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Abstract: This paper presents theoretical and experimental research studying the influence of process
parameters on the quality of biomass pellets. A validated mathematical model was developed,
expressing the density of biomass pellets as determined by moisture content, compression pressure,
process heat, the initial density of the material, pelleting speed and initial volume of the material. The
experiments for determining the influence of these parameters on the compression of biomass into
pellets and optimizing the process were conducted on a heated single pellet compression device, using
fir sawdust as raw material. To describe and study the process, four input and control parameters
were varied—raw material moisture, pelleting speed, maximum force applied and pelleting die
temperature. From the experiments, it was noticed that overall, moisture and pressure have the
most important effect on the compression process and pelleting speed, and heat applied also affected
the process. Pellet density decreased when pelleting speed and material moisture increase and the
density increased with a higher compression pressure and higher heat during the process.

Keywords: fir sawdust; pelleting; compaction model; pressure; process heat

1. Introduction

A sustainable global society requires making a substantial change in the manner of
how our society today obtains its energy, leading to the development of new sources of
energy. Increasing the percentage of energy obtained from renewable sources would allow
the replacement of conventional energy sources with high carbon emissions and would
lead to a reduction in global warming [1].

Given that the calorific value of biomass at 20% moisture content is situated between
13 and 15 MJ kg−1, compared to coal that has a calorific value between 27 and 31 MJ kg−1

and that wood/straws/other plant residues can be obtained every year, unlike fossil fuels,
biomass represents a viable solution for yearlong available raw materials to obtain solid,
liquid or gaseous fuels [2–5].

Biomass presents a series of drawbacks due mainly to its high moisture content and
low bulk density that make it difficult to transport, store and use in its natural state. In
order to use biomass for combustion, it is therefore transformed into solid biofuels, such as
pellets and briquettes, through a compression process [6–9].

The technological process of biomass densification by pelleting has a number of special
characteristics that fundamentally distinguish it from the densification of other types of
materials (metal powders, pharmaceutical powders, etc.) due to the fact that biomass
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densification is strongly influenced by a multitude of disruptive factors, whose study
requires deepening, both from a theoretical and experimental point of view. For this reason,
it is important to take into account these disruptive factors in conducting experiments and
in interpreting data in a direct connection with the conditions for conducting experimental
tests [10,11].

Currently, researches in the field of obtaining solid biofuels represent a concern in the
field of mechanical engineering, with the major goal of optimizing densification processes,
improving the quality of biomass products, minimizing costs, increasing the efficiency of
compression equipment and contributing to environmental protection [12–16].

It is important to correlate researches in the field with current trends in switching from
fossil fuels to the use of renewable energy, with the best possible combustion attributes
and the highest possible durability [17–19].

Various types of wood (sawdust, tree trimming branches, vine ropes, walnut shells,
hazelnuts, etc.) or agricultural (cereal straw, cobs and corn cobs, legumes, etc.) residues
are suitable for use in obtaining energy. The use of these types of waste avoids their
transformation into unused waste and ensures the full use of significant resources, which
may eventually decrease or, in some cases where there are sufficient biomass resources,
replace the demand for fossil fuels such as coal, oil or gas. Careful planning is needed at
national and local levels, as well as the installation of infrastructure for the production of
biofuels for the efficient use of biomass [20].

Pellets are solid biofuel normally produced from wood and agricultural waste. They
are presented as cylindrical granules of standard sizes, with diameters generally between
5 and 8 mm (sometimes even up to 25 mm) and with variable length, from 5 to about
40 mm and irregular (broken) ends [21–23]. They have high mechanical strength and good
combustion characteristics. The process of obtaining pellets is similar to that of producing
briquettes, except that the biomass passes through much smaller orifices (holes) and the
finished product has much smaller dimensions [24].

In order to obtain pellets with adequate density and durability, there must be a very
good correlation between the physical–chemical properties of the biomass used as raw
material (composition, moisture, granulation, etc.) and the characteristics of pelleting
equipment (type of die, size of pelleting orifices, type of action on the material, pelleting
speed, etc.). Single pelleting devices can be used to create compaction conditions and have
been used in various researches in the field [25].

Powder compression models have been developed starting in the 1920s and were
focused on the compaction of metal and pharmaceutical powders. The majority of these
models expressed the density of the products compacted in relation to the pressure required
to achieve the compacted product and the density or volume of the raw material [26–35].

The densification or compaction of agricultural and wood biomass into pellets is an es-
sential process for the production of biofuels. Ground biomass particles behave differently
under the action of different applied forces, as determined in the research conducted by
Adapa et al., Nielsen et al., Obidzinski et al. and Puig Arnavat et al. [36–38]. Therefore, it is
important to study the changes in the density and volume of compressed material when
applying pressure. One of the most important reasons for putting experimental data into
an equation is generally the development of charts in order to make it easier to compare
different data sets [39].

In the practice of biomass densification, it was found that between the output pa-
rameters expressing the quality of the pellets obtained and the accumulation of influ-
encing factors represented by the properties of the material and compression conditions,
there is a strong link, the adjustment of these factors being essential in obtaining quality
biofuels [40,41].

Holm and Krizan [42–44] developed compression models that help reveal the behavior
of biomass/particles during the compaction process (pelleting or briquetting) and can help
in optimizing the parameters needed to obtain good quality pellets/briquettes. Pellets
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can be formed either by using agglomerations by pressure or compaction, in which the
particles join together with or without the use of binding agents [45,46].

Xu et al. [47] modeled the effect of input parameters on the density of biomass pellets,
the analysis determining that the moisture content, piston speed and particle size signifi-
cantly affected the density of the pellets, while the influence of die length was negligible.

Said et al. [48] studied the effect of die pelleting orifice diameter on the quality of
straw pellets and have found that the diameter of pellets is close to the diameter of the
pelleting orifices, but the length of pellets decreased considerably while increasing the
compression length of the die.

Poddar et al. [49] studied the effect of pelleting pressure on improving the calorific
value of compressed biomass. It was found that increased pressures do not influence the
heating values.

The paper presents both theoretical and experimental research on the parameters
influencing the pelleting process through an experimentally validated mathematical model
that expresses the density of the pellets as determined by moisture content, compression
pressure, process heat, the initial density of the material, pelleting speed and the initial
volume of the material.

2. Materials and Methods

The theory of dimensional analysis was applied to the study of the process of com-
pressing biomass materials to achieve the mathematical modeling of this process. From the
theory of dimensional analysis, the Π theorem, stated by Buckingham, was applied [50].

According to this theorem, the number of independent criteria in the criterion function
is given by the difference n-r, where n is the number of variables and dimensional constants
and r is the rank of the dimensional matrix, which is equal to the number of fundamental
quantities according to which the variables taken for analysis can be expressed. The
number of fundamental quantities is relatively small and depends on the complexity of
the phenomenon.

From the theoretical research of the biomass powdery materials pelleting process, a
number of 7 main parameters influencing the compaction process, presented in Table 1,
were considered in the study.

Table 1. Parameters of the pelleting process considered in the dimensional analysis.

Parameter Name Notation Measurement Unit Physical Dimension

Heat quantity Q kg m2/s2 ML2T−2

Compression pressure p N/m2 ML−1T−2

Initial material moisture Up % -

Pellet density ρp kg/m3 ML−3

Raw material density ρ0 kg/m3 ML−3

Raw material initial volume V0 m3 L3

Pelleting speed v m/s LT−1

The command parameter die temperature was introduced, and because we wanted
to respect the calculation formula dimensionally, we introduced temperature in a non-
dimensional factor considering temperature as having an energy nature (the second factor
in the right member is exponentiated to the power a). In this manner, a mathematical
model was obtained, taking into account the input and command parameters during the
pelleting process, given in Formula (1).

ρp(ρ 0, p, Ui) = ρ0

(
Q

ρ0·v2·V0

)a( p
p0

)b
U c

i (1)
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where:

- a, b and c are non-dimensional model parameters;
- p0 is the atmospheric pressure;
- p is obtained using the force during the compression process and the geometrical

characteristics of the die:

P =
4Fmax

π∅2 (2)

The procedure of mathematical regression was used for determining the values of
coefficients a, b and c. Therefore, relation (1) was transformed logarithmically, obtaining
the following formula:

lnρp= ln(ρ0)+a·ln
(

Q
ρ0·v2·V0

)
+b·ln

(
p
p0

)
+cln(Ui) (3)

The functional T (a,b,c,ρ0,vi,Vi,θi,p0,pi,ui,ρi) was made as a sum of differences between
the values calculated applying Equation (1) and the real values obtained from experiments,
all squared, where i is situated in the interval [1, n] and n represents the number of
experiments conducted.

T =
n

∑
i=1

(
ln(ρ0i)+aln

(
Qi

ρ0i·v2
i ·V0i

)
+bln

(
pi
p0

)
+cln(Ui)−ln(ρi)

)2

(4)

Partial derivatives were calculated:

∂T
∂b = 2

n
∑

i=1

(
ln(ρ0i)+aln

(
Qi

ρ0i ·v2
i ·V0i

)
+b·ln

(
pi
p0

)
+c·ln(Ui)−ln(ρi)

)
·ln
(

Qi
ρ0i ·v2

i ·V0i

)
= 0

∂T
∂b = 2

n
∑

i=1

(
ln(ρ0i)+aln

(
Qi

ρ0i ·v2
i ·V0i

)
+b·ln

(
pi
po

)
+c·ln(Ui)−ln(ρi)

)
·ln
(

pi
po

)
= 0

∂T
∂c = 2

n
∑

i=1

(
ln(ρ0i)+aln

(
Qi

ρ0i ·v2
i ·V0i

)
+b·ln

(
pi
po

)
+c·ln(Ui)−ln(ρi)

)
·ln(Ui)= 0


(5)

To solve the system numerically, the constants were removed, and the equivalent form
was obtained, which can be written as matrix multiplication:

a
n
∑

i=1

(
ln
(

Q
ρ0i ·v2·V0

))
+

n
∑

i=1

(
ln(ρ0i)·ln

(
Qi

ρ0i ·v2
i ·V0i

))
+a

n
∑

i=1
ln
(

Qi
ρ0i ·v2

i ·V0i

)2
+b

n
∑

i=1

(
ln
(

pi
po

)
·ln
(

Qi
ρ0i ·v2

i ·V0i

))
+

+c
n
∑

i=1

(
ln(Ui)·ln

(
Qi

ρ0i ·v2
i ·V0i

))
=

n
∑

i=1

(
ln(ρi)·ln

(
Qi

ρ0i ·v2
i ·V0i

))
a

n
∑

i=1

(
ln
(

Pi
P0

))
+

n
∑

i=1

(
ln(ρ0i)·ln

(
pi
po

))
+a

n
∑

i=1
ln
(

Qi
ρ0i ·v2

i ·V0i

)
·ln
(

pi
po

)
+b

n
∑

i=1

(
ln
(

pi
po

)2
)
+

+c
n
∑

i=1

(
ln(Ui)·ln

(
pi
po

))
=

n
∑

i=1

(
ln(ρi)·ln

(
pi
po

))
a

n
∑

i=1
(ln(Ui)) +

n
∑

i=1
(ln(ρ0i)·ln(Ui))+a

n
∑

i=1
ln
(

Qi
ρ0i ·v2

i ·V0i

)
·ln(Ui)+b

n
∑

i=1

(
ln
(

pi
po

)
·ln(Ui)

)
+

+c
n
∑

i=1
(lnUi)

2 =
n
∑

i=1
(ln(ρi)·ln(Ui))



(6)

where

A =



n
∑

i=1

(
ln
(

Pi
P0

))2 n
∑

i=0

(
ln(Ui)ln

(
Pi
P0

)) n
∑

i=0

(
ln
(

Pi
P0

))
n
∑

i=1

(
lnUiln

(
Ui
P0

)) n
∑

i=0

[
ln(Ui)

2
] n

∑
i=0

(ln(Ui))

n
∑

i=1

(
ln
(

Pi
P0

)) n
∑

i=0
(ln(Ui))

n
∑

i=0
1

 (7)
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B =



n
∑

i=1

[
ln
(

ρi
ρ0

)
·
(

ln
(

Pi
P0

))]
n
∑

i=1

(
ln
(

ρi
ρ0

)
·ln(Ui)

)
n
∑

i=1

((
ρi
ρ0

))

 (8)

C =

 b
c
k

 (9)

Vector C, consisting of unknown coefficients, is calculated using experimental data,
solving the equation by mathematical regression, in a calculation program (Mathcad), with
unknown C:

C = A−1 * B (10)

Two norms were used to measure the error between the calculated and the experimen-
tal data:

εg =

√
∑n

i=1

(
ρp exp i−ρp(ρ 0expi, Pi)

)2

n·ρp exp
(11)

and

εmax =

max
i=1,...,n

∣∣∣ρp exp i−ρp(ρ 0expi, Pi)
∣∣∣

ρp exp
(12)

where εg is the global error, εmax is the maximum error, ρpexpi represents the value of pellets
obtained from experiments with the order index i, ρp (ρpexpi, Pi) is the theoretical value of
pellet density resulted from experiments with the order index i, ρpexi is the average value
of experimental densities row and n is the number of experiments.

The experimental researches were conducted on a specially designed single-pellet
device (Figure 1), with two dies, with a pelleting orifice of 8 and 10 mm in diameter.

Figure 1. Pelleting device used for experiments. 1. piston; 2. interchangeable die (8, 10 mm for the
pelleting orifice); 3. temperature sensor; 4. heating element; 5. blocking plate; 6. pressing head;
7. pelleting orifice; 8. automation box.

The pelleting stand was connected to a force machine (Figure 2), that is in turn
connected to a computer, thus having the possibility, through the means of specialized
software, to vary the pelleting speed and the compaction force.
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Figure 2. Force machine connected to the pelleting device. 1. computer; 2. phase and frequency
analyzer; 3. pressing head; 4. pelleting device; 5. force machine control panel; 6. automation box;
7. casing; 8. pressing support.

The software offers the possibility of developing a program for the compression of
biomass sawdust by controlling the movement speed of the pelleting piston and the com-
pression force. During each test, the software generates a diagram, Figure 3, representing
the curve of applying force relative to time or deformation.

Figure 3. Time-force curve generated by the software for a pelleting sample.
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During the biomass pelleting process, a series of input and control parameters of the
compaction process were followed, respectively, output parameters of the quality of the
finished products.

In order to conduct the experimental researches on biomass pelleting, material consist-
ing of fir tree was used. After grinding the material down to the form of sawdust, it was
screened using a Retsch sieving system type AS 200 basic to separate the sawdust by size
(sawdust with dimensions <2 mm was used for the experimental research), respectively, to
determine the particle size distribution of the material (Figure 4).

Figure 4. Fir sawdust measuring <2 mm separated on fractions.

The moisture content of sawdust was measured using both a Memmert UFE
500 Model: 100–800 drying stove and a Shimadzu MOC63u thermobalance, obtaining
an average value of 12.97%. This value was chosen as the average value of the material
moisture content, along with two other values: one lower and one higher, the moisture
content values of the material used for experiments being:

- 10% ± 0.1% (by drying the material);
- 13% ± 0,1% (initial moisture content of the material);
- 16% ± 0.1% (by spraying the material with water and leaving for about 30 min to

equalize the moisture).

For pellets obtained using the ∅ 10 mm die, a quantity of 2.5 g of sawdust was weighed,
and for pellets obtained using the ∅ 8 mm die, 1.65 g of sawdust was weighed, samples
being separately placed in a sealed small container to preserve the moisture content.

To measure the energy consumption for each sample, a Chauvin Arnoux C.A. 8334 phase
and frequency analyzer was used. The phase and frequency analyzer is connected to the
power cable of the force machine and to that of the heating element, and records the energy
consumed in the interval from the start to the end of pelleting process.

To perform the experiments, the heating of the die is started and the desired tempera-
ture is expected to be reached. The sawdust is introduced in the die using a metal funnel;
the piston is positioned inside the orifice, the piston is attached to the pressing head of the
force machine and, using the computer software, the biomass pelleting process is initiated.
At the same moment of initializing the pelleting process, the phase and frequency analyzer
is switched on, measuring the energy consumed for the sample in progress. When the
compression force set in the software is reached, the pelleting process finishes, and the
analyzer also stops recording, displaying the energy consumed for the completed sample.

The factorial experiment method was used to design the experiments [51]. This
method is used to perform the study to optimize the process. An experiment is factorial
complete if each level of one factor is combined with each level of the other factors in
the experiment, namely, the experimental samples are given by any possible combination
of factor levels. Taking into account the fact that there were a number of 4 combined
factors (raw material moisture Ui, maximum applied force Fmax, pelleting speed v, die
temperature during the process, θ) which each take 3 distinct values (Ui: 10%, 13% and
16%; Fmax: 10 kN, 20 kN and 30 kN; v: 1.3 mm s−1; 2.1 mm s−1; 2.8 mm s−1; θ: 70 ◦C,
80 ◦C, 90 ◦C) and a number of 3 repetitions of the experiment for each possible combination
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thereof, results in a need for 35 = 243 samples to describe the process using each of the two
pelleting dies of the single pellet device.

3. Results and Discussion

After performing the experimental researches, a number of 243 pellets were obtained
for each die used, Figure 5, for which a series of parameters were recorded, which are
synthetically presented in Tables 2 and 3.

Figure 5. Pellet samples obtained from fir sawdust.

Table 2. Result obtained for the ∅ 8 mm die.

Sample

Raw
Material
Density

ρ0 (kg/m3)

Initial
Moisture

Ui (%)

Temperature
θ (◦C)

Pelleting
Speed
v (m/s)

Maximum
Force

Fmax (kN)

Energy
Consumed

Ec (Wh)

Pellet
Density

ρp (kg/m3)

Pellet
Moisture

Up (%)

1 136.08 10 70 0.0021 10 8 1035.18 8.81

2 136.08 10 70 0.0021 10 7 1020.70 8.74

. . . . . . . . . . . . . . . . . . . . . . . . . . .

118 142.18 13 70 0.0021 20 5 1213.52 10.17

119 142.18 13 70 0.0021 20 5 1203.73 10.04

120 142.18 13 70 0.0021 20 6 1223.93 10.15

121 142.18 13 80 0.0021 20 5 1119.19 9.91

122 142.18 13 80 0.0021 20 6 1075.55 9.87

. . . . . . . . . . . . . . . . . . . . . . . . . . .

242 147.37 16 90 0.0028 30 5 934.41 12.74

243 147.37 16 90 0.028 30 6 957.02 12.53

Each sample obtained was allowed to reach room temperature, after which the length
was recorded, then the volume and density were calculated. The samples were placed
individually in bags inscribed with the number of the sample and the parameters used
during the process, to maintain the moisture recorded at the time of obtaining them,
moisture which was calculated by drying the samples in the oven.
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Table 3. Result obtained for the ∅ 10 mm die.

Sample

Raw
Material
Density

ρ0 (kg/m3)

Initial
Moisture

Ui (%)

Temperature
θ (◦C)

Pelleting
Speed
v (m/s)

Maximum
Force

Fmax (kN)

Energy
Consumed

Ec (Wh)

Pellet
Density

ρp (kg/m3)

Pellet
Moisture

Up (%)

1 136.08 10 70 0.0021 10 4 982.81 8.94

2 136.08 10 70 0.0021 10 5 972.19 8.72

. . . . . . . . . . . . . . . . . . . . . . . . . . .

118 142.18 13 70 0.0021 20 4 1049.21 10.12

119 142.18 13 70 0.0021 20 5 1060.85 9.90

120 142.18 13 70 0.0021 20 6 1064.54 9.97

121 142.18 13 80 0.0021 20 5 046.34 10.13

122 142.18 13 80 0.0021 20 4 1074.26 9.92

. . . . . . . . . . . . . . . . . . . . . . . . . . .

242 147.37 16 90 0.0028 30 7 797.78 12.42

243 147.37 16 90 0.028 30 5 801.75 12.51

For determining individual pellet density, each sample was first weighed using a
Shimadzu MOC63u analytical balance; then, the diameter was measured in three points
(at each of the pellet ends and in the middle) using electronic calipers. The average
diameter was calculated for each sample, followed by a measurement of pellet length.
After determining the diameter and length, the volume of the pellet was calculated using
the formula for cylinder volume (π r2 h). Pellet density was calculated as the ratio between
pellet mass and its volume.

For each die, the values of model parameters were obtained by applying the least-
squares method for all 243 experiments, for the parameters involved in relation (1):

∅ 8 mm die: a = 0.094; b = 0.13; c = −0445 (13)

∅ 10 mm die: a = 0.097; b = 0.133; c = −0514 (14)

By replacing the values of the model parameters in relation (1), we obtained:

∅ 8 mm die : ρp(ρ 0, p, Ui) = ρ0

(
Q

ρ0·v2·V0

)0.094( pi
p0

)0.13
U −0.445

i (15)

∅ 10 mm die : ρp(ρ 0, p, Ui) = ρ0

(
Q

ρ0·v2·V0

)0.097( pi
p0

)0.133
U −0.514

i . (16)

Figures 6 and 7 present the graphical comparisons between the calculated and the
experimental data for the two dies used.

The graphical representation of the dependence of the pellet density on the initial
sawdust moisture and on the die temperature during the process is given in Figure 8.

The diagram shows that as the initial material moisture increases, the density of the
pellets decreases regardless of the value of the temperature reached inside the pelleting
die. The maximum obtained density of the pellets is obtained for values of the material
moisture of 10% and for values of 90 ◦C for the temperature.

The precision estimators were calculated for the dependency law, determined using
the method described in relations (11) and (12), obtaining the following results:

• 8 mm die: εg = 0.005714 and εmax = 0.26034853.
• 10 mm die: εg = 0.005267 and εmax = 0.32460689.
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Figure 6. Graphical comparison between the data calculated using relation (15) and the experimental data for the 8 mm die.

Figure 7. Graphical comparison between the data calculated using relation (15) and the experimental data for the 10 mm die.

Figure 8. Pellet density dependency on initial sawdust moisture and on the temperature reached in
the pelleting die.
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The dependence of pellet density on the considered process parameters does not present
considerable critical points, but intermediate optimum points have been identified. The only
extreme points are on the boundaries of the field of definition considered experimentally.

In order to develop a series of empirical relations between the parameters of the
pelleting process, the statistical analysis of the experimental data is essential. Initially,
the elementary statistical analysis is performed (for the values of the main estimators
of the parameters involved in the process and the correlations between them) and the
higher-level statistical analysis is based on the data from the first stage, followed by the
interpolation of the experimental data. The values of the main statistical estimators of the
process parameters are presented in Table 4 for the 8 mm die.

Table 4. Values of the main statistical estimators of the process parameters for the ∅ 8 mm die.

Parameter Average Median Kurt Skew Mean
Square Deviation Variance

ρ0 141.9 142.2 −1.506 −0.098 4.618 21.327

ρp 999.658 1016 −0.891 −0.487 106.46 11,333.822

Fmax 20 20 −1.506 0 8.165 66.667

Ui 13 13 −1.506 0 2.449 6

θ 80 80 −1.506 0 8.165 66.667

v 0.002 0.002 −1.506 −0.082 0.001 3.7 × 10−7

Ec 5.835 5 −0.49 0.7 2.02 4.08

Vp 2.531 2.46 −0.186 0.814 0.289 0.084

L 30.987 30.1 −0.224 0.802 3.554 12.628

Up 10.478 9.94 −1.394 0.425 1.864 3.475

243 147.37 16 90 0.028 30 5

The values of the correlation between the parameters involved in the process (parame-
ters are given in Table 5).

Table 5. Correlations between the variable parameters involved in the process for the ∅ 8 mm die.

Correlations ρ0 ρp Fmax Ui θ v Ec Vp L Up

ρ0 −0.75 0 0.999 0 0 −0.287 0.762 0.762 0.942

ρp −0.75 0.295 0.762 −0.119 −0.024 0.395 −0.996 −0.996 −0.783

Fmax 0 0.295 0 0 0 0.569 −0.281 −0.281 0.080

Ui 0.999 −0.762 0 0 0 −0.287 0.773 0.772 0.953

θ 0 −0.119 0 0 0 −0.116 0.121 0.121 −0.059

v 0 −0.024 0 0 0 −0.379 0.020 0.020 0.143

Ec −0.287 0.395 0.569 −0.287 −0.116 −0.379 −0.390 −0.390 −0.389

Vp 0.763 −0.996 −0.281 0.773 0.121 0.020 −0.390 0.999 0.799

L 0.762 −0.996 −0.281 0.772 0.121 0.020 −0.390 0.999 0.799

Up 0.942 −0.783 0.080 0.953 −0.059 0.143 −0.389 0.799 0.799

A high value of correlation was between: the density of the raw material and its
moisture content; the density of the raw material and the initial moisture content of pellets
obtained; the initial material moisture content and the initial pellet moisture content; the
volume and length of the pellets; the initial volume of pellets and their length or moisture
content. Intense negative correlations were found between: raw material density and pellet
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density; the volume, length and moisture content of pellets and their initial density; pellet
density and pellet moisture.

Figures 9–12 presented the comparative results obtained after determining the density
of pellets immediately after exiting the die, for the two dies used (8 and 10 mm), depending
on the parameters varied.

Figure 9. Comparisons between the variation of pellet density depending on the initial moisture of
the raw material, for the two dies used.



Energies 2021, 14, 4104 13 of 22

Figure 10. Comparisons between the variation of pellet density depending on the compression force
for the two dies used.
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Figure 11. Comparisons between the variation of pellet density depending on the pelleting speed for
the two dies used.
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Figure 12. Comparisons between the variation of pellet density depending on the pelleting tempera-
ture for the two dies used.

Pellet density increased from the highest moisture content of the material (16%) to the
lowest (10%). For all three moistures used, the density was higher in the case of the 8 mm
die compared to that which was 10 mm.
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Depending on the pelleting force, the density increases when increasing the compres-
sion force in the case of both dies. On average, the density has higher values for the pellets
obtained with the 8 mm die compared to the 10 mm one.

Depending on the pelleting speed, on average, the density decreases from the lowest
pelleting speed (1.3 mm s−1) to the highest (2.8 mm s−1) for both dies; the highest values
are obtained for the speed of 1.3 mm s−1 and the lowest for the speed of 2.1 mm s−1.

Depending on the pelleting temperature, on average, the density does not show
important changes between the three temperatures used, but a higher density was recorded
in the case of 8 mm pellets.

The energy consumed to obtain a pellet had the lowest values for 16% material
moisture, with an average of 4.98 Wh for the 8 mm die and 5.05 for the 10 mm die. The
values of the consumed energy have higher values for 13% and 10% material moisture,
reaching an average of 6.51 Wh in the case of the 8 mm die and 6.25 Wh in the case of the
10 mm die at 10% material moisture. A decrease in energy consumption when increasing
moisture was also observed by other researchers [15,17,52,53].

Depending on the temperature of the die during the process, the energy consumed
had the lowest values at 90 ◦C, intermediate values at 80 ◦C and the highest values at 70 ◦C.
From the analysis of the experimental data, it was observed that the energy consumed has
higher values for the 10 mm die than for the 8 mm die for all three temperatures.

It is also found that the energy consumed is in a close correlation with the compaction
force, registering the lowest values for 10 kN force and the highest for 30 kN force.

The temperature of 90 ◦C has proven to be the most indicated one, because it led on
average to a lower energy consumption and to denser and well-bound pellets, this being in
agreement with other researches [16,24,43,54].

Based on the results obtained from experiments, correlations were made between the qual-
ity of products obtained, translated into pellet density and the input and control parameters.

Figures 13–15 graphically show the results obtained for density with the variation
of the compaction force while maintaining the other parameters constant for the three
pelleting speeds used.

Figure 13. Graphical representation of the density of pellets obtained at the temperature of 90 ◦C and a pelleting speed of
1.3 mm s−1 for the three moistures used.
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Figure 14. Graphical representation of the density of pellets obtained at the temperature of 90 ◦C and a pelleting speed of
2.1 mm s−1 for the three moistures used.

Figure 15. Graphical representation of the density of pellets obtained at the temperature of 90 ◦C and a pelleting speed of
2.8 mm s−1 for the three moistures used.

As it can be seen from Figure 13, in the case of a 1.3 mm/s pelleting speed, a strong
correlation of the density obtained with the compaction force can be observed in the case
of the initial material moisture content of 10% for both pelleting dies, the correlation
decreasing for the middle and maximum moisture contents used for both dies. In the case
of the 8 mm die and a 13% material moisture, there was no correlation between the density
of pellets and the process parameter.
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Overall, a better correlation was registered for the results obtained with the 10 mm
pelleting die.

As it can be observed from Figure 14, the strongest correlation was obtained for the
10% initial material moisture content for both pelleting dies, decreasing for the other two,
the lowest being recorded for the 13% initial moisture content for the 10 mm die and for
the 16% moisture content for the 8 mm pelleting die.

For the pelleting speed of 2.8 mm s−1, similar to the other two speeds, a very strong
correlation was obtained for the 10% material moisture content, but in this case, better
overall correlations were obtained for the 8 mm die.

Figures 16–18 graphically show the results obtained for density with the variation
of the compaction force while maintaining the other parameters constant for the three
pelleting temperatures used.

Figure 16. Graphical representation of the density of pellets obtained at the temperature of 70 ◦C and a pelleting speed of
2.8 mm s−1 for the three moistures used.

From Figure 16, for a temperature of 70 ◦C and a pelleting speed of 2.8 mm s−1, for
the 10 mm die, a strong correlation of the density obtained with the compaction force can
be observed in the case of 10% moisture content, a good correlation for the initial moisture
content of 13% and a low correlation in the case of 16% moisture content. For the 8 mm
die, the results show the best correlation in the case of 16% moisture content and low
correlations for the other two moisture contents.

From the figure above, in the conditions of using the temperature of 80 ◦C, for the
10 mm die, a strong correlation of the density obtained with the compaction force can
be observed for initial moisture content of 10%, a good correlation for 13% and a low
correlation for 16%. For the 8 mm die, the results show the best correlation in the case of 16%
moisture content and lower correlations for the other two moisture contents. Additionally,
a better correlation is observed in the case of the temperature of 80 ◦C than in the case of
the temperature of 70 ◦C.

In the case of the temperature of 90 ◦C, a very good correlation of the density obtained
with the compaction force is observed for both the 8 mm and the 10 mm die, for the raw
material moisture of 10%, good correlations for the moisture of 13% and in the case of 16%
moisture, a good correlation only in the case of the 8 mm die.

We considered that the value 1 for R2 would represent a perfect correlation between
variables; a value higher than 0.7 but lower than 1 signifies a strong dependency between
the parameters, a value between 0.5 and 0.7 is a moderate dependency, a value between 0.3
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and 0.5 signifies a low correlation and a value of situated between 0 and 0.3 is interpreted
as nonsignificant dependencies between the variables.

Figure 17. Graphical representation of the density of pellets obtained at the temperature of 80 ◦C and a pelleting speed of
2.8 mm s−1 for the three moistures used.

Figure 18. Graphical representation of the density of pellets obtained at the temperature of 90 ◦C and a pelleting speed of
2.8 mm s−1 for the three moistures used.

4. Conclusions

The dependency law presented in this paper validated with the experimental data
obtained from pelleting fir sawdust is linear in terms of raw material density. This means
that pellet density depends linearly on the density and the volume of the fir sawdust
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introduced in the pelleting process. Pellet density depends nonlinearly on pressure and
implicitly on the maximum force used during the pelleting process.

The pellet density dependence model of the proposed process parameters shows that:

- The density of pellets increases (nonlinearly) with the maximum pelleting pressure
(implicitly with the maximum force reached);

- The density of pellets decreases nonlinearly with the increase of the moisture content
of the raw material introduced in the pelleting process;

- The density of pellets increases with the increase of the energetic factor, which means
that it increases with the temperature, but decreases with the pelleting speed and with
the initial volume of material introduced in the pelleting die.

The correlations between the parameters of the working process give a series of
definite information about the intensity of the connection between the different variables
that describe the process of compressing biomass powders. Intense connections are noticed
between the density of pellets and the compaction force (and implicitly the pressure) for
both, the moisture content of the raw material.

Following the analysis of the experimental results, it was found that:

- On average, the energy consumed for the production of a pellet sample was higher
for the 10 mm die than for the 8 mm for the initial moisture content of 10% and 16%,
and lower for the initial moisture of 13%;

- Under the same production conditions, pellets obtained using the 8 mm die had a
higher moisture content than the ones obtained using the 10 mm die;

- Pellets obtained with the 8 mm die had a total density higher than those obtained
with the 10 mm die, the average density of the 8 mm pellets being 1075.22 kg m−3 and
that of the 10 mm pellets being 999.66 kg m−3;

- the greatest influence on the average density of pellets was that of the initial mois-
ture content of the material; on average, the density increasing from 964.30 kg m−3

(8 mm die) and 870.10 kg m−3 (10 mm die) for the 16% material moisture content
to 1099.54 kg m−3 (8 mm die) and 1051.16 kg m−3 (10 mm die) at a 13% material
moisture content, reaching 1161.83 kg m−3 (8 mm die) and 1077.73 kg m−3 (10 mm
die) for the 10% material moisture content.

Overall, the research showed that, using the same type of material, with the same
dimensions and moisture content, at the same pelleting speeds and temperatures, applying
the same compaction forces, which translates into different pressures in the pelleting die,
similar quality pellets were obtained for both dies (8 mm and 10 mm in diameter), showing
that increasing the compaction force for the 10 mm die, leading to pressures similar to
the 8 mm die, would lead to a further increase in energy consumption that would not be
justified by the improvement of overall quality, represented mainly by density.
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