
and supplies the Pref to confirm the power-sharing priority between the BESS and SL [38].
This is done by using a logical algorithm. At this stage, the power in the BESS node remains
at its nominal value under normal situations.
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Figure 6. (a) Frequency control scheme of the WDHPS system. (b) Power-sharing strategy between the BESS and SL.

3.2. The BESS Control Strategies

The BESS follows two strategies of control mode [21,22,41].
As an inverter, the BESS supplies power to the network, Ps < 0. As a result, the BESS

discharges to provide the required power to fulfill the load demand as the current passes
through the network. Thereby, the velocity of the wind turbine is defined. Consequently,
the power produced by the wind turbine is not enough to cover consumer load demand.

As a rectifier, the BESS consumes the surplus power from the network, Ps > 0. Hence,
the BESS charges bypass the current from the network. In this situation, the velocity of the
wind turbine is very high. The power produced by the wind turbine is more than the total
load demand. Therefore, the surplus power is stored by the BESS and supplied in case of
sudden or peak demand.

4. Control Techniques Applied to the Network

In these scenarios, a fuzzy logic controller and a PID controller are used and compared
to each other to analyze the wind power flow and frequency stability in the network.
Figure 7a,b shows the operational block diagram of PID controller and fuzzy logic con-
troller, respectively.

Figure 7. (a) Frequency control scheme using PID controller. (b) Frequency control scheme using fuzzy logic controller.

A three-phase PLL is used to amplify the network frequency. The network voltage
is supplied as an input of the PLL. To generate a frequency error, a reference frequency
of 60 Hz is considered and compared to the network frequency. The obtained frequency
error is integrated to generate a phase error. In the end, the phase error is implemented
using the PID controller to initiate an output signal to receive the desired level of load
power. According to the characteristics of the network, the proportional gain, Kp = 255,
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integral gain Ki = 0, and the derivative gain Kd = 55 of the PID controller with a sample
time Ts = 200 µs has been tuned to maintain the dynamic stability of the frequency in the
power grid [35]. For the fuzzy logic controller, the frequency error (input 1) is merged with
the derivative of frequency error (input 2) and sends to the fuzzification interface where
the defuzzification (output) is previously determined according to the characteristics of the
PWM signal.

4.1. Fuzzy Logic Control Technique

Fuzzy logic is a logical algorithm that allows for the true condition to be between 0
and 1. In these situations, the fuzzy logic controller can be defined as a degree of truth.
It mainly involves four operational units: (a) the fuzzification interface, (b) rule matrix
interface, (c) fuzzy engine interference, and (d) defuzzification interface, as shown in
Figure 8. The fuzzification interface especially associates with the input’s parameters. To
decide the pre-defined Membership Function (MF), input parameters are fuzzified. The
MF can be designed with different structures like sinusoidal, triangular, exponential, and
trapezoidal. It is defined by selecting the position of input on the x-axis and the quantity
of class variables input on the y-axis. The MF should have to keep the quantity of class
variables in the range between 0 and 1. The rule matrix interface unit is used to determine
the sets of fuzzy rules and the operation of the conditional functions. The rules of fuzzy
logic are described as follows:

If x = A and y = B, then z = C

where both A and B are sets of conditions to be fulfilled, and C is a set of results to be
analyzed. The defuzzification interface transforms the fuzzy values into crisp values.
Several operational techniques of defuzzification interface can be performed (weight
average, bisector mean, centroid, and max-membership) [42,43].

Figure 8. Operational diagram fuzzy logic controller.

4.2. Operational Principle of MF and Their Rules

• Stage 1: At the beginning of the operation, the input and output of the fuzzy logic
controller as well as the dimensions of its variables must be determined. According
to the matrix rule, the input signal must be in the ‘IF’ segment and the output signal
must be in the ‘THEN’ segment.

• Stage 2: The MF and the fuzzy sets must be defined. Then, the degree of fuzzy MF
must connect with all input variables where the output signal is previously identified.

• Stage 3: Here, the fuzzy-interference engine must be described. Then, the rules of the
fuzzy logic should be converted to the control rules and regulate the controller with
respect to the rules.

• Stage 4: At the end, the defuzzification interface processes the rules and transforms
the output values of fuzzy logic to the crisp values.

For this case study, the fuzzifier converts two input signals. The first signal is frequency
error (∆ω) and the other one is the signal of the derivative of the frequency error which can
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be defined as the rate of change of the frequency error signal ∆(∆ω). As an output signal,
the defuzzification decodes the PWM signal. In this fuzzy logic controller, the frequency
error signal is applied as input 1. The dimension of this input variable is in the range
+1 to −1 which has three MFs. The domain of MFs is split up into three linguistic areas
designated by ‘Positive Error’ (0 1 1), ‘Zero Error’ (−1 0 1), and ‘Negative Error’ (−1 −1 0).
The structure of the three MFs corresponds with a triangular-based MF. Figure 9a shows
the MFs of the three linguistic variables.

Figure 9. (a) Membership function, Input variable 1. (b) Membership function, Input variable 2.

The rate of change of the frequency error signal ∆(∆ω) is applied as input 2. The
dimension of this input variable is in the range +1 to −1 which has three MFs. The domain
of MFs is split up into three linguistic areas designated by ‘Positive Error’ (0 1 1), ‘Zero
Error’ (−1 0 1), and ‘Negative Error’ (−1 −1 0). The structure of the three MFs corresponds
with a triangular-based MF and they overlay each other. Figure 9b shows the MFs of three
linguistic variables.

The output fuzzy logic consists of five MFs which are based on the PWM signal. The
dimension of this output variable is in the range −1 to +1. The domain of the output
MF is split up to five linguistic areas designated by ‘Positive Large’ (1 1 1), ‘Positive
Small’ (0.5 0.5 0.5), ‘Zero’ (0 0 0), ‘Negative Small’ (−0.5 −0.5 −0.5), and ‘Negative Large’
(−1 −1 −1). The structure of all MFs is correspond with a triangular-shaped MF. Figure 10
shows the MFs of the three linguistic variables.

Figure 10. Output variables of membership function.
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The major components of the fuzzy logic controller are the mechanism inference and
the rules. Generally, the fuzzy logic rules are classified in a set of linguistic algorithms.
Each rule is triggered with varying judgment to support the MF’s inputs as well as output.
To operate the entire system, a set of nine IF-THEN rules are shown in Table 2. A triangular-
based MF is used for each fuzzy set.

Table 2. Fuzzy logic operation with “If-Then” rules.

Number Fuzzy Logic Rules

1 If Frequency Error is Negative Error and Derivative of Frequency Error is
Negative Derivative Error, Then PWM is Negative Large

2 If Frequency Error is Negative Error and Derivative of Frequency Error is Zero
Derivative Error, Then PWM is Negative Small

3 If Frequency Negative Error and Derivative of Frequency Error is Positive
Derivative Error, Then PWM is Zero

4 If Frequency Error is Zero Error and Derivative of Frequency Error is Negative
Derivative Error, Then PWM is Negative Small

5 If Frequency Error is Zero Error and Derivative of Frequency Error is Zero
Derivative Error, Then PWM is Zero

6 If Frequency Error is Zero Error and Derivative of Frequency Error is Positive
Derivative Error, Then PWM is Positive Small

7 If Frequency Error is Positive Error and Derivative of Frequency Error is
Negative Derivative Error, Then PWM is Zero

8 If Frequency Error is Positive Error and Derivative of Frequency Error is Zero
Derivative Error, Then PWM is Positive Small

9 If Frequency Error is Positive Error and Derivative of Frequency Error is Positive
Derivative Error, Then PWM is Positive Large

To set up the fuzzy rule-based system, the Zadeh logical ‘and’ is used, and is defined as:

µX and µY = min {µX, µY} (11)

where, µX, µY are the input membership functions of the fuzzy sets of X and Y, respectively.
The operational rule-base of the fuzzy logic controller is presented in Table 3. A centroid
defuzzifier interface is used to convert the fuzzy sets into real numbers. The output ů(t) of
the fuzzy logic controller is as follows:

ů(t) = ∑ hiµi

∑µi
(12)

where, hi is the output member value of i-th rule and µi is the value of the output member-
ship function of the i-th rule. To obtain the final required PWM duty cycle, the Equation (12)
should be integrated.

Table 3. Fuzzy rule-based operation.

Frequency Error→ NE ZE PS

Derivative of Frequency Error↓
DNE NL NS ZE
DZE NS ZE PS
DPE ZE PS PL

5. Connection of Wind Turbine with SL and BESS to the Power Network

In this paper, the analysis of the dynamic stability of wind power flow and the behavior
of frequency fluctuation using a BESS in the power network is performed. In this case
study, an example is considered for a High Penetration, No Storage Wind–Diesel system
(HPNSWD) [23,27,44]. This model was developed by Hydro Quebec for an isolated region
to reduce the installation and maintenance cost of the power generation system. The



Energies 2021, 14, 4111 12 of 18

maximum power produced by the wind turbine relies on the feasible wind resources as
well as fuel cost [42]. A wind turbine asynchronous generator rated at 480 V, 275 kVA, a
synchronous condenser generator rated at 480 V, 300 kVA, a BESS rated at 240 V, 390 Ah,
a SL (varying between 0 to 446.25 kW), and consumer load rated up to 230 kW are used
in this case study. According to the studied case, two scenarios of operation of the power
network to ensure the dynamic stability of the power flow and control of the frequency
fluctuation are considered [21,22].

• Scenario 1: Power produced by a wind turbine (PT) is > overall load demand (PL). In
this situation, the BESS (PS) will be charged.

• Scenario 2: Power produced by a wind turbine (PT) is < overall load demand (PL). In
this situation, the BESS (PS) will be discharged.

The two scenarios are analyzed in detail in Section 6 and related to a simulation
and results.

6. Simulation and Result

To provide an adequate amount of energy to consumers, a wind speed of 10 ms−1 must
be maintained in the turbine. In this case, the diesel generator is idled. The synchronous
machine runs as a synchronous condenser when the mechanical power (Pm) input of the
synchronous machine is fixed to zero. When the wind turbine operates at a velocity of
10 ms−1, an output power of 206 kW is obtained. Hence, the wind turbine produces 200 kW
due to the losses in ASM.

6.1. Power Produced by Wind Turbine (PT) Is > Overall Load Demand (PL). In This Situation, the
BESS (PS) Will Be Charged

To analyze the dynamic stability of wind power flow, a comparison of the performance
of the fuzzy logic controller over the PID controller was carried out. Figure 11a shows
that the transient time of wind power is greatly reduced, and its fluctuation rate at 2.5 s
is improved from 256 kW to 244 kW due to the additional load of 50 kW when using the
fuzzy logic control compared to the PID controller. The synchronous condenser supplies
reactive power at a rate of 15 kVA to maintain the acceptable level of voltage to the power
network. Figure 11b reveals the transient time of reactive power flow produced by the
synchronous condenser was also reduced using the fuzzy logic controller.

Figure 11c indicates that the main consumer load is 100 kW. An excess load of 50 kW
has been connected at 2.5 s to observe the power stability and fluctuation of frequency in
the network. Then, the total load of the network is 150 kW, which is less than wind power
produced with respect to the load demand. Therefore, without sending the excess power
to the SL, the BESS was charged at the rate of charge 30 kW in 3 s as shown in Figure 11d.
Figure 11e shows the SL only absorbed 20 kW that the battery cannot store to regulate the
frequency of 60 Hz.

Figure 12a shows the transient time of network frequency is significantly reduced.
Additionally, the frequency fluctuation rate at 2.5 s due to the excess load of 50 kW is
improved from 59.68 Hz to 59.75 Hz using the fuzzy logic controller compared to the PID
controller. The velocity of the ASM is reached at 1.01 pu and runs in a generator mode. The
transient time of ASM velocity is also reduced using the fuzzy logic controller shown in
Figure 12b. Figure 12c shows the system voltage stays at 1 pu. For more observations, data
was collected from 10 s to 14 s. The current of the SL decreased at 2.5 s due to an excess
load of 50 kW. The SL also decreases at 3 s due to the BESS (rate of 30 kW) charging state,
shown in Figure 12d.
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Figure 11. (a) The power produced by the wind turbine. (b) Reactive power supply from the synchronous condenser.
(c) Power consumed by consumer load. (d) Power supplied from the BESS. (e) Power consumed by SL, when the battery
is charged.

Figure 12. (a) Network frequency conditions. (b) Speed generated by ASM generator. (c) Voltage at load bus. (d) The
current at SL, when the BESS is charged.

Figure 13a presents the State of Charge (SOC) of the BESS at 50%. At this point, the
BESS is charged from 49.7% to 49.9%. The BESS current situation is shown in Figure 13b.
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The BESS current was zero before 3 s, but after 3 s, the BESS received a −200 A current to
charge and consumed 30 kW energy from the network. The voltage of the BESS is increased
at 3 s and stays at 262 V during the simulation, as shown in Figure 13c.

Figure 13. (a) BESS SOC condition, (b) BESS current condition and, (c) BESS voltage condition, where the BESS is charged.

6.2. Power Produced by Wind Turbine (PT) Is < Overall Load Demand (PL). In This Situation, the
BESS (PS) Will Be Discharged

To analyze the dynamic stability of wind power flow, the fuzzy logic controller is
compared to the PID controller. Figure 14a shows that, by using the fuzzy logic controller
compared to the PID controller, the transient time of wind power flow is significantly
reduced. Additionally, the wind power fluctuation rate at 0.5 s, 3 s, and 7.5 s due to the
excess load of 50 kW, 30 kW, and 45 kW are improved from 256 kW to 244 kW, 232 kW
to 225 kW, and 257.5 kW to 245 kW, respectively. The synchronous condenser supplies
reactive power at a rate of 15 kVA to maintain the acceptable level of voltage to the power
network. Figure 14b presents the transient time of reactive power flow produced by the
synchronous condenser; this was also reduced using the fuzzy logic controller.

Figure 14c shows the main consumer load is 100 kW. Excess loads of 50 kW, 30 kW,
and 45 kW were connected at 0.5 s, 3 s, and 7.5 s, respectively, to analyze the wind power
stability and fluctuation of the frequency in the network. Here, the total load of the network
was 230 kW. This is more than the total load demand with respect to wind power generation.
Therefore, the BESS has been discharged at a rated power of 50 kW in 4.5 s, as shown in
Figure 14d, to maintain the high load demand in the network. Figure 14e shows the SL
only absorbed 20 kW to regulate the frequency of 60 Hz.

Figure 15a shows by using the fuzzy logic controller, compared to the PID controller,
the transient time of the network frequency is significantly reduced. Additionally, the
frequency fluctuation rate due to the excess loads of 50 kW, 30 kW and 45 kW at 0.5 s,
3 s, and 7.5 s improved from 59.53 kW to 59.72 kW, 59.82 kW to 59.84 kW, and 59.68 kW
to 59.74 kW, respectively. The velocity of the ASM was reached at 1.01 pu and ran in
a generator mode. The transient time of the ASM velocity also reduced using the fuzzy
logic controller; as shown in Figure 15b,c, the system voltage remained at 1 pu. For more
observations, data was collected from 10 s to 14 s. Figure 15d indicates the current of
the SL decreased due to the excess loads of 50 kW, 30 kW, and 45 kW at 0.5 s, 3 s, and
7.5 s, respectively. The SL also decreases at 4.5 s due to the BESS (rated power of 50 kW)
discharging state.
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Figure 14. (a) The power produced by the wind turbine. (b) Reactive power supply from the synchronous condenser.
(c) Power consumed by consumer load. (d) Power supplied from BESS. (e) Power consumed by SL, when the battery
is discharged.

Figure 15. (a) Network frequency conditions. (b) Speed generated by ASM generator. (c) Voltage at load bus. (d) Current at
SL, where the BESS is discharged.
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Figure 16a represents the SOC of the BEES at 50%, where the BESS is discharged from
49.73% to 49.60%. The BESS current situation is shown in Figure 16b. The BESS current was
0 A before 4.5 s, but after 4.5 s, the BESS received 200 A to discharge itself and supply 50 kW
energy to maintain the load demand in the network. The voltage of the BESS decreases at
4.5 s and remains at 254 V during the simulation, as shown in Figure 16c.

Figure 16. (a) The BESS SOC condition, (b) BESS current condition and, (c) BESS voltage condition, where the BESS is discharged.

7. Discussion

From the above simulation, the result shows that, when using a fuzzy logic controller
over a PID controller, the variation of wind power flow and the fluctuation of frequency
reduced significantly compared to previous research. It is also observed that to maintain an
acceptable level of frequency, a storage system (battery) was used to store energy without
losing the surplus wind power in a SL. This energy is then consumed when there is a lack
of wind power.

8. Conclusions

The technologies associated with wind-based DG, the fluctuating behavior of fre-
quency in a wind turbine with a BESS and SL were analyzed and simulated in this paper.
The wind power stability and frequency control technique were analyzed elaborately.
Power-sharing methods between the BEES and SL are presented with a high penetration-
based DG using a logical algorithm. Furthermore, to maintain the acceptable level of
frequency, a storage system (battery) was used to store the excess of wind power and avoid
loss through the SL. This stored power can be used when there is insufficient wind power
generation compared to the total load demand. The response of the BESS usually depends
on the technology used and its dynamics which can cause a wide variation in the power
network (i.e., power flow, voltage and, frequency). Finally, the simulation shows that the
fuzzy logic controller offers better performance compared to the PID controller to analyze
the dynamic stability of the wind power flow and the frequency fluctuation behavior with
the load variation at different times.
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