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Abstract: The advent of deep-learning technology promises major leaps forward in addressing the
ever-enduring problems of wireless resource control and optimization, and improving key network
performances, such as energy efficiency, spectral efficiency, transmission latency, etc. Therefore, a
common understanding for quantum deep-learning algorithms is that they exploit advantages of
quantum hardware, enabling massive optimization speed ups, which cannot be achieved by using
classical computer hardware. In this respect, this paper investigates the possibility of resolving the
energy efficiency problem in wireless communications by developing a quantum neural network
(QNN) algorithm of deep-learning that can be tested on a classical computer setting by using any
popular numerical simulation tool, such as Python. The computed results show that our QNN
algorithm can be indeed trainable and that it can lead to solution convergence during the training
phase. We also show that the proposed QNN algorithm exhibits slightly faster convergence speed
than its classical ANN counterpart, which was considered in our previous work. Finally, we conclude
that our solution can accurately resolve the energy efficiency problem and that it can be extended to
optimize other communications problems, such as the global optimal power control problem, with
promising trainability and generalization ability.

Keywords: energy efficiency; quantum computing; quantum deep neural networks; quantum
entanglement; quantum machine learning; quantum superposition; resource optimization

1. Introduction

The intelligence of resolving complex problems in engineering, science, finance, etc.,
has become increasingly dependent on machine learning methods and, especially, deep-
learning approaches driven by artificial neural networks (ANNs). In the communications
engineering regime, for example, the studies in [1,2] recently utilized ANN deep-learning
to resolve the non-deterministic polynomial-time (NP-hard) problem of energy efficiency
by means of training an ANN architecture with a set of optimal power allocations so as to
enable the system to learn how to autonomously predict the optimal power control policy
with respect to the varying wireless channel conditions.

Yet, one can exploit classical ANN learning to improve quantum tasks [3,4], such as
adaptive quantum computation [5], quantum metrology [6], modeling non-Markovian
quantum processes [7] and coherent transport of quantum states [8], or exploit quantum
algorithms to speed up classical learning processes [9,10], or exploit quantum computing
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devices to carry out learning tasks with quantum data [11,12]. These options are mainly
available due to the ability of quantum deep learning in performing computationally
intensive tasks by amalgamating the versatility of neural networks with the computing
power of quantum neurons [13,14]. As such, quantum deep-learning based on ANN
rationalism has become an interesting new research topic with industry and academia to
seek more sophisticated ways in exploring the potentials of quantum-oriented solutions.

Within this direction, we notice that the artificial perceptron unit from which ANNs are
constructed cannot extend to the actual capacity of the quantum perceptron. This is because
the ANN perceptron activation functions are non-linear in nature and do not exactly match
with the linear quantum operators. That means that, although classical ANN training can
exploit the advantages of quantum information, its complexity can be further improved
upon embedding it into quantum neural network (QNN) formalism [13–17], which dictates
that training can be performed using a layer-by-layer step and without having to consider
all layers, as done with classical ANNs. Notably, the literature reports quite limited QNN
architectures that are proven to train classical systems based on quantum deep learning.
For instance, the QNN subroutine in [13] attains storing intermediate results in quantum
random access memory, which speeds up the training time compared to ANN algorithms.
The study in [14], models the quantum neurons as natural generalizations of perceptrons
in feed-forward QNN machines, while authors in [15] use a qubit-circuit setup to facilitate
the system to learn classical ANN data assisted by a quantum algorithm. Furthermore, the
recent study in [16] examines the complexity of the machine learning dynamics in QNNs
by proposing parameterized quantum circuits (e.g., hybrid quantum–classical frameworks)
that can approximate the deviation from the actual optimal points explicitly and establish
the ANN complexity as a function of the parameters of QNN. Finally, another recent study
in [17] focuses on inverted harmonic oscillators to analyze the behavior of QNN complexity
at different quantum timescales encoded in dissipation, scrambling and asymptotic regimes,
which serve as useful guidelines for generalizing ANNs and evaluating QNNs.

Bearing the quantum technology landscape and its perspective, this paper introduces
QNN modeling tailored to optimize the power control of the energy-efficiency problem
in wireless communications. We recall that the energy-efficiency problem is a type of
sum-of-ratios problem with NP-hard computational complexity, meaning that it belongs
to the hardest class of problems to resolve and integrate in a practical system setting.
Particularly, we initially show how the optimal power control policy can be approached
using a classical ANN, where learning is typically addressed over a series of input, output
and hidden layers. We then present the proposed QNN deep-learning modeling, which
facilitates the computation of the parameter matrices of each perceptron unitary operator
in a layer-by-layer fashion (i.e., without any need to rely on additional unitary operators
of the full quantum system) and contributes in a threefold manner as summarized in
the following.

1. The proposed QNN model computes the trace over all qubits, accounting for the
total number of perceptrons over all system layers, meaning that it introduces a
comparable training step size to the ANN, which typically computes the trace of
limited qubits, accounting for the perceptron that acts on the running and previous
layers. Therefore, we show through experiments that the convergence speed of our
QNN is comparable to its ANN analogue for deriving the optimal power control
policy of the energy-efficiency problem.

2. To calculate the training function at each QNN training step, our model formulates
the non-unitary stochastic transition mapping of the overall system by considering
the system parameters of two layers only, meaning that the size of the parameter
matrices depends only on the width of the network, rather than the width of each
layer as required in ANN.

3. Due to its small step size and lightweight mapping, our QNN training process can be
approached with similar algorithmic logic as in the classical ANN systems (i.e., by
following a quantum analogue of back-propagation). Therefore, we develop a highly
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practicable QNN-oriented deep-learning algorithm that can be tested in a classical
computer setting using any popular numerical simulation tool, such as Python.

To our knowledge, this study is the first to consider resolving the energy efficiency
problem using QNN deep learning in an effort to provide incentives for exploring the
quantum perspective in different and more complex communications problems.

The practical significance of our work stands paramount for creating new versions of
truly distributed and decentralized network intelligence that can spread across the Cloud
to the Edge, down to reaching end-user devices. In that sense, Things, for example, that
nowadays cannot cope with learning and training tasks due to their limited computational
capacity, could gain inference via more lightweight QNN learning and training algorithms
embedded on Things. Indeed, as proved in [18–20] and verified in [13–17], QNN algorithms
have the potential to speed up learning and training over classical ANN algorithms because
QNNs do not involve large dimensional data in both supervised and unsupervised learning
approaches. That means by having the same computing capacity available at, for example,
a Thing, an Edge Node, a server, etc., we can resolve more complex and process-intensive
tasks by simply switching from ANN to QNN architectural models. This could further
foster advancements on a variety of use cases, such as connected vehicles, industrial
Internet of Things, smart homes and cities, etc., where the need for distributing intelligence
and computing emerges. In the forthcoming Thing-to-Cloud era, the human–human,
human-to-machine and machine-to-machine interactions are expected to require faster
computing facilities for resource management, where QNN models can become the mean
for resolving such complex problems in real-time fashion.

The remainder of the paper is as follows. Section 2 formulates the network system
modeling and the energy efficiency problem of power control. Sections 3 and 4 present
the optimization procedure of the problem at hand, using a generalized ANN approach
and the proposed QNN paradigm, respectively. Section 5 evaluates our findings using
numerical simulations, with Section 6 concluding the paper.

2. System Model and Problem Formulation

To identify the key parameters of the proposed QNN training process with respect to
those utilized in ANN approaches, we draw our focus to a widely-adopted system modeling
(e.g., [1,21,22]) illustrated in Figure 1. Particularly, our modeling structurizes the uplink
transmissions of a multi-cell interference network of total bandwidth B and L with a total
number of users serviced by M total number of Base Stations (BSs), each one equipped with N
antennas. Assuming standard interference effects between the channels of user i = 1, 2, . . . , L
and user j 6= i at each BS m = 1, 2, . . . , M, and by recalling the Shannon capacity theorem, we
can describe the maximum achievable data rate of user i at its associated BS mi:

Ri = B · log2

(
1 +

(‖hmi‖2 · pi)/σ2
i

1 + ∑j 6=i(|hmi · hmij|2 · pj)/σ2
i

)
, (1)

where (i) hmij ∈ CN represents the channel association between the j-th user and the BS
mi, (ii) σ2

i is the thermal power of the zero-mean circularly symmetrical complex Gaussian
channel noise, and (iii) pi and pj are the transmitted powers from the i-th and j-th user to
BS mi, respectively. The operators || · ||, | · |, (·)T (·)† denote the L2-norm, absolute value,
matrix transpose and the Hermitian transpose, respectively, while that typeset in bold (e.g.,
h) expresses variables in matrix form. In view of (1), we formulate the most inclusive yet
hardest-to-optimize expression between the available energy efficiency metrics, so-called
the weighted sum energy efficiency (WSEE), as follows [23,24]:

WSEEi =
wi · Ri

µi · pi + Pc,i
, (in bit per Joule) (2)
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where (i) µi is the coefficient of the power amplifier, (ii) Pc,i is the total circuit power
consumption of user i and its associated BS mi, and (iii) wi ≥ 0 is the priority weight of
each (i, m) link between users and BSs, i.e., considering that some users may have the
perquisite for a higher data rate than others, with w = {w1, . . . , wi, . . . , wj, . . . , wL}. More
sophisticated modelings of the channel interference, as well as (later on) of the circuit
power consumption are available in the relevant literature and can be considered to enrich
the data rate expression in (1) and the energy efficiency expression in (2), respectively; yet,
such insights are out of the scope of this work, which aims to describe the methodology
of applying the new QNN approach on generic wireless communication system settings.
Using (2) and by setting the transmitted power of each user as subject to an average
transmitted power threshold, i.e., pi ≤ Pi with p = [p1, . . . , pi, . . . pj, . . . pL] and P =
[P1, . . . , Pi, . . . , Pj, . . . PL], we formulate the (genetic) WSEE optimization problem as follows:

max
p

∑L
i=1 WSEEi

subject to : 0 ≤ pi ≤ Pi, ∀i = 1, . . . , i . . . , j . . . , L.
(3)

User i

hmi

hmij

User j

Figure 1. Illustration of the considered system modeling drawn on the uplink data transmissions of
a multi-cell interference network consisting of multiple base stations and mobile users.

Problem (3) is a type of sum-of-ratios problem with non-deterministic polynomial-
time hardness (NP-hard) in its computational complexity, meaning that it belongs to the
hardest class of problems to resolve explicitly and integrate in practice. Traditionally, such
complexities are tracked by transforming problems such as (3) into simpler forms, using
variable relaxation methods [23,24], which, on the other hand, introduce considerable
truncation errors that compromise the convergence and accuracy of their solutions. To
bypass such issues, the recent studies of [1,2,21,25] approach NP-hard types of problems
with ANN modeling to obtain their solutions by using the trained neural network. For the
sake of clarity, in the following Section 3, we build such an ANN model by elaborating on
the parameters of the considered WSEE system modeling.

3. Artificial Neural Network Architecture for the Energy Efficiency Problem

The aim is to resolve problem (3) by deriving the power allocations p as closed-form
functions of the propagation channels hmi , hmij and the power threshold parameters P so
that the computation of the optimal power allocation p∗ can have negligible complexity,
i.e., to track the fading channel variations and update in real time. To do so, we compact
the nominator and denominator of the data rate expression in (1) by defining the channel
realization vectors α = [α1, . . . , αi, . . . , αL] with αi = ‖hmi‖2/σ2

i , βij = |hmi · hmij |2/σ2
i , and

re-structure the WSEE problem (3) using the map as follows:

F : a =
(
αi, βij, Pi

)
ij ∈ RL·(L+1) 7→ p∗ ∈ RL, (4)
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where p∗ is the vector with elements of the optimal power allocation coefficients of the
L users corresponding to the M BS indexing, and R is the set of real numbers. At this
point, we recall the ANN universal approximation property, which yields the input–output
relationship of a feed-forward neural network with fully-connected layers, capable of
emulating any continuous function [25]. Indeed, as p ≥ 0, the WSEE function in (2) is
continuous, which facilitates approximating the map in (4) with an ANN model of fully-
connected feed-forward layers, i.e., an input layer based on the realization of the parameter
vector a and an output layer based on the power allocation vector p that, in essence, stands
as an estimate of the optimal power allocation vector p∗ corresponding to input a. Note
that due to feed-forward, not only are these two input–output layers created, but also K
additional “hidden” neural layers are generated as well. To enumerate all the neural layers,
we label the input layer as layer-0, the first “hidden” layer as layer-1 with N1 neurons, the
k-th “hidden” layer as layer-k with Nk neurons, and so on, until the output layer-K + 1,
which includes NK+1 neurons, as illustrated in Figure 2. In such a fully-connected ANN
system, each layer k = 1, . . . , K + 1 has Nk neurons in total, with each neuron n computing
the following:

ζk(n) = fnk

(
γT

nk · ζk−1 + δnk

)
, (5)

where (i) ζk = (ζk(1), . . . , ζk(Nk+1)) represents the Nk+1 × 1 output vector of layer k, (ii)
γnk ∈ RNk−1 the neuron-dependent weights, (iii) δnk ∈ R the neuron-dependent bias
terms, and (iv) fnk is the activation function of neuron n in layer-k. From (5), we see that
although each neuron can perform simple operations, by combining the processing of
multiple neurons in a single ANN, the system can perform complex tasks and obtain the
overall input–output map in (4), which can approximate virtually any type of optimization
function. The challenge, however, is how to configure the weights {γnk} and bias terms
{δnk} for achieving the desired approximation accuracy. This can be resolved by training
the considered ANN system using a supervised procedure, where a certain training set
of optimal power allocations can be deployed as the collection of channel realizations{

an
}NT

n=1 and the corresponding optimal power allocations
{

p∗n
}NT

n=1 of NT training tuples

(an, p∗n). In other words, the training set contains
{

pn
}NT

n=1 examples of desired power
allocation vectors corresponding to some possible configurations of system parameters an,
whereas, by exploiting these examples, the system can learn to predict the power allocation
for new realizations of an that are not included in the running training set. More specifically,
by setting L, the error measure between the actual and desired outputs in (5), the ANN
training problem can be written as follows:

min
γ,δ

1
NT

NT

∑
n=1
L(pn(γ, δ), p∗n). (6)

Problem (6) can be straightforwardly resolved by the recently-announced techniques
based on the stochastic gradient descent (SGD) method [1,2,21,25]. That is, for generating
the training set in (6), the generic WSEE maximization problem (3) should be reformulated
by means of normalizing its maximum transmit power coefficients

{
pi
}

, which requires
transforming the variable pi into pi → p̃i · Pi for all i = 1, . . . , L for constraining these
power coefficients to lie within the closed interval [0, 1]. Using the variable transformation
p̃i · Pi, the WSEE expression in (2) becomes ẼEi( p̃i) =

R̃i
µi ·Pi · p̃i+Pc,i

and the generic WSEE
problem (3) can be rewritten into its equivalent form (i.e., suitable for applying SGD)
as follows:

max
p̃

∑L
i=1 wi

B·log
(

1+ α̃i · p̃i
1+∑j 6=i β̃ij · p̃j

)

µi ·Pi · p̃i+Pc,i

subject to : 0 ≤ p̃i ≤ 1, ∀i = 1, 2, . . . , L,

(7)

where α̃i = αi · Pi, β̃ij = βij · Pj, for all i = 1, . . . , L. In problem (7), the normalized ANN
training set is ST = {(ãn, p̃∗n)|n = 1, . . . , NT} with the parameter vector ã = (α̃i, β̃ij, Pi)ij



Energies 2021, 14, 4090 6 of 15

to be able to be conveniently resolved, using the improved branch-and-bound method
proposed in [21]. Note that the importance in reformulating the initial problem (3) into (7) is
that for any value of the maximum power vectors P1, . . . , PL, the obtained optimal solution
ensures that the transmit powers are lying within [0,1]. Consequently, problem (7) will
have much weaker dependency between the optimal solution and the maximum power
constraints, compared to the problem (3). Besides this, problem (7) gives a simpler structure
of the optimal solution as a function of the input parameters a, among which we find the
maximum power constraints P1, . . . , PL, which simplifies the task of learning the optimal
power allocation rule.Energies 2021, 14, 4090 6 of 16
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Figure 2. Illustration of the channel transition between two layers during the ANN training pro-
cess. To attain a stable state (i.e., the optimal result) the ANN needs access to multiple layers (i.e.,
input/output/hidden layers) at any given time.
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After the training phase, the resulting ANN input–output relationship provides an
approximation of the optimal power allocation policy, which can be written in closed-form
by considering the composition of the affine combinations and activation functions of all
neurons. As shown in [1,21], such an approach provides accurate results with limited
complexity, which makes NP-hard problem optimization (such as ANN-driven WSEE
optimization) able to be applied in close-to-real-time, i.e., far faster and reliably than
conventional relaxations discussed previously in Section 2.

4. Deep Quantum Neural Network Architecture for the Energy Efficiency Problem

By exploiting the quantum advantage [19], it is anticipated that QNN will be able
to solve the WSEE optimization problem (3) with comparable or better efficacy than its
classical ANN counterpart. This is because upon realizing the ANN training process as
a variational quantum circuit built on a continuous variable architecture, the training
process can be enabled to encode quantum information in continuous degrees of freedom,

Figure 2. Illustration of the channel transition between two layers during the ANN training pro-
cess. To attain a stable state (i.e., the optimal result) the ANN needs access to multiple layers (i.e.,
input/output/hidden layers) at any given time.

After the training phase, the resulting ANN input–output relationship provides an
approximation of the optimal power allocation policy, which can be written in closed-form
by considering the composition of the affine combinations and activation functions of all
neurons. As shown in [1,21], such an approach provides accurate results with limited
complexity, which makes NP-hard problem optimization (such as ANN-driven WSEE
optimization) able to be applied in close-to-real-time, i.e., far faster and reliably than
conventional relaxations discussed previously in Section 2.

4. Deep Quantum Neural Network Architecture for the Energy Efficiency Problem

By exploiting the quantum advantage [19], it is anticipated that QNN will be able
to solve the WSEE optimization problem (3) with comparable or better efficacy than its
classical ANN counterpart. This is because upon realizing the ANN training process as
a variational quantum circuit built on a continuous variable architecture, the training
process can be enabled to encode quantum information in continuous degrees of freedom,
i.e., by exploiting the amplitudes of the propagation channels hmi and hmij . That means
that the feed-forward neural network can switch its building blocks from classical to
quantum neurons, which, in turn, enterprise the computations of the power allocations
by considering not only the system parameters of their own k layer, but all the K + 1
layers. Such a feature is known as universal quantum computation [26] and enables fast
optimization with minimum memory demands because the number of the required qubits
depends only on the width of the network at hand.

In this respect, we model the QNN training as a quantum circuit of multiple quantum
perceptrons, where each perceptron is deemed to be a general unitary operator acting on m
input qubits and n output qubits. That means that each perceptron can (i) be built using L
hidden layers of qubits, (ii) act on an initial input state ρin of qubits, and (iii) produce an
output state ρout of qubits that can be represented by the following:
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ρout ≡ trin,hidden

(
U
(

ρin ⊗ |0 · · · 0〉out,hidden〈0 · · · 0|〉
)
U †
)

, (8)

where U = UoutULUL−1 · · ·U1 is the QNN quantum circuit and U † is the layer-specific
perceptron expressed as the unitary operator of the product of the qubits between adjusting
layers, e.g., perceptron Ul reflects to the qubits between layer-(l − 1) and layer-l, with
l = 1, . . . , L. Note that, as perceptrons are arbitrary unitary operators, they may not
commute within the QNN, e.g., as shown in Figure 3, meaning that the order of their
operations can be defined as the composition of a sequence of completely positive layer-to-
layer εl transition maps, i.e., the following:

ρout = εout(εL(. . . ε2(ε1(ρin)) . . .
))

, with (9)

εl
(

Xl−1
)
≡ trl−1

(
∏1

j=ml
U l

j

(
Xl−1 ⊗|0 · · · 0〉l〈0 · · · 0|

)
∏ml

j=1 U l†

j

)
.
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Figure 3. Illustration of the channel transition between two layers during the QNN training process.
To attain a stable state (i.e., the optimal result) the QNN needs to only access two layers at any given
time, which greatly reduces the memory requirements compared to ANNs, which require access to
more than two (multiple) layers each time (recall Figure ?? for example).

For example, U l
j in (9) is the j-th perceptron acting on previous layers l − 1 and the

current layer l, while ml is the total number of perceptrons acting on layers l − 1 and l.
On this basis, the QNN mapping in (9) facilitates the information data to propagate from
the input to the output, which naturally works as a feed-forward neural network; thus, it
corresponds to the classical ANN mapping in (4) of the generic WSEE problem (3). More
importantly, adopting the mapping in (9), the QNN training can be performed with similar
algorithmic logic as that of the classical ANN system based on the mapping in (4), i.e., by
following a quantum analogue of the so-called back-propagation algorithm [27]. Recall that
back-propagation aims at facilitating the training phase to obtain the output density matrix
ρout

x as closer to the desired output |ψout
x 〉, which corresponds to the input |ψin

x 〉. As such,
we integrate back-propagation of (9) by setting the training function as follows:

C =
1
N
·

N

∑
x=1
〈ψout

x |ρout
x |ψout

x 〉, (10)

which is known in the field of quantum information theory as the fidelity function [27].
Particularly, function C in (10) helps to (i) estimate the perceptrons as quantum states
averaged over the training data, and (ii) quantify the difference between the ρout output and
a certain (desired) output by varying between 0 (worst estimation) and 1 (best estimation).
For example, C can be minimized by updating the perceptrons unitary operators in the
QNN training (9), i.e., U → eiεKU, where K is the matrix with all system parameters of the
corresponding perceptron unitary operator and ε, the step size of the SGD algorithm. In

Figure 3. Illustration of the channel transition between two layers during the QNN training process.
To attain a stable state (i.e., the optimal result) the QNN needs to only access two layers at any given
time, which greatly reduces the memory requirements compared to ANNs, which require access to
more than two (multiple) layers each time (recall Figure 2 for example).

For example, U l
j in (9) is the j-th perceptron acting on previous layers l − 1 and the

current layer l, while ml is the total number of perceptrons acting on layers l − 1 and l.
On this basis, the QNN mapping in (9) facilitates the information data to propagate from
the input to the output, which naturally works as a feed-forward neural network; thus, it
corresponds to the classical ANN mapping in (4) of the generic WSEE problem (3). More
importantly, adopting the mapping in (9), the QNN training can be performed with similar
algorithmic logic as that of the classical ANN system based on the mapping in (4), i.e., by
following a quantum analogue of the so-called back-propagation algorithm [27]. Recall that
back-propagation aims at facilitating the training phase to obtain the output density matrix
ρout

x as closer to the desired output |ψout
x 〉, which corresponds to the input |ψin

x 〉. As such,
we integrate back-propagation of (9) by setting the training function as follows:

C =
1
N
·

N

∑
x=1
〈ψout

x |ρout
x |ψout

x 〉, (10)

which is known in the field of quantum information theory as the fidelity function [27].
Particularly, function C in (10) helps to (i) estimate the perceptrons as quantum states
averaged over the training data, and (ii) quantify the difference between the ρout output and
a certain (desired) output by varying between 0 (worst estimation) and 1 (best estimation).
For example, C can be minimized by updating the perceptrons unitary operators in the
QNN training (9), i.e., U → eiεKU, where K is the matrix with all system parameters of the
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corresponding perceptron unitary operator and ε, the step size of the SGD algorithm. In
view of (10), we can define the QNN learning rate η and the update matrices Kl

j for each
perceptron j at layer l as follows:

Kl
j = η · 2ml−1

N
·

N

∑
x=1

trrest Ml
j , with (11)

Ml
j =

[
1

∏
i=j
U l

i

(
ρl−1,l

x

) j

∏
i=1
U l†

i ,
ml

∏
i=j+1

U l†

i

(
Il−1

⊗
σl

x

) j+1

∏
i=ml

U l
i

]
,

ρl−1,l
x = ρl−1

x
⊗
|0 · · · 0〉l〈0 · · · 0|,

σl
x = F l+1(. . .F out(|ψout

x 〉〈ψout
x |
)

. . .
)

and F l is the join channel to εl , which is the transition channel from layer l + 1 to layer l,
e.g., as illustrated in Figure 3.

Relying on (10), (11) and the feed-forward rationale of the SGD algorithm, we present
in Algorithm 1 the pseudo-code to structurize the QNN deep-learning that derives the opti-
mal power allocations of the WSEE problem (3). Notice the key contribution of Algorithm 1
that computes the trace over all qubits (i.e., in line 9) independently from U l

j , which gives
rise to two important features for QNN operation. First, recalling that one of the merits of
SGD rationale is that the parameter matrices K can be computed layer-by-layer without any
need to rely on additional unitary operators of the full quantum system [14], Algorithm 1
has a smaller step size ε than the ANN training in (6), which speeds up QNN convergence
toward deriving the optimal WSEE power allocations. Second, by coordinating (10) with
SGD, the computation of (9) at each step of Algorithm 1 involves only two layers, meaning
that the size of the K matrices in the calculation of (10) depends only on the width of the
network, rather than the width of each layer as required by the respective ANN training
function in (5). This latter feature results in considerable memory savings and makes the
proposed QNN deep-learning process highly practicable to apply in a realistic system
setting and scaling. To demonstrate the practicability of our new QNN approach, the
following Section 5 evaluates Algorithm 1 using benchmarks and simulations.

Algorithm 1: Pseudo-code of the proposed quantum deep-learning process.
1 Initialization:
2 Initialize Unitary U l

j randomly ∀j, l
3 Feed-forward:
4 For each batch of (|ψin

x 〉,|ψout
x 〉),∀x ∈ Batchsize, l ∈ L

5 (i) Apply the channel εl to the output state of layer l − 1
6 (ii) Tensor ρl−1

x with layer l in state |0 · · · 0〉l and apply U l = U l
ml
· · · U l

1:
7 (iii) Trace out layer l − 1 and store ρl

x
8 Update Network:
9 (i) Compute the parameter matrices Kl

j

10 (ii) Update each unitary U l
j in which U → eiεKU

11 Repeat:
12 Go to step-3 until the training function reaches its maximum.

5. Numerical Evaluations

Before evaluating our findings, we recall that it is practicably impossible to simulate
deep QNN learning algorithms using classical computers for more than a handful of qubits,
due to the exponential growth of Hilbert space [18–20]. Therefore, our evaluations will
follow similar rationalism with the evaluations of the relevant studies in [13–17], where
the QNN performance is examined over a series of benchmarks to evaluate the size and
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number of the QNN training steps, e.g., if the algorithms can attain a stable state (i.e.,
derive the optimal result) in fast time (i.e., in as few as possible and short training steps).

We also recall that a striking feature of Algorithm 1 is that the parameter matrices can
be calculated layer-by-layer without ever having to apply the unitary corresponding to the
full quantum circuit on all the constituent qubits of the QNN in one go. In other words,
we need only to access two layers at any given time (as shown in Figure 3), which greatly
reduces the memory requirements of Algorithm 1 compared to ANNs, where access to
more than two layers are required (as shown in Figure 2) with the respective increase in
memory requirements. Hence, the size of the matrices in our calculation only scale with the
width of the network, enabling us to train deep QNNs in a considerably less resource-costly
and faster way than ANNs.

As such, to simulate the QNN deep-learning process in (11) toward optimizing the
WSEE power allocation problem (3), we use a classical desktop computer with typical
processing capacity (i.e., Intel i7 with 16 GB of RAM), which, in principle, is not designed
to handle more than a handful of qubits (as stated previously). That means that, with
mainstream equipment, we can execute Algorithm 1 for a four-layer QNN system of 16
neurons in total (i.e., 4 neurons for the input layer, 8 neurons for the two hidden layers
and 4 neurons for the output layer), while the addition of more neurons is subject to future
quantum-based equipment. Yet, even under conventional equipment, we demonstrate that
such a four-layer QNN system can attain much higher performance than ANN systems of
a bigger size, i.e., consisting of seven layers and 28 neurons in total. In addition, for fair
simulation comparisons, we deliberate over a realistic system setting similar to [21], which
provides a generic Matlab coding of the so-called globally optimal energy efficient power
control framework in interference networks.

On this basis, we translate the codes provided by [14] (available online at [28]) to
Python coding for producing a training module composed of 102,000 training samples
for Pmax = −30,. . . ,−20 dB in 1 dB step and 10,200 validation samples, i.e., 10% of the
overall training samples. In the produced training module, we split the total number of
iterations NT into R rounds so that the parameter matrices Kl

j in (11) can be re-initialized
at the beginning of each feed-forward round of execution. Such matrix re-initialization
ensures that the QNN training function C in (10) can increase with a smaller step size (i.e.,
more rapidly) than the ANN training function L(pn(γ, δ), p∗n) in (6) because each matrix
Kl

j includes all the necessary unitary operators of the full quantum system, rather than
additional unitary operators corresponding to each perceptron as done in ANN. Having
defined the rationale of our system setting, we proceed by updating the perceptron unitary,
using U→ eiεK ·U and performing a random re-initialization and reshuffling with each
batch size of 128 samples of data. We arrange [5,4,3,2] neurons over the considered four-
layer QNN architecture, which consequences to 5 input perceptrons with 32 states and 2
output perceptrons with 4 states. In addition, we arrange the original information data
over 17 sets of input data, and set zeros for the rest of the input state so that there is no need
to add offset data for the output perceptrons, as the original output set is exactly equal to
4. Notice that this evaluation architecture is equivalent to the four-layer classical training
process architecture with [32,16,8,4] neurons, which, without loss of generality, converges
in 5× 800× 100 = 400, 000 iterations.

In Figure 4 we investigate the role of the parameter matrices Kl
j in the QNN training

process. Particularly, we set NT = 100, learning rate η = 1/3, step size ε = 0.1 and 100
iterations to study the effect of Kl

j on the value of the training function when it is initialized

once and multiple times per step. We observe that when Kl
j is initialized, Algorithm 1 can

always produce lower cost values than those with 5 re-initializations across the number of
batches, either for the first epoch or the fifth epoch. We also observe that by initializing
multiple matrices Kl

j, Algorithm 1 can attain its maximum cost value much faster than by
initializing a single matrix for the whole training session. As result, the training function
converges toward a steady state (optimal power allocation result) after 300 batches of data
for multiple re-initializations.
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In Figure 5, we examine the impact of the learning rate for the wireless communica-
tions data set. From the figure we see that the learning rate η = 1/10 is too small to get
stable unitary matrices U compared to η = 1/3 after 3 training epochs. We also see that by
re-initializing multiple K matrices for 50 and 100 iterations within the training module, we
can attain stable results (i.e., the WSEE optimal powers) after 3 epochs only (considerably
fast). However, we notice that with a smaller learning rate, there are chances to attain
higher cost value at the expense of increasing the epoch time, which may consume a longer
total training time.
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Figure 4. Average value of the training function versus the number of data batches to calcu-
late the quantum time for each epoch. We show that the proposed training function in (10)
can indeed converge toward a steady state (optimal power allocation result) after 300 batches
of data re-initializations.

1 2 3 4 5
0.87

0.88

0.89

0.9

0.91

0.92

0.93

A
ve
ra
ge

va
lu
e
of

th
e

tr
ai
n
in
g
fu
n
ct
io
n
C

in
(1
0)

Index number of each epoch

 

 

η = 1/3, 1× 100 iterations/batch
η = 1/3, 5× 20 iterations/batch
η = 1/10, 5× 20 iterations/batch
η = 1/3, 5× 10 iterations/batch

Figure 5. Average value of the training function versus the index number of each epoch. We show
that Algorithm 1 can reach the stable results (i.e., the WSEE optimal powers) considerably fast (after
3 epochs only). We also show that Algorithm 1 becomes more accurate by increasing the learning rate
from η = 1/10 to η = 1/3 , which is expected and matches with the relevant algorithms’ behavior
in [13–17].

In Figure 6, we extend the globally optimal power control framework of [14] by
adding a training perceptron unitary operator to test the reliability of the proposed QNN
architecture. For this experiment, we use 10,200 samples of new data for validation to
observe that the trained perceptron unitary operator with learning rate of either η = 1/3 or
η = 1/5 can provide better and more stable cost values after 4 epochs. We also notice from
Figure 6 that the learning rate η = 1/10 is too small for Algorithm 1 to reach a stable state
in a short time, which matches with our previous observations in Figure 5 and implies that
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there is an optimal value of η to be chosen during the training process so that Algorithm 1
can reach its actual minimum time of convergence. Nevertheless, even with small η, the
results of Figure 6 show that the training cost value and the validation cost value are almost
comparable, which confirms the reliability of the proposed QNN architecture.
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Figure 6. Average value of the training function versus the index number of each epoch, using the
training perceptron unitary operator. We show that besides optimizing the WSEE problem, Algorithm
1 can be also generalized to optimize the power control problem in [14]—although the two problems
differ radically, Algorithm 1 can resolve both of them reliably and robustly, i.e., by requiring a similar
training step size of η = 1/3 and comparable implementation time between 3 and 4 epochs.

In Figures 7–9, we examine the optimization accuracy and implementation time of the
proposed QNN model in (8)–(11) in comparison to the ANN model in (4)–(7). For these
experiments, we generated a training set from 2000 independent and identically distributed
(i.i.d.) realizations of users’ positions and propagation channels. We considered each user
to be randomly placed in the service area and that each user i is associated to the BS m with
the strongest effective channel {hmi}. For each channel realization, we apply Algorithm 1
to solve the WSEE problem (3) for Pi = −30, . . . , 20 dB in 1 dB step, which yields a training
set of 102,000 samples. Note that for the comparison between QNN and ANN, besides
the training set, we also need to define a validation set, which is commonly used during
training to estimate the generalization performance of the QNN, i.e., the performance on a
data set that the QNN was not trained on [19].
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Figure 7. Average cost versus the number of batches. The average cost measures the quantum fidelity,
e.g., the QNN output and the desired output (the closed is better). We show that the training and
validation sets quickly approach each other with a very small value of the same order of magnitude,
e.g., in 3 epochs.
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Figure 8. Mean square error versus the number of epochs. We show that by feeding 800 batches
of training data, our QNN model requires 70 epochs to stabilize its MSE—we recall that by using
the same training set of 800 batches, our ANN model in [21] requires 70 epochs to stabilize its MSE.
Consequently, the performance of the QNN model in comparable with the performance of the ANN
model for resolving the WSEE problem (3).
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Figure 9. Energy efficiency versus transmit power. We show that the QNN model in (8)–(11) derives
similar energy efficiency results to the ANN model in (4)–(7) and [21], while both QNN and ANN
training models deviate at approximately 0.05 MBit/Joule, on average, from the actual optimal WSEE
solution given in [23,24].

Having defined these training and validation sets, we plot in Figure 7 the average
cost versus the number of epochs and in Figure 8 the mean square error (MSE) versus
the number of epochs needed for WSEE optimization. From Figure 7, we observe that
both the errors of the training and validation sets quickly approach a very small value
of the same order of magnitude (in about 3 epochs), and that neither of the losses in-
creases over time, which leads to the conclusion that the adopted training procedure fits
the training data well, without underfitting or overfitting. Furthermore, we feed our
QNN with 800 batches of training data to observe in Figure 8 that it needs approximately
70 epochs to stabilize its MSE (i.e., to reach the optimal WSEE result)—instead, in our
previous study ([21], Figure 2, p. 10), we feed with 800 batches of training data a classical
ANN model to show that it can resolve the WSEE problem in 80 epochs. These results
confirm that, given the same training data, the implementation speed of our QNN model is
comparable and slightly faster than the implementation speed of the classical ANN model
to resolve the same WSEE problem with similar optimization accuracy.

Finally, Figure 9 illustrates a comparison regarding the accuracy and actual optimiza-
tion result between our QNN model and our classical ANN model [21]. Particularly, in
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Figure 9, we plot the energy efficiency (in bit/Joule) versus the transmitted power (in dBW)
by following the setting mentioned previously and by taking as the evaluation metric
the generic WSEE optimization method introduced in [23,24]. We observe that within the
region of −30 ≤ Pi ≤ −18 dBW, both QNN and ANN derive almost the same results as
the actual optimal solution method in [23,24], while for the power region −18 ≤ Pi ≤ −10
dBW, both the QNN and ANN training models deviate by approximately 0.05 Mbit/Joule
on average from the actual WSEE solution. Nevertheless, the main point is that our QNN is
proved to be as accurate as the ANN model. Therefore, by recalling our previous findings
in Figures 7 and 8, where we show that our feedforward QNN has slightly better trainabil-
ity than its ANN analogue, we can conclude that there is potential for QNNs to perform
faster training when applied on similar to WSEE problems, without showcasing overfit or
underfit issues and by using classical computer hardware.

6. Conclusions

This paper studied the perspective of adapting quantum learning and training logic
in wireless communication networks by proposing a new quantum neural network archi-
tecture for resolving the power control in energy efficiency optimization problems. We
formulated the generic energy efficiency problem and approached it, using both classi-
cal and quantum neural network models. We conducted the design of the learning and
training analysis for both these models to clarify their rationalism, with architectural dif-
ferences and similarities. Furthermore, we proposed Algorithm 1 as the tangible mean of
applying our QNN model, and conducted a series of benchmarks to evaluate its size and
the number of training steps. We performed simulations to show that our algorithm can
attain a stable state (i.e., derive the optimal result) in fast time (i.e., short training step), and
that it can be generalized to other, more complicated problems, such as the power control
problem in [21], with comparable implementation time and accuracy. We also showed
through simulations that our QNN model can attain the same accuracy with its ANN
analogue by featuring slightly faster trainability for this specific energy efficiency problem.
Based on these results, we believe that the perspective of quantum-oriented learning and
training can play a significant role in the next-generation communications era in terms of
decentralizing intelligence and saving computing and memory resources. The fact that
our QNN model can run using classical computer hardware in a comparable manner to
its ANN analogue model provides the incentive for future studies to clarify further links
between quantum and communications engineering and improve QNNs to address other
communications problems.
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