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Abstract: Wind and solar energies present a time and space disparity that generally leads to a
mismatch between the demand and the supply. To harvest their maximum potentials, one of the main
challenges is the storage and transport of these energies. This challenge can be tackled by electrofuels,
such as hydrogen, methane, and methanol. They offer three main advantages: compatibility with
existing distribution networks or technologies of conversion, economical storage solution for high
capacity, and ability to couple sectors (i.e., electricity to transport, to heat, or to industry). However,
the level of contribution of electric-energy carriers is unknown. To assess their role in the future, we
used whole-energy system modelling (EnergyScope Typical Days) to study the case of Belgium in
2050. This model is multi-energy and multi-sector. It optimises the design of the overall system to
minimise its costs and emissions. Such a model relies on many parameters (e.g., price of natural
gas, efficiency of heat pump) to represent as closely as possible the future energy system. However,
these parameters can be highly uncertain, especially for long-term planning. Consequently, this
work uses the polynomial chaos expansion method to integrate a global sensitivity analysis in order
to highlight the influence of the parameters on the total cost of the system. The outcome of this
analysis points out that, compared to the deterministic cost-optimum situation, the system cost,
accounting for uncertainties, becomes higher (+17%) and twice more uncertain at carbon neutrality
and that electrofuels are a major contribution to the uncertainty (up to 53% in the variation of the
costs) due to their importance in the energy system and their high uncertainties, their higher price,
and uncertainty.

Keywords: electrofuels; energy transition; energy system modelling; sensitivity analysis; Ener-
gyScope TD; polynomial chaos expansion; sectors coupling

1. Introduction

To ensure the energy supply of a more and more demanding society in a context of
environmental crisis, major transformations are needed. Besides behavioural changes, an
overall reshape of the energy system is necessary in terms of both primary energy sources
and technologies used to convert these resources into the end-use demand (EUD) (i.e.,
the energy service required by the the final consumer) [1]. In this perspective, variable
renewable energy sources (VRES) such as wind and solar, have already emerged as the
keystone to defossilise the energy system. However, their intermittency and space disparity
could hold back their vaster integration in the future. To address this issue, due to some
limitations (e.g., range, power, costs) of electricity-focused solutions such as direct current
(DC) lines, the transport and long-term storage of the renewable electricity produced in
excess should be optimised.
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This challenge can be tackled by electrofuels [2]. These fuels represent energy carriers
where electricity has the major share in the energy balance of the fuel [3]. In practice, this
electricity is mainly converted into hydrogen (i.e., electrolysis) and then potentially upgraded
into more complex fuels (e.g., methane, methanol, or ammonia). Even if the share of electricity
increases in the energy system through the electrification of the end-use demand, gaseous
and liquid fuels will keep on being big players during (and after) the energy transition [4].
They offer three main advantages: infrastructure compatibility, storage, and capacity to link
sectors (i.e., from electricity to mobility, heat, or industry). Development on electrofuels aims
at making them more and more compatible with existing and mature technologies [4]. An
example is carbon-free ammonia–hydrogen blends burned in spark ignition engines [5] or
combined heat and power (CHP) applications [6]. With a growing share of VRES, sector
coupling is essential to absorb the surplus of electricity from these intermittent production
means [7] and integrate them more cost-effectively [8,9]. Besides direct electrification of other
sectors (e.g., electrical heat pumps, battery electric vehicles), Brown et al. [10] showed that
converting power to hydrogen and methane was advantageous at high shares of renewables,
in their optimisation of the European whole-energy system. Electrofuels have the ability to
couple energy and non-energy sectors [11]. For instance, electricity produced in excess from
VRES can be converted in ammonia through the Haber–Bosch process and subsequently
transformed into fertiliser—coupling the power and industry sectors [12]. Gas networks
present much more storage potential than electrical networks (e.g., 50 times more in Germany
and 300 times more in France) [13]. Where batteries exhibit limited storage capacity (up to
10 MWh) as well as self-discharge losses, electrofuels are an economical solution for high
capacity (from 100 GWh) and long-term (i.e., from months to years) storage of energy [14,15].
Besides storing energy, in their analysis of the German transport sector in 2050, Millinger
et al. [16] highlighted that producing electrofuels can represent a better usage of the ambient
CO2 than carbon capture and storage (CCS) to supply hydrocarbon fuels while limiting the
curtailment of VRES. Moreover, some applications (e.g., marine, aviation, and heavy-duty
transport) will be hard to electrify and keep on requiring high-density energy carriers [17,18].
These carriers, currently produced mostly from fossil resources, will still consist of hy-
drocarbons in a renewable world. This is why this paper uses “defossilisation” rather
than “decarbonisation” as carbon will still play a key role in a carbon neutral energy
transition [19].

To harvest the maximum potential of synthetic energy carriers in a sustainable transi-
tion and maximise the overall system efficiency [20], it is necessary to study the integration
of these fuels within a multi-sector and whole-energy system [21]. To reach this goal, an
energy system optimisation model (ESOM) can define the design of the system to minimise,
for instance, its costs or its emissions [22]. In this research field, Yue et al. [23] highlighted
that most of ESOMs use a deterministic approach (i.e., 75% out of the 134 reviewed ESOM
studies). However, the model structures are inherently uncertain as well as their numerous
composing parameters, especially when it comes to define an energy transition strategy for
a large-scale system, such as a country. Given the lifetime of the conversion technologies,
such strategy implies decisions with long-term impacts (20 to 50 years) where forecasts
can be highly unreliable [24]. Besides the uncertainty on the model structure (not ad-
dressed in this work), this long-term and large-system optimisation motivates the need to
account for uncertainty quantification (UQ) and consider it as a major challenge of such
models [25]. This challenge, along with a large number (i.e., more than a hundred) of
uncertain parameters and limited information of their distribution, leads to the “curse of
dimensionality” [26].

To assess the importance of the electrofuels in a defossilised energy system, this
work gives the results of an uncertainty quantification performed on a whole-energy
model, EnergyScope Typical Days (EnergyScope TD) [27]. It optimises the investment
and operation strategies to meet the end-use demand of the system (i.e., electricity, heat,
and mobility) and minimise its total annual cost [28]. Based on previous research on the
Belgian energy system [29] and uncertainty characterisation [24], this analysis applies the
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polynomial chaos expansion (PCE) method [30]. PCE provides a computationally efficient
alternative to the Monte Carlo simulation for uncertainty quantification to address the
“curse of dimensionality” [31]. Given limited information about the uncertainty of the
parameters for long-term energy planning models [28], PCE builds a surrogate model in a
computationally efficient way [32]. Based on this surrogate model, this paper highlights
the most-impacting parameters through their sensitivity indices (i.e., Sobol’ indices) and
extracts valuable statistical moments (e.g., mean-µ or variance-σ2) of the total cost of
the system. PCE has been applied in various energy system evaluations to quantify the
statistical performance [33]. Limpens et al. [34] showed the relevance of using the PCE
method by comparing it with the Morris method [35] used in similar studies [24,36].
Coppitters et al. [37] constructed a PCE on a photovoltaic-electrolyser system design and,
based on the Sobol’ indices, bulk manufacturing of the electrolyser and more demonstration
projects are suggested to reduce the variance on the levelised cost of hydrogen. Similarly,
Verleysen et al. [12] quantified the Sobol’ indices from a PCE on a power-to-ammonia
system and highlighted that an accurate flow meter and improving the temperature control
in an ammonia reactor are the main actions to render the performance more robust.

The novelty of this paper consists in the combination of applying the PCE to a whole-
energy system and studying the impact of electrofuels in this global sensitivity analysis
(GSA). This paper aims at (i) illustrating the impact of considering uncertainties (compared
to deterministic analysis) for long-term energy planning models; (ii) identifying the param-
eters critical to the uncertainty of the total cost of a whole-energy system; (iii) highlighting
the role of electrofuels in regard to the objective of decreasing the greenhouse gas (GHG)
emissions—the ”climate targets”. Thanks to these analyses, the present work could help
providing to policy makers with insightful guidelines to answer the following questions: to
what extent uncertainties should be taken into account when planning low-carbon energy
system? Given the limited availability of local renewables in Belgium, what solutions of the
Mix scenario presented by Limpens et al. [29] (e.g., electrification, nuclear energy, import
of renewable molecules) would affect the most the variation of the total cost of the system?

The paper is structured as follows: Section 2 details the considered electrofuels, the
whole-energy model (EnergyScope TD), the reference case study, the Belgian energy system
in 2050, and the approach to analyse different climate targets. Then, Section 3 presents the
methodology to characterise the uncertainties, to carry out the global sensitivity analysis
via the PCE. Finally, Section 4 depicts the evolution of the statistical moments of the costs,
the critical parameters, and the role of electrofuels for different climate targets. Section 5
analyses these results and puts them into a broader perspective to conclude with future
research directions in Section 6.

2. Model of the Whole-Energy System and Its Defossilisation

Through this section, the considered electrofuels are described as well as the open-
source model, the reference case study and the approach to analyse its defossilisation.

2.1. Electrofuels

To cover a wide range of applications and conversion technologies, this work considers
three families of electrofuels: hydrogen, electro-methane and electro-liquid fuels. The first
one is the cornerstone of the energy transition [38], as the first molecule to be converted
from electricity through electrolysis as well as the fundamental chemical building block for
more energy-dense fuels. In its sustainable development scenario (SDS), IEA [39] expects
about hundred times more hydrogen to be consumed (from 0.45 Mt to 40 Mt, worldwide)
between 2020 and 2030. The two other fuels aim at substituting their fossil equivalents,
respectively natural gas and liquid fossil fuels (e.g., gasoline, diesel, and light fuel oil).
Technologies are implemented in the model to produce these fuels locally (e.g., electrolysis
to produce hydrogen and, subsequently, from hydrogen, further processes can produce
electro-methane or electro-liquid fuels with an added renewable C-source) or import
them. When imported from abroad, these electrofuels are assumed to be produced from
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renewable electricity. Therefore, this work allocates them a zero-global warming potential
(GWP) (i.e., gwpop = 0 ktCO2,eq/GWh). In practice, there is always a residual CO2-impact
that has to be compensated for (i.e., through biomass or direct air capture) [40]. However,
the study of these actual CO2-compensation means is out of the scope of this work. Finally,
this paper considers a nominal cost of import (cop) of 160 €/MWhLHV, 180 €/MWhLHV,
and 190 €/MWhLHV, respectively, for hydrogen, electro-methane, and electro-liquid fuels.
These costs are taken as the average production costs of the respective fuels from a previous
work on electrofuels for the transport sector [18]. In the aforementioned work, based
on an extensive literature review, the authors split the production cost of each fuel over
the different production steps (i.e., water electrolysis, carbon capture, and fuel synthesis)
considering different technologies for each step. After a scenario and sensitivity analysis
of parameters affecting the electrofuels production cost (e.g., investment and operation
cost of the electrolyser, price of electricity, cost of CO2 capture), these authors suggested a
range of production costs for a whole set of electrofuels (i.e., methane, methanol, dimethyl
ether (DME), gasoline, and diesel). From this range, the present work extrapolated nominal
values for the production cost of the fuels in 2050. Even if these costs do not reflect
the market prices, this implementation accounts for the future evolution forecast of the
price. This is consequently consistent with the implementation of the other imported
resources. Regarding their uncertainty, this work assumes the same range of variation on
these nominal costs as the one applied to the price of imported fossil fuels (e.g., natural
gas, light fuel oil, and diesel) from [24]: [−47.3%; + 89.9%]. Through their uncertainty
characterisation, Moret et al. [24] applied in parallel five criteria to each uncertain parameter
of their model. Amongst these criteria, ranges already proposed in the literature and
existing forecasts allow the authors to suggest the aforementioned range for this uncertainty
considered as aleatory (i.e., future, irreducible uncertainty) and constant over time.

2.2. Model of the Energy System

The model used in this study is EnergyScope TD [27]: a linear programming (LP) open
source model for the regional whole-energy (i.e., multi-sector and multi-carrier) system,
such as a country, that has been validated for the case study of interest, i.e., the Belgian
whole-energy system, by Limpens et al. [29]. This model uses a bottom-up approach in the
sense that it focuses on a set of individual technologies to deliver specific energy demands
(i.e., electricity, heat, and mobility) in a way that optimises the costs and benefits associated
with investments and operation within the system [41]. In terms of spatial resolution,
the country is modelled as a single node where transmissions within the country are not
considered. Similar to the copper plate model of a power grid, it is assumed that the
demands have to be supplied by the production, regardless of the flows between the
producers and the consumers. Yet, adapting the networks are accounted for in terms of
the required investments. For instance, a high share of VRES requires an investment to
reinforce the power grid (i.e., around 350 M€/GW of installed capacity of VRES) [42]. In
EnergyScope TD, the demands are impose in terms of an EUD instead of a final energy
consumption (FEC). For instance, the passenger mobility is defined in passenger kilometers
per year rather than in a certain amount of gasoline to fuel cars or electricity to power trains.
The data for the transport demand come from the European Commission [43]. They account
for all the transportation except the one outside Europe as they stipulate: “(3) Excluding
international extra-EU aviation.”. In other words, it accounts for the local (i.e., endogenous)
mobility for freight and passengers plus the international trips within Europe. However, it
does not account for the international transportation outside Europe, which represents the
long-range flights and most of the maritime freight. Given the exogenous EUD in electricity,
heat, and mobility over a target future year (snapshot approach [44]), the availability, and
the cost of the resources (RES) (e.g., natural gas (NG), wind and solar energies, biomass)
and the efficiency and the cost of the endogenous conversion technologies (TECH) (e.g.,
power plants, wind turbine, heat pumps, cars), the model optimises the investment and
the operation strategies to minimise the total annual cost of the system (Ctot):
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min Ctot = ∑
j∈TECH

(
τjCinv,j + Cmaint,j

)
+ ∑

i∈RES
Cop,i , (1)

where τCinv and Cmaint account for the annualised investment cost of a technology (Equa-
tion (2)) and its operation and maintenance costs (Equation (3)), respectively, whereas Cop
is the operating cost of a resource (Equation (4)):

Cinv,j = cinv,jFj ∀j ∈ TECH , (2)

Cmaint,j = cmaint,jFj ∀j ∈ TECH , (3)

Cop,i = ∑
t∈T|{h,td}∈T_H_TD(t)

cop,iFt,i(h, td)top(h, td) ∀i ∈ RES , (4)

where cinv and cmaint are the specific investment and maintenance costs of a technology,
respectively, while F is its installed capacity. In Equation (4), cop is the specific cost of the
resource, top is the period duration, and Ft is the actual use of the resource in each period.
As detailed in [27], “h” and “td” stand for the hour of the typical day and the typical day,
respectively. Moreover, summing over the different typical days (TDs) and over the hours
of TDs, using the set T_H_TD, is equivalent to summing over the 8760 h of the year.

A technology lifetime (t) and the interest rate (irate) allow us to compute the annualis-
ing factor, τ:

τj =
irate(irate + 1)tj

(irate + 1)tj − 1
∀j ∈ TECH. (5)

Among other constraints, we define the climate targets by putting a limit, gwplimit,
on the total yearly emissions of the system (GWPtot) related to the resource emissions
(GWPop):

GWPtot = ∑
i∈RES

GWPop,i ≤ gwplimit , (6)

GWPop,i = ∑
t∈T|{h,td}∈T_H_TD(t)

gwpop,iFt,i(h, td)top(h, td) ∀i ∈ RES , (7)

where gwpop is the specific emissions of each resource. These GHG emissions are calculated
using a life cycle assessment (LCA) approach and following the indicator “GWP100a-
IPCC2013” developed by the Intergovernmental Panel on Climate Change (IPCC) [45].
For the resources, these GHG emissions account for extraction and transportation, on one
hand, and combustion, on the other hand. For instance, the 267 kgCO2 /MWh accounted
for the natural gas are split between 67 kgCO2 /MWh for the former and 200 kgCO2 /MWh
for the latter [46]. Similarly to official agencies (i.e., European Union Commission or
International Energy Agency) and previous works [27,29], this analysis considers this
metric as the “climate impact” of the whole-energy system. The part of CO2 related
to the combustion is therefore considered explicitly in the model, similar to any other
commodity, that can be produced (e.g., to produce 1 GWh of electricity, a natural gas
combined cycle (CCGT) burns 1.55 GWh of NG and emits 0.32 ktCO2,eq) and consumed
(e.g., besides 1.45 GWh of hydrogen, the methanolation process consumes 0.25 ktCO2,eq to
produce 1 GWh of “synthetic liquid fuel”).

Finally, EnergyScope TD has an hourly resolution (top is equal to one hour) and a
tractable formulation (1–5 min computational time). The former allows for a fine analysis
of a high integration of VRES and storage capacities. The latter, necessary to keep the
uncertainty quantification (i.e., 1980 runs) computationally affordable, is due to the use of
typical days, 12 in the case of this work. Compared to a reference case where each of the
8760 h of the year were simulated, Limpens et al. [27] showed that opting for 12 typical
days was a good trade-off between limited impact on the resulting energy system strategy
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(i.e., the installed capacity of the technologies and the use of resources remain in the same
order of magnitude) and a significant gain in computational time (i.e., from 70,240 s for
the reference case to 91 s for the 12-TD case). Figure 1 gives an overview of the model
operation and the way the GSA was performed.

OUTPUTS

Key Performance 
Indicators

• Annual total cost
• Investment & Operation

strategies

MODEL
Variables

System design (choice of 
technologies and resources), 
Hourly operation

Constraints
Demand satisfied, 
Technology models,
Annual CO2 emissions…

Objective
System annual total cost

INPUTS

Time series for hourly
operation

Weather conditions, Demand
pattern on typical days

Annual end-use demand
Heat (low & high temperature), 
Mobility (passenger & freight), 
Electricity

Energy conversion 
technologies

Operational cost, Investment 
cost, Conversion efficiency,…

Resources price & 
availability limits

Electricity import, Gas import, 
Biomass,…

Figure 1. Schematic of the EnergyScope TD model [34]. Dash-boxed inputs point out the uncertain
parameters (ξ1, ξ2, . . . , ξd) that will be analysed during the GSA on the total annual cost of the system.

2.3. Reference Case Study: The Belgian Energy System in 2050

The case study is the Belgian energy system in 2050, as the long-term objective for
carbon neutrality. Limpens [42] summarised the data used in this study, the documentation
of the model, and its code repository.

The energy system has to supply eight exogenously imposed demands split into
three main categories: electricity, heat, and mobility. To meet these three categories of
demands, EnergyScope TD integrates twenty different resources either from import (e.g.,
electricity, electrofuels, biofuels, NG, gasoline, uranium) or locally available (e.g., solar,
wind, geothermal, woody and wet biomass). Similarly to Limpens [42], to limit the Belgian
electrical dependence on neighbouring countries, the yearly imports of electricity are lim-
ited to 30% of the yearly electricity end-use demand (i.e., 32.43 TWh maximum of imported
electricity). Like Limpens et al. [29], this study accounts for a limited area available for solar
photovoltaic (PV), i.e., up to 250 km2, in accordance with Devogelear et al. [47]. As detailed
by Limpens et al. [29], to convert these resources into the different demands, the model
counts many technologies to produce different energy carriers: electricity (9 technologies),
heat (31 technologies among which CHP plants that also produce electricity), and freight
and passenger mobility (20 technologies). In accordance with previous research [48], addi-
tional constraints drive the mobility sector to represent it more realistically. On one hand,
given the major role played by private cars in the Belgian passenger mobility (i.e., around
80% [48]), public transport (e.g., tramways, buses and trains) can only supply half of it. On
the other hand, trains and boats can provide up to 25% and 30% of the freight mobility,
respectively, while the rest is supplied by road transport, i.e., trucks. Additionally, the
model accounts for different infrastructures (21 technologies). The latter encompasses, for
instance, the power grid, the district heating networks (DHN), the mobility infrastructures
(e.g., roads, railways) as well as technologies to produce “synthetic fuels” (e.g., wood
pyrolysis, biomethanolation, or steam methane reforming (SMR) to produce hydrogen).
In addition to these conversion technologies, the model includes 21 technologies to store
electricity, heat, and fuels.

Current Belgian energy policies plan on phasing out local production of nuclear
electricity. However, in Belgium, reaching the goal of energy transition will not be a
“winner-takes-all” situation but rather a combination of technologies, implemented simul-
taneously [29]. This mix of solutions allows us to reach more ambitious reduction of CO2
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emissions. As we aim at performing a GSA of a low-CO2 Belgian energy system, we
implemented a similar “mix” scenario. In addition to the most realistic scenario presented
by Limpens et al. [29] (i.e., harnessing full potential of local renewables and allowing im-
port of electricity and renewable fuels), this study allows using up to the current 5.62 GW
nuclear power plants capacity and non-proven endogenous renewable resources such
as additional offshore wind and geothermal (i.e., up to 2 GW thermal and 2 GW electric)
capacities. Regarding the nuclear capacity and the geothermal potential, the deterministic
case presented in Figure 2 considers their average value between 0 and maximum capacity:
2.81 GW of nuclear power plants and 1 GWthermal and 1 GWelec of geothermal. Without
fixing gwplimit, EnergyScope TD reaches a cost-optimum Belgian energy system in 2050 at
around 43 b€/year and 72 MtCO2. Comparatively, the actual Belgian energy system in 2015
emitted 127 MtCO2 (considering the same “GWP-accounting” as described in Section 2.2)
and had an estimated total cost of 43.6 b€/year according to Limpens [42], for the demands
summarised in Table 1. As detailed by Limpens et al. [29], in 2015, the Belgian energy
system was dominated by fossil fuels (70% of the 620 TWh primary energy mix) to supply
these demands. Besides these, nuclear energy, electricity import, and waste account for
19%, 3%, and 1%, respectively, where renewables (i.e., 15 TWh of woody biomass, 6 TWh of
wind, and 3 TWh of solar) complete the mix. Appendix A provides more details about the
major technologies to supply the demands.

Table 1. Comparison of EUD for the years 2015 (actual) [42] and 2050 (forecast) [49]. Abbreviations:
temperature (Temp.), passenger (pass.), and tons (t).

End-Use Demand Units 2015 2050 ∆

Electricity TWh 81.8 108.1 +32%
Heat High-Temp. TWh 70.0 43.6 −38%
Heat Low-Temp. TWh 150.7 154.4 +2%

Mobility pass. Gpass.-km 158 220 +40%
Freight Gt-km 66 115 +74%

Figure 2 shows the entire conversion chain between the resources and the final energy
consumed for the reference case study, without limiting the GHG emissions (and with
parameters at nominal values). This case is called “reference scenario-100%”. Even if
EnergyScope TD optimises the system to meet the end-use demand (EUD), we decided
to represent the final energy consumed on the Sankey diagram of Figure 2 to be able to
compare the mobility sector (of which EUD is expressed in passenger-kilometer (pkm)
and ton-kilometer (tkm)) with the other energy sectors. As shown by Limpens et al. [29],
this scenario represents an ecological and economical interest compared to the actual
energy system of today, by relying on more efficient technologies and harnessing more
of the renewable potential. The primary energy mix (420 TWh) is dominated by non-
renewable sources (70%): natural gas, uranium, and coal account for 208.0 TWh, 52.1 TWh,
and 33.4 TWh, respectively. Renewables stand for 26% of the primary energy supply
split between wet biomass (38.9 TWh), wind (31.9 TWh), solar (20.8 TWh), geothermal
(15.8 TWh), and hydro (0.5 TWh). The remaining 4% consist of local non-renewable wastes
(17.8 TWh) and imported electricity (0.5 TWh). The electricity generation is equally shared
between renewable and non-renewable sources. The passenger mobility relies on fuel
cell cars, tramways, and NG buses while fuel cell trucks, trains, and NG boat provide
the transport of freight. Besides the geothermal used at its full potential for DHN, low-
temperature heat demand is fully supplied by heat pumps. Waste and wood boilers are
the biggest players to supply the industrial high-temperature heat demand, besides a
small share coming from natural gas CHP. Finally, we observe that electrofuels are too
expensive to compete against their fossil equivalents when there is no constraint on the
CO2 emissions.

It is important to remind that such a system is the result of a linear optimisation. This
means that a small difference (e.g., efficiency, cost of investment) can make the system
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switch between two different solutions but with a similar cost objective. This is another
rationale to account for uncertainties in such a research field.

Figure 2. Energy flows in the reference scenario representing the Belgian energy system in 2050, without climate target and
with nominal values of the parameters. The left-hand side gathers all the resources and the right-hand side gathers the
final energy consumption. In between, the conversion technologies. Abbreviations: natural gas (NG), combined heat and
power (CHP), curtailment (Curt.), district heating networks (DHN), di-hydrogen (H2), heat pump (HP), high temperature
(HT), low temperature (LT), storage (sto), decentralised (Dec), private and public mobility (Mob priv and Mob public), and
exports and losses (Exp & Loss).

2.4. Description of the Defossilisation

As illustrated in Figure 3, from the cost-optimum of the Belgian energy system in 2050
presented in Section 2.3, this analysis forced the total annual emissions of the system to
decrease by reducing its upper limit (i.e., gwplimit in Equation (6)).

In practice, 25% steps of GWP reduction were made from the “reference scenario-100%”
detailed in Section 2.3. This strategy gives the following points of analysis: 100% (i.e., no
limitation on the total GWP), 75%, 50%, 25%, and down to 0%. As the goal of the work is
to study major trends of energy system strategies facing different GWP constraints, it is
important to note that these strategies result from distinct snapshot optimisations assuming
green field for every technology, without pathway to link them with each other. To represent
the carbon neutrality scenario, the simplifying assumption is made that uranium, local
waste, and wet and lignocellulosic biomass have a 0-GWP, similar to the electrofuels
presented in Section 2.1. In addition, in the “0%-scenario”, there is no more import of
electricity as there is an uncertainty on its GWP impact, GWPop,elec = [0; 0.1] ktCO2,eq/GWh.
Then, for each of these climate targets (including the “100%” case) for the same target year
(i.e., 2050), PCE is applied to highlight the critical parameters (thanks to Sobol’ indices, see
Section 3.2) and extract statistical moments of the total annual cost of the system. In the
rest of this work, a higher climate target has to be understood as a bigger CO2-emissions
reduction and, consequently, a smaller value for gwplimit.
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Figure 3. Method to force the system to phase out fossil fuels. While keeping a cost-optimisation of
the system, the gwplimit is gradually decreased. This strategy gives the following points of analysis:
100% (i.e., no limitation on the total GWP), 75%, 50%, 25%, down to 0%. To reach carbon neutrality,
the assumption is made that uranium, local waste, and wet and lignocellulosic biomass have a 0-GWP.
In addition, in this “0%-scenario”, there is no more import of electricity as there is an uncertainty on
its GWP impact, gwpop,elec ∈ [0; 0.1] ktCO2,eq/GWh.

3. Uncertainty Quantification

In this section, the uncertainty characterisation is briefly presented. It will serve
in the global sensitivity analysis carried out through the PCE method on the selected
uncertain parameters.

3.1. Uncertainty Characterisation

Accounting for uncertainties in energy system long-term planning is crucial [50] and
challenging given inaccurate forecasts and scarcity of data [24,28]. To address this challenge,
Moret et al. [24] developed a methodology to define ranges of parameter uncertainties.
These ranges were originally defined for the Swiss energy system and have been adapted
for the additional technologies to fit with the case of Belgium. Table 2 gives the uncertainty
ranges applied for some key parameters. Like Li et al. [51], this work assumed that all the
uncertain parameters are independent and uniformly distributed between their respective
lower and upper bounds. The exhaustive list of the uncertainties of these parameters is
given in Appendix B.

Table 2. Illustration of the uncertainty characterisation for different parameters. Abbreviation:
natural gas (NG).

Parameters irate cop,NG availabilitywood cinv,onshore wind . . .
Units [-] [€/MWh] [TWh] [€/kW] . . .

nominal 0.015 53 23.4 979 . . .
min 0.008 28 15.9 767 . . .
max 0.022 101 30.9 1203 . . .

3.2. Polynomial Chaos Expansion

The uncertainty on the model input parameters propagates through the model, re-
sulting in uncertain performance indicators. Due to the computational cost of the system
model (90 s), we chose polynomial chaos expansion (PCE) to quantify the uncertainties [37].
A PCE surrogate modelMPCE of the system modelM consists of a series of multivariate
orthonormal polynomials Ψα with corresponding coefficients uα [30]:
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MPCE(X) = ∑
α∈A

uαΨα(X) ≈M(X), (8)

where X is a random vector with the independent components and α represents the multi-
indices stored in the set A. The size of A, which equals the number of coefficients in
the PCE, is defined by a truncation scheme. In this work, a typical truncation scheme is
assumed, which limits the multivariate polynomial order in the expansion up to a certain
degree. Hence, the number of multi-indices in the set equal to

|AM,p| = (p + M)!
p!M!

, (9)

where p corresponds to the polynomial order and M = |X| is the stochastic dimension, i.e.,
the number of random variables [30]. Consequently, the PCE consists of |AM,p| coefficients.
To quantify these coefficients, least-square minimisation is applied [52]. To ensure a
well-posed least-square minimisation, 2|AM,p| samples are generated (X = {x(i), i =
1, . . . , 2|AM,p|}) and evaluated in the system model. The results are stored in a vector
Y . Thereafter, an information matrix A is quantified, based on the basis polynomial
evaluations onto each sample:

A =
{

Aij = Ψj

(
x(i)
)

, i = 1, . . . , 2|AM,p|, j = 1, . . . , |AM,p|
}

. (10)

The coefficients u follow out of the least-square minimisation solution:

u =
(

AT A
)−1

ATY . (11)

Out of the PCE coefficients, the mean, µ, and standard deviation, σ, of the quantity of
interest (i.e., the total cost of the energy system) follow analytically:

µ = u0, (12)

σ2 =
|AM,p |

∑
i=1

u2
i . (13)

In addition to these statistical moments, the Sobol’ indices can be deduced from
the coefficients as well. The total-order Sobol’ indices illustrate the contribution of each
stochastic input parameter to the variance of the quantity of interest, including the mu-
tual interactions. The total-order Sobol’ index for a stochastic parameter i is quantified
as follows:

ST,PC
i = ∑

α∈AT
i

u2
α/σ2 AT

i = {α ∈ A : αi > 0}. (14)

3.3. Preliminary Screening and Selection

Similarly to previous studies [24,34], parameters of the model have been first screened
to group them into 120 sets. For instance, the uncertain price of imported fossil hydro-
carbons impact, similarly, the price of imported coal, natural gas, light fuel oil, gasoline,
and diesel. As performing an accurate GSA on so many parameters would require almost
600,000 runs and, consequently, would not be affordable (i.e., the “curse of dimensional-
ity”), a pre-selection was required. This pre-selection has been carried out after five (i.e.,
to ensure redundancy) first-order PCE on the 120 sets. In this process, only 43 uncertain
parameters were kept, based on good practice [53], where parameters with a Sobol’ index
above the threshold = 1/d (where d = 120 is the number of uncertain parameters at
the pre-selection phase) are called critical parameters and considered for the rest of the
study. Finally, to limit the error (i.e., below 1% as proposed by Coppitters et al. [52]) on the
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statistical moments, one second-order PCE was performed on the remaining 43 uncertain
parameters (i.e., p = 2 and M = 43 in Equation (9)).

4. Results

This section shows the results of the GSA performed on the Belgian energy system in
2050 subject to different climate targets. First, the total annual cost of the system is analysed
through its statistical moments and its probability density function (PDF). Second, the most
critical parameters are listed according to their respective Sobol’ indices.

4.1. Statistical Analysis of the Cost

As detailed in Section 3.2, the PCE coefficients allow to extract statistical moments (e.g.,
mean and variance) of the total annual cost, without additional computational cost. On top
of it, we can construct the PDF of this output of interest by a Monte Carlo approach with the
obtained surrogate model, which takes negligible (i.e., few seconds) computational time.
Figure 4 shows this PDF of the total annual cost, at each climate target, and the evolution
of the 95% (±2σ) confidence interval. Table 3 gives the mean, the standard deviation of the
total annual cost, and the ratio between these two metrics.

Figure 4. PDF of the total annual cost of the energy system at each climate target and the 95%
confidence interval. The trend lines give the mean of the runs performed during the GSA (blue curve)
and the result of the deterministic runs at the nominal value of the parameter (green curve).

Table 3. Mean, standard deviation of the total annual cost, and ratio between these two metrics, the
coefficient of variation (CoV).

Scenario 100% 75% 50% 25% 0%

Mean, µ [b€] 42.9 43.0 44.0 47.6 59.1
Standard deviation, σ

[b€] 4.5 4.6 4.7 5.5 9.0

CoV, σ/µ [-] 10% 11% 11% 12% 15%

First, phasing out cheap fossil fuels and relying more and more on renewables and
import of electrofuels naturally drives up the cost of the system. Then, the different PDFs
show that defossilising the energy system makes it more uncertain as the±2σ interval widens,
even “faster” than the increase in the mean, as shown in Table 3. Finally, given the trend
lines, we understand how important it is to take into account the uncertainties in long-term
energy planning. Indeed, the uncertainty characterisation presented in Section 3.1 leading
to some off-centre range of uncertainties, which makes the deterministic optimisation
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underestimate the cost, especially at higher climate targets (e.g., by 15% on average for the
“0%” case).

4.2. Critical Parameters

Figure 5 illustrates the evolution of the Sobol’ index of the Top-5 parameters along
the defossilisation. As explained in Section 3.2, this shows the contribution to the variance
of the total annual cost of the system. Most of the key parameters are cost-related: (i)
price of fossil hydrocarbons that affects the cost of imported coal, natural gas, light fuel oil,
gasoline, and diesel (cop,fossil), (ii) investment cost of fuel cell for transport vehicles using
this propulsion technology (cinv,FC), (iii) investment cost of cars (cinv,car), and (iv) the price
of imported electrofuels as listed in Section 2.1 (cop,efuels). The last impacting parameter is
(v) the maximum capacity of nuclear power plants ( fmax,nuclear). Table 4 gives the range of
variation for each of these parameters.

Table 4. Range of variation for the Top-5 parameters. a As illustrated in Section 3.2, these param-
eters affect a group of entities. For instance, cop,fossil represents the variation of the price of fossil
hydrocarbons (i.e., coal, natural gas, light fuel oil, gasoline, and diesel). Since these fuels do not have
the same reference value (e.g., cop,ref,NG = 53 €/MWh and cop,ref,coal = 18 €/MWh), the parameter of
variation has a unitary nominal value and affect the corresponding group of parameters by the same
range of variation. Abbreviations: investment cost (cinv), operational cost (cop), electrofuels (efuels),
maximum capacity ( fmax), and fuel cell (FC).

Parameter cop,fossil cinv,FC cinv,car cop,efuels fmax,nuclear
Units [-] [-] [-] [-] [GW]

nominal 1 a 1 a 1 a 1 a 2.81
min −47.3% −39.6% −21.6% −47.3% 0
max +89.9% +39.6% +25.0% +89.9% 5.62

Figure 5. Evolution of the Sobol’ index (i.e., contribution to the variation of the total annual cost of
the system) of the Top-5 parameters given the different climate targets.

Given the limited potential of renewable sources (i.e., 95 TWh of solar, wind, and
hydro, and 62 TWh of biomass, without accounting for unproven geothermal energy)
compared to its energy demand [29], Belgium will have to rely on the import of renewable
electrofuels to reach its carbon neutrality target. These fuels are more expensive than
their fossil equivalents (e.g., imported electro-methane is 3.4 times more expensive than
imported NG, in the reference case) and they have a wide range of uncertainties (i.e.,
[−47.3%; +89.9%]). The former feature makes them less competitive and thus unused (see
Section 2.3) and unimportant in the variation of the cost at low climate target. However, in
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a fully defossilised system, their high mean and variation make the price of electrofuels the
most-impacting parameter (up to 53.2%) on the total cost of the system.

The trend is opposite concerning the fossil hydrocarbons. As illustrated in Figure 2,
they are the key resources given their cheap price. However, their wide range of variation
makes these fuels have a significant impact of 34.8% on the variation of the cost when there
is no limitation on the CO2 emissions. Increasing the climate target pushes the system to
progressively phase out fossil fuels and rely more on renewable sources. The system will
first rely on more local capacities (i.e., wind turbines and solar PV panels) until these are
fully harnessed and electrofuels remain the only solution.

Then, two interrelated parameters play a key role in the variation of the total annual cost
of the system: the investment cost of cars and the investment cost of the fuel cell technology.
The former concerns the cars themselves, without considering the powertrain when the latter
only focuses on the fuel cell powertrain of different vehicles (cars, buses, and trucks). The
private car is the biggest player in the passenger mobility of Belgium. According to the Bureau
Fédéral du Plan [48], 80% of the passenger mobility will be supplied by private cars in the
future. Therefore, to represent this reality, it is imposed that these should support at least half
of the passenger mobility, considering an occupancy rate of 1.28 person/car based on [48].
The other half is supplied by public transport modes (i.e., buses, trains, and tramways).
Even if the variation range of cinv,car is three times smaller than cop,fossil or cop,efuels, this
makes the investment cost of cars an important parameter in the total annual cost of the
system: around 25% of its average value and up to 11.3% of its variation. Concerning
the investment cost of fuel cell, its impact on the uncertainty of the total cost is due to its
wide use as a powertrain technology: over the 1980 runs performed for the GSA at each
climate target, on average, fuel cell (FC) trucks supply between 63% and 84% of the road
freight transport. Regarding the private mobility, FC cars is usually preferred to battery
electric vehicle (BEV) to supply between 65% and 74% of it, whereas BEVs have a better
efficiency, in terms of km/kWhelectricity and FC and BEV have similar investment costs (i.e.,
cinv,CAR_BEV = 434 €/Mpass.-km/h and cinv,CAR_FC = 438 €/Mpass.-km/h). Despite not
reflecting the current price difference between BEV and FC vehicles, these technologies would
have similar nominal investment costs in the future [42]. Given the limited endogenous
renewable potential and import of electricity (see Section 2.3), the model is limited in the
electrification of other sectors (i.e., heat and mobility). As a matter of fact, the system is
forced to opt for the most efficient/economical way to convert this electricity. In this study,
the model rather electrifies, endogenously, the low-temperature heat sector (i.e., up to
84%, on average, is electrified in the “0%-scenario”) than the passenger mobility (i.e., 75%,
on average, of the public mobility via trains and tramway, and only 26% of the private
mobility via hybrid electric vehicle (HEV) and BEV, in the “0%-scenario”). Several factors
impact the integration of electric vehicle (EV): e.g., availability of imported electricity, load
factor, and limit to the maximum installed capacity of solar PV and wind turbines. These
factors are included in the GSA but have a small impact on the variation of the total annual
cost of the whole-energy system (i.e., Sobol’ index up to 1.9%).

The last of the critical parameters is the maximum capacity of nuclear power plants.
Even if the plants themselves are more expensive (around seven times) than CCGT, the
resource they use (i.e., uranium) is much cheaper than NG (i.e., two orders of magnitude
difference) and has a negligible GWP. The system will always rely on the maximum
capacity of nuclear power plants to supply a cheap and nearly renewable baseload of
electricity. The variation of fmax,nuclear between total phase-out and the current maximal
capacities, has a limited impact (up to 13.1%) on the variation of the cost, especially at
higher climate target.

5. Discussion

This section first discusses the results of Section 4 and puts them into perspective with
other research. Then, it presents the limitations of the model and the methodology used to
perform the uncertainty quantification.
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5.1. Main Outcomes

First and foremost, uncertainty quantification (UQ) has to be considered as one of the
key challenges for bottom-up energy system model [54]. To avoid underestimating the cost
of a carbon neutral whole-energy system, accounting for uncertainties is crucial, especially
in a long-term scenario [55]. In their work, Li et al. [51] carried out a similar GSA on the
Swiss energy system. On one hand, these authors also highlighted an increase in the mean
total annual cost of the system while increasing progressively the penetration of renewables.
On the other hand, unlike the current work, Li et al. [51] showed a closer evolution between
the results from a deterministic optimisation and the ones resulting from the mean of
uncertainty runs. Moreover, in their work, the ratio between the standard deviation and the
mean of the total cost (i.e., σ/µ) decreased with the integration of renewables in the system.
These two major differences can be explained by the fact that, to obtain a fully renewable
energy system, Switzerland can rely on a significant potential of domestic renewables (e.g.,
around 37 TWh/y of hydro [46]), and hence decrease its dependency on highly uncertain
imported commodities. On the contrary, given its limited renewable potential (compared to
its end-use demands), Belgium has to import expensive electrofuels with highly uncertain
prices to achieve carbon neutrality in 2050. This drives up the mean and the variance of the
total annual cost.

Efforts should not be spread equally into reducing the uncertainties of every parameter.
For instance, given this limited potential of renewable energies and a higher level of maturity
(i.e., less uncertainty), uncertainties related to solar PV and wind turbines already have
negligible impact on the variation of the total cost of the system: the investment costs of PV
and wind onshore have a maximum Sobol’ index (i.e., contribution to total variance of the
cost) of 1.1% and 0.4%, respectively, while their respective capacity factor impacts only up
to 1% the variation of the total cost of the system. On the contrary, a handful of parameters,
mostly depicted in Section 4.2, dominate this variation. These parameters shall capture the
majority of the efforts to reduce their uncertainties, especially those that play a major role
at higher climate targets, such as the price of electrofuels. Indeed, results first showed a
system highly relying on cheap fossil resources, when no limit is put on its emissions. Then,
to meet the successive climate targets, the model will sequentially implement the solutions
of the Mix scenario presented by Limpens et al. [29], which is a scenario accounting for an
increased amount of renewable resources plus nuclear capacity and geothermal energy. At
early stages, the system will first improve its energy efficiency, as it reduces the primary
energy consumed to meet the same demand. For instance, CHP substitutes CCGT and boilers
to produce in parallel electricity and heat. Then, to enhance the electrification of the other
sectors (i.e., heat and mobility) while reducing the overall global warming potential (GWP),
the system imports electricity and uses local renewable electricity production up to their
respective full potential: 32 TWh of electricity import, solar (59 TWh), and wind (34 TWh).
Finally, to achieve carbon neutrality and to completely phase out of the fossil resources,
relying only on imported electricity (even if assumed to be carbon neutral) would mean,
in practice, increasing considerably the grid reinforcement and grid interconnections with
neighbouring countries, as recommended by some studies [56,57]. Such a solution is, for
instance, promoted by Brown et al. [10] as a way to reduce the whole European energy system
costs substantially. In the case of this study, without allowing import of renewable fuels and,
besides endogenous renewables (i.e., solar, wind), relying only on electricity imports, even if
assumed to be carbon neutral, would mean importing around 100 TWh from abroad in the
“0%-scenario”. This would be 74% more than what the 6500 MW maximum simultaneous
import capacity, assumed by ELIA [56], could provide if this import capacity was supplying
Belgium at “full load” every hour of the year. At more ambitious climate targets, this is
why the model forces the system to massively import such electrofuels, among which,
on average, 53 TWh of hydrogen, 40 TWh of electro-methane and 4 TWh of electro-liquid
fuels. Similarly, in their analysis of the integration of the electrofuels in parallel with a high
penetration of variable renewable energy sources (VRES) in Germany, Millinger et al. [16]
highlighted that the impact of electrofuels increases with the reduction of GHG emissions
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to defossilise hard-to-electrify sectors. For the case of the whole-energy system of Belgium,
due to the limited availability of imported and local renewable electricity, electrifying the
private mobility stays limited (i.e., from 35%, on average, in the “100%-scenario down to
26% in the ”0%-scenario“), as detailed in Section 4.2. This goes against the general emerging
trend in electric mobility observed in the literature [58] and the policy measures to promote
it [59]. Such an analysis emphasises the need to consider a whole-energy system approach
rather than an electricity-only system [21]. Given these observations, on the road to a robust
whole-energy system in Belgium, the policy makers, the industries, and academia should
spend time and energy to improve the knowledge about these electrofuels (i.e., to reduce
their cost and their uncertainty) by investing in projects to produce and use these fuels
or developing the exchange networks with neighbouring countries. A similar conclusion
has also been drawn by Ridjan [60] in the case of Denmark where he promotes, among
other things, “to intensify research, development and demonstration within key technologies for
electrofuels”.

On a broader perspective, one notices that the maximum capacity of nuclear power
plants has a lower impact on the variation of the total cost, up to 13.1%. This highlights
that, even when considering a wide range of variation (e.g., between total phase out and
current capacity), nuclear power plants will not be the main driver of the cost variation.
Nuclear electricity will not compete against renewables, either local or imported. On the
contrary, nuclear energy would ease a progressive and deeper integration of renewables
while keeping up a baseload production of electricity.

As another hot topic in the research field of the energy transition, one would be
interested in the impact of biofuels on the variance of the total cost of the system. Similarly
to electrofuels, biofuels can be produced locally (e.g., through gasification, pyrolysis, or
biomethanation) or directly imported (e.g., biodiesel and bioethanol) and can substitute
their fossil equivalents (e.g., natural gas, diesel, and gasoline). However, in general, in
the Belgian energy system, lignocellulosic biomass and wet biomass are more efficiently
used directly to produce heat than to be transformed into biofuels. Moreover, imported
biofuels are assumed to be slightly more expensive than imported electrofuels (e.g., nominal
cost of import is equal to 200 €/MWhLHV for bioethanol compared to 190 €/MWhLHV for
electro-liquid fuels). Finally, these imported biofuels, implemented in the model only as
liquid biodiesel and bioethanol and substituting diesel and gasoline, present a reduced
versatility and efficiency (i.e., usable in a less efficient internal combustion engine in the
mobility sector) compared to electrofuels (e.g., electro-methane used in gas CHP to produce
electricity and heat or hydrogen to supply more efficiently fuel cell cars or trucks). Due
to these aspects, biofuels have a low impact on the system, its total cost, and its variance.
Affected by the same uncertainty range [−47.3%; +89.9%], the maximum Sobol’ index of the
cost of import of biofuels is 2.8% in the 0%-CO2 case, compared to 53.2% for electrofuels.

Given the expensive price of electrofuels, carbon capture and storage (CCS) could
offset fossil fuel emissions and avoid the high cost of these fuels. Although, the potential of
carbon dioxide sequestration in Belgium is low (i.e., around 1 GtCO2 [61], which represents
10 years of emissions) and is competing with other applications (e.g., gas storage). An
ongoing project is to deliver this CO2 to the Netherlands or even Norway to sequestrated
it in depleted fields [62]. This work focuses on how to reduce GHG of the Belgian energy
system without considering compensation via the export of CO2 to other countries. There-
fore, the results show a trade-off between minimizing the cost and emissions. Solution as
exporting CO2 abroad could be investigated to mitigate this cost, but is out of the scope of
the study.

5.2. Limitations

Models and methods are tailored for specific applications and are fraught with lim-
itations. In this case, limitations can either be caused by the model or the uncertainty
characterisation and quantification. Regarding the limitations about the whole-energy
system model, EnergyScope TD, Limpens et al. [27] already listed some limitations. Among
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others, the snapshot approach [44], consisting in optimising the system in a target future
year, limits the vision of a trajectory between the energy system of today and the one in 2050.
As the objective is to provide decision makers with guidelines towards a renewable energy
system, an actual pathway could describe the different steps, in a continuous way, in terms
of technologies to implement and resources to exploit. Even though other models, such
as EPLANoptTP [63] and OSeMOSYS [64], perform it for deterministic optimisation (to
limit the impact of the “curse of dimensionality”), they already provide such a formulation.
The implementation of the electrofuels in the model also presents some limitations. Rather
than being detailed in different individual fuels (e.g., methanol, DME, oxymethylene ether
(OME)) [65,66], they are grouped in three sets (i.e., hydrogen, electro-methane, and electro-
liquid fuels). In the current version of the model, these fuels can substitute directly their
fossil equivalents without additional cost that adapting the conversion technology, for
instance, could cause. Like other imported commodities (except electricity limited by the
grid interconnections), imported electrofuels are set at a given price equal to the production
cost (and not resulting from a market equilibrium), regardless of their origin, and have an
unlimited availability. The representation of the mobility sector is also limited as there is
no distinction between “short-range” and “long-range” needs. This agglomerated demand
can then be supplied by any transport mode, regardless of its autonomy range or their
actual purpose (e.g., tramways aim at providing short-range transport). To overcome this
limitation, an improvement could be to split the mobility demand into short-range and
long-range demands and allocate specific transport modes to each of these. Further, in
the perspective of the European Green Deal, assuming an uncertainty on the GWP impact
of the imported electricity can be debatable. Indeed, in this work, this assumption (i.e.,
gwpop,elec ∈ [0; 0.1] ktCO2,eq/GWh) forces the system to remove the import of electricity
from its strategy in the “0%-scenario”. Consequently, this gives a bigger share to the
electrofuels to produce the electricity, on average, in this scenario, CCGT and CHP running
on electro-methane and hydrogen-powered CHP substitute the imported electricity and
account for 11%, 9%, and 8% of the electricity production, respectively.

Some limitations also concern the uncertainty characterisation and quantification.
Thereon, Moret et al. [24] states: “A different characterization of input uncertainties substantially
changes the results”. The uncertainty ranges considered in this work are based on an
exhaustive and multi-criteria approach proposed by [24]. However, especially in the
booming field of electrofuels, new data and new publications could allow refining these
ranges. This work also assumes a uniform distribution between the lower and upper
bounds of the uncertain parameters. Collecting more data could also refine the distribution
to consider. In the generation of samples of the PCE, the uncertain parameters are assumed
independent. For instance, a higher cost of investment and a lower efficiency of an
electrolyser can be present in the same sample whereas, in practice, one would expect
a proportional relation between investment cost and efficiency. This independence of
uncertainties is although required to benefit from the computational efficiency of the PCE.
When dependent, the proof for orthogonality of the polynomials no longer holds. Other
methods, such as Monte Carlo analysis, does not require this independence but usually
need more model evaluations (i.e., 105 compared to 1980).

6. Conclusions and Future Work

This paper highlights the role of electrofuels (i.e., hydrogen, electro-methane, and
electro-liquid fuels) under uncertainties in the Belgian whole-energy (i.e., multi-sector
and multi-carrier) system in 2050 at different level of greenhouse gas (GHG) emissions
mitigation, i.e., “climate targets”. Based on EnergyScope Typical Days, a linear program-
ming (LP) bottom-up model was used to optimise the total annual cost of the system [27];
uncertainty is quantified using the uncertainty characterisation by Moret et al. [24] and by
applying a polynomial chaos expansion (PCE) method [30]. On one hand, this work shows
the increasing uncertainty on the total annual cost of the system with more ambitious
climate targets and how uncertainty quantification (UQ) avoids underestimating this cost
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compared to a deterministic optimisation. On the other hand, in the case of Belgium,
electrofuels have a major impact (i.e., up to 53.2%) on the variation of the total cost only at
very ambitious climate targets, after that the other more cost-effective solutions (i.e., energy
efficiency, local renewables) are exploited to their full potential. At carbon neutrality, these
electrofuels are mainly used to supply the industrial heat demand (i.e., 35% on average
produced by gas combined heat and power (CHP)), private mobility (i.e., 74% by fuel cell
cars), and freight transport (i.e., 38% by fuel cell trucks). Among other things, this analysis
highlights that EV (e.g., BEV) might not be the most appropriate option to defossilise the
mobility sector in a whole-energy approach with limited endogenous renewable potential
and power connections. This would also question the 100% EVs policies currently put
forward in many countries.

Future works are envisioned for refining the implementation of the electrofuels, as well
as biofuels, within EnergyScope TD. For instance, electro-methanol, DME, and more specific
fuels would substitute the broad set of electro-liquid fuels. This refined implementation
will consider more conversion technologies to specifically use these fuels rather than fossil
equivalents. In this sense, further investigations shall address the case of ammonia. Given
its advantages (e.g., carbon-free hydrogen-carrier, existing infrastructure), this molecule
looks to be an attractive solution as an energy-carrier for power applications [67], when
used as dual fuel with hydrogen or methane [5,6] or to defossilise the freight transport
sector (e.g., maritime transport) [68,69]. However, many challenges remain regarding its
synthesis, its uses and applications (i.e., in a combustion engine or in a fuel cell), or even
its environmental impact [70]. These questions make the use of ammonia as a fuel, such
as the emerging technologies, still very uncertain. Then, given the major dependence on
imported electrofuels to reach carbon neutrality, there should be further investigations into
their characterisation (i.e., price, availability, and uncertainty characterisation). A further
improvement that could make the model more realistic would be to consider the import
capacity as constant over the year and, consequently, force the system to install additional
storage capacities to supply the demand when it increases (e.g., bigger demand of electro-
methane to supply heat pumps in winter). Although out of the scope of this work, further
analyses could integrate factors that influence the price of these imported electrofuels, such
as their actual geographical origin [71] or their production process [18]. A similar work
to improve the characterisation of imported biofuels (i.e., cost, availability) could also be
performed. On a broader perspective regarding the mobility, the implications of policies
about the different type of power trains (e.g., fuell cell, electric vehicles, internal combustion
engine) could be further investigated. One might consider on one hand policies promoting
the import of cheap, renewable electrofuels or, on the other hand, pushing towards much
more efficient EVs.

The longer term objectives are threefold: first, going from multiple independent
snapshot analyses to the optimisation of an actual pathway. This would draw a “continuous”
plan of strategies (i.e., resources and technologies to use to meet the demand) from today
to the carbon neutrality of 2050. Second, we could adapt the global sensitivity analysis (
GSA) described in this work to different output indicators such as investment strategies or
the global warming potential (GWP). Third, going beyond this GSA, future studies will
focus on a more robust solution (i.e., less varying given the uncertainties of the parameters)
for the whole-energy system.
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Abbreviations
The following abbreviations are used in this manuscript:

Acronyms
BEV battery electric vehicle
CCGT natural gas combined cycle
CCS carbon capture and storage
CHP combined heat and power
CoV Coefficient of Variation
DC direct current
DEC decentralised
DHN district heating networks
DME dimethyl ether
EnergyScope TD EnergyScope Typical Days
EUD end-use demand
EV electric vehicle
FC fuel cell
FEC final energy consumption
GHG greenhouse gas
GSA global sensitivity analysis
GWP global warming potential
H2 di-hydrogen
HEV hybrid electric vehicle
HP heat pump
LCA life cycle assessment
LFO light fuel oil
LP Linear Programming
NG natural gas
OME oxymethylene ether
PCE Polynomial Chaos Expansion
PDF probability density function
pkm passenger-kilometer
PV photovoltaic
SDS Sustainable Development Scenario
SMR steam methane reforming
tkm ton-kilometer
UQ Uncertainty Quantification
VRES Variable Renewable Energy Sources

Appendix A. Belgian Energy System in 2015

As detailed by Limpens et al. [29], the system of 2015 was largely based (93% of the
620 TWh primary energy mix) on “traditional fuels” (i.e., fossil fuels (70%), uranium (19%),
electricity import (3%), and waste (1%)) while the rest mainly accounts for 15 TWh of
lignocellulosic biomass, 6 TWh of wind, and 3 TWh of solar. Table A1 gives the major
technologies used to supply the different demands of Table 1:

https://github.com/energyscope/EnergyScope/tree/v2.1
https://github.com/energyscope/EnergyScope/tree/v2.1
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Table A1. Major technologies used to supply the demands of Table 1 in terms of share of production
and installed capacity. (a) This capacity represents the equivalent interconnection supplying the
imported electricity (i.e., 20.94 TWh over the year) continuously and at a constant load. (b) The
decentralised heating units provide 98% of the low-temperature heat demand. (c) The private
mobility accounts for 80% of the passengers mobility. Abbreviations: natural gas combined cycle
(CCGT), combined heat and power (CHP), compressed natural gas (CNG), decentralised (DEC),
district heating networks (DHN), passenger (pass.), temperature (Temp.).

End-Use Demand Major Share of Installed
Technology Production Capacity

Electricity
Nuclear 28% 5.9 GW
Import 24% 2.4 GW (a)

CCGT 22% 3.9 GW

Heat High-Temp.
Gas boiler 36% 3.1 GW
Coal boiler 30% 2.8 GW
Oil boiler 20% 1.8 GW

Heat Low-Temp. (DEC) (b)
Oil boiler 48% 26.0 GW
Gas boiler 40% 21.5 GW

Wood boiler 10% 5.5 GW

Heat Low-Temp. (DHN)
Gas CHP 59% 0.4 GW

Waste CHP 14% 0.1 GW
Gas boiler 14% 0.4 GW

Private mobility (c) Diesel car 65% 179 Mpass.-km/h
Gasoline car 35% 99 Mpass.-km/h

Public mobility
Diesel bus 47% 5.7 Mpass.-km/h

Train 39% 5.1 Mpass.-km/h
CNG bus 10% 1.3 Mpass.-km/h

Freight
Diesel truck 73% 60.2 Mt.-km/h
Diesel boat 16% 10.5 Mt.-km/h

Train 11% 2.5 Mt.-km/h

Appendix B. Uncertainty Characterisation

Table A2 summarises the uncertainty ranges for the different groups of technologies
and resources. Refer to [24] for the methodology and sources.

To obtain the list of parameters, a first study has been conducted including all the
parameters that are used by the model. In total, 43 parameters remain, (grouped into
19 different sets) which are summarised in Table A2. The uncertainty characterisation
provides the uncertainty ranges per parameter or group of parameters (category). Indeed,
some parameters are correlated a priori, such as the labor cost for maintenance, or the price
for cars running on gasoline or diesel.

There are four types of categories: end-use demands, technologies, resources, and
others. The uncertainty in the yearly end uses demands is split by energy sectors. The
electricity demand, space heating demand, and industrial demand are related to the yearly
industrial demand uncertainty (endUsesyear,I), which has the biggest range. The freight
and passenger mobility are related to the uncertainty on transport (endUsesyear,TR). Tech-
nologies are defined through different parameters: the energy conversion efficiency (η),
the investment cost (cinv), the load factor (yearly: cp or hourly: cp,t), the potential ( fmax)
and the maintenance cost (cmaint). Only the uncertainty on the FC technologies (ηFC), and
electrolysers (ηelectrolyser) have a significant impact and are accounted for. The investment
cost (cinv) are divided into mature (cinv,mature for vehicles and internal combustion pow-
ertrains), new (cinv,new for PV, heat pumps (HPs), FC and electric vehicles, electrolysers,
grid enforcement, efficiency measures, and initial cost of the grid) and specific technologies
(cinv,specific for wind turbines and DHN HP). Intermittent renewable energy is limited by
the number of deployable capacity ( fmax), and the hourly capacity factor (cp,t).
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Resources are characterised by an operating cost and an availability. The operating
cost of imported resources is uncertain (cop,import) accounts for import of electricity, biofuels,
electrofuels, coal, and hydrocarbons (NG, diesel, gasoline, and light fuel oil (LFO)). Most
of the resources have an unlimited availability except biomass, coal, electricity imported,
and waste. Other intermittent renewables being limited by the installable capacity. The
availability of waste, electricity, and coal are related to a parameter (avail).

Finally, there is a limited installable capacity ( fmax) imposed arbitrarily for nuclear,
electricity production from geothermal, and heat production from geothermal. This work
also accounts for uncertainties on the interest rate used to calculate the annualised the cost
(irate); the GWP related to imported electricity (gwpop,elec); and the maximum amount of
passenger that public mobility can supply (%max).

Table A2. Application of the uncertainty characterization method to the EnergyScope TD model. The
417 uncertain parameters are divided into 20 categories. Uncertainty is characterised for one represen-
tative parameter per category. Abbreviations: decentralised (DEC), district heating networks (DHN),
fuel cell (FC), heat pump (HP), industrial (I), natural gas (NG), photovoltaic (PV), transport (TR).

Category Representative Relative Variation
Parameter Min Max

irate irate −46.2% 46.2%
endUsesyear,I

a endUsesyear,I −10.5% 5.9%
endUsesyear,TR endUsesyear,TR −3.4% 3.4%

ηFC ηFC TECH −28.7% 28.7%
avail availwaste −32.1% 32.1%
fmax fmax,PV −24.1% 24.1%

cinv,mature cinv,cars −21.6% 25.0%
cinv,new cinv,PV −39.6% 39.6%

cinv,specific
cinv,winds −21.6% 22.9%

cinv,DHN HP −21.6% 21.6%
cmaint cmaint,% −48.2% 35.7%

cop,import cop,fossil −47.3% 89.9%
cp,t cp,t,PV −11.1% 11.1%

Others fmax,nuclear [GWe] 0.0 5.6
fmax,geo elec [GWe] 0 2

fmax,geo DHN
[GWheat]

0 2

gwpop,elec
[ktCO2/GWhe]

0 0.1

%max,pub mob [-] 45% 55%
ηelectrolyser

[GWe/GWH2 ] 1 1.38

a As a conservative approach, this parameter was chosen among other similar ones because it has the largest range.

References
1. Fatih, B. World Energy Outlook 2019; International Energy Agency: Brussels, Belgium, 2020.
2. Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil

Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020, 13, 420. [CrossRef]
3. Rixhon, X.; Limpens, G.; Contino, F.; Jeanmart, H. Taxonomy of the fuels in a whole-energy system. Front. Energy Res. Sustain.

Energy Syst. Policies 2021. [CrossRef]
4. Ahlgren, W.L. The dual-fuel strategy: An energy transition plan. Proc. IEEE 2012, 100, 3001–3052. [CrossRef]
5. Lhuillier, C.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C. Experimental study on ammonia/hydrogen/air combustion in

spark ignition engine conditions. Fuel 2020, 269, 117448. [CrossRef]
6. Pochet, M.; Jeanmart, H.; Contino, F. A 22: 1 Compression Ratio Ammonia-Hydrogen HCCI Engine: Combustion, Load, and

Emission Performances. Front. Mech. Eng. 2020, 6, 43. [CrossRef]
7. Robinius, M.; Otto, A.; Heuser, P.; Welder, L.; Syranidis, K.; Ryberg, D.S.; Grube, T.; Markewitz, P.; Peters, R.; Stolten, D. Linking

the power and transport sectors—Part 1: The principle of sector coupling. Energies 2017, 10, 956. [CrossRef]

http://doi.org/10.3390/en13020420
http://dx.doi.org/10.3389/fenrg.2021.660073
http://dx.doi.org/10.1109/JPROC.2012.2192469
http://dx.doi.org/10.1016/j.fuel.2020.117448
http://dx.doi.org/10.3389/fmech.2020.00043
http://dx.doi.org/10.3390/en10070956


Energies 2021, 14, 4027 21 of 23

8. Brown, T.W.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lund, H.; Mathiesen, B.V. Response to ‘Burden of proof: A comprehensive
review of the feasibility of 100 Renew. Sustain. Energy Rev. 2018, 92, 834–847. [CrossRef]

9. Limpens, G.; Jeanmart, H. System LCOE: Applying a whole-energy system model to estimate the integration costs of photovoltaic.
In Proceedings of the ECOS2021—The 34th International Conference, Taormina, Italy, June 28–2 July 2021.

10. Brown, T.; Schlachtberger, D.; Kies, A.; Schramm, S.; Greiner, M. Synergies of sector coupling and transmission reinforcement in a
cost-optimised, highly renewable European energy system. Energy 2018, 160, 720–739. [CrossRef]
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