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Abstract: Developing renewable energy, especially solar energy related, is of great importance for
securing our future energy society. Steam generation in nanofluids based on solar radiation has been
increasingly studied. It has been determined that the efficiency of steam generation is significantly
enhanced when nanoparticles are seeded into the fluid owing to their unique radiative heat transfer
performance. The nanoparticles trap solar energy inside the fluid and convert it into thermal form,
which dramatically accelerates the steam generation process. In this study, we experimentally
investigated different nanofluids that directly absorb solar energy to generate steam. Ag nanofluid,
Au nanofluid and MWCNT nanofluid with different concentration have been carefully investigated.
We analyzed the temperature increase and steam generation combined with the calculation of the
efficiency factor from radiative heat transfer. The heating power and steam generation power of
different nanofluids and the same nanofluid with different concentrations were compared. For Au
nanofluid with concentration of 0.5 wt‰, the absorbed solar energy for heating the volume and
generating steam is 6 and 40 times higher than those of pure water, respectively. We concluded
that localized boiling generates steam rapidly in nanofluids based on the observation of three
types of nanofluids. Furthermore, the heating power and steam generation power of different
nanofluids increase with concentration. Moreover, the difference between the efficiency factors
results in varied volume heating and steam generation efficiencies for different nanofluids despite
identical concentrations.

Keywords: solar energy; nanofluids; steam generation; efficiency factor

1. Introduction

The increase in the consumption of fossil fuels has led to the development of clean and
renewable energy sources, among which solar energy is crucial [1]. Steam production is
widely used in various fields, such as refrigeration devices, energy storage, and large-scale
power generation [2–5]. However, steam is generally obtained by burning fossil fuels or
through electric heating, which is not environmentally friendly. Therefore, the application
of clean and renewable solar energy to produce steam is increasingly researched [6–9].
At present, several challenges exist in the utilization of solar energy, and efficient solar
photothermal conversion is extremely difficult in the case of solar thermal energy appli-
cations. The energy conversion efficiency of the most of the solar thermal utilizations is
dramatically limited by the ill heat transfer process: solar energy to the surface, then the
surface to the working fluid, when heat loss to the ambient during the heat transfer process
takes major part of the heat transfer. The volume absorption of solar energy will signif-
icantly increase the absorption efficiency. Therefore, the concept of nanoparticle-based
direct absorption was developed to enhance the solar energy harvesting performance. This
concept requires nanoparticles seeding into the working fluid to achieve enhanced energy
conversion efficiency. Eventually, the absorbed solar energy has been trapped inside the
working fluid to reduce the heat loss to the ambient.
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For traditional solar thermal collectors (STC), the solar energy is absorbed firstly
by the engineered solid surface, which is normally coated by high absorption materials.
Then, the absorbed solar energy will be transferred through thermal conduction from the
working fluid. Conversely, the direct absorption solar collector (DASC) does not absorb
solar energy through the surface, the properly selected nanoparticles will absorb the solar
energy volumetrically, which means the solar energy will be trapped inside the working
fluid. This volumetric absorption process addresses the limitation of surface heat transfer
process, which is normally associated with conventional STCs, considerably increasing the
photothermal conversion efficiency by selecting the absorption spectrum [10–13]. Metal
nanoparticles, such as Ag and Au have been extensively investigated owing to their surface
plasmon resonance effect [14–17]. Many researchers have investigated the photother-
mal conversion efficiency of nanoparticle-based work fluid. Such as Otanicar et al. [18],
they compared different nanofluids, including carbon based and metal based nanoparti-
cles. The conclusion can be reached that many characters can affect the solar harvesting
efficiency, especially the nanoparticle size, material and the volume concentration. Fur-
thermore, the photothermal conversion efficiency was increased by 5% when compared
with the based working fluid (i.e., water). The plasmonic nanoparticles (PNP) proposed
by Zhang et al. [19] has been experimentally investigated. An improved citrate reduction
method was employed to produce gold nanoparticles (GNPs), which was tested under
a solar simulator to show the solar energy harvesting efficiency. They concluded that
compared with other materials, the GNP nanofluid had the best energy efficiency. Fur-
thermore, the specific absorption rate (SAR) was firstly proposed by them to evaluate the
performance of solar energy harvesting, when SAR = 10 kW/g was obtained at the lowest
particle concentration examined (0.15 ppm). Additionally, the efficiency could be increased
by 20% when gold nanoparticles were inside the working fluid. Some simulative works
have been done by researchers since the last decade. For example, Luo et al. [20] developed
a numerical model to simulate the photothermal conversion efficiency for nanoparticles
based DASCs, where the radiative heat transfer equations together with the conductive
and convective heat transfer inside the nanofluids were under consideration. Compared to
the based fluid, the temperature of the nanofluids was increased by 30–100 K for nanofluids
and the photothermal conversion efficiency was enhanced by 2–25%. What’s interesting,
the overall heat transfer efficiency for nanofluid based DASC was almost twice of that
of the surface based solar receiver. They concluded that with very low concentration
of nanoparticles, the volume temperature and the energy efficiency can be significantly
enhanced. In our previous research [11,21], the photothermal conversion efficiency can be
significantly enhanced when nanoparticles are seeded inside the working fluid (i.e., the
efficiency of Au nanofluid with concentration of 5.8 ppm is 4 times higher than that of
pure water).

Using nanoparticles to achieve steam generation is considered highly effective owing
to its steam production rate and remarkable efficiency of capturing solar energy [14,22–26].
Recently, nanoparticles have been used to directly generate steam by consuming solar
energy in addition to heating base fluids [18,22,24,27–29]. Most of the working fluids, such
as water and ethanol, have a weak ability to absorb solar energy [30]. However, adding a
small volume fraction of nanoparticles to the fluid can effectively improve its photothermal
conversion efficiency [31–33]. Based on this phenomenon, researchers have proposed the
concept of direct absorption [19,33] of solar energy using nanofluids.

Thus far, an efficiency of 80% has been reported in the direct steam production [22]
when the solar radiation is concentrated by 1000 times, wherein the working fluid tem-
perature is approximately 6 ◦C despite using only 20% of the solar energy to heating the
volume fluid. One hypothesis states that the nanobubbles can be generated around the
nanoparticles with high temperature. After then the nanobubbles will rise to the surface of
the nanofluid and release steam [34]. Several numerical studies [22,30] support the possible
generation of nanobubble around the nanosized particles, when the non-equilibrium heat
transfer model is employed. Several other studies reported that nanofluids can generate
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steam rapidly under concentrated sunlight [35–37]. The results of experimental studies
and numerical calculations [35,38–40] have proved the rationality of the nanobubble hy-
pothesis. These investigations were performed under high concentration conditions, such
as 1000 times concentrated solar intensity. Furthermore, studies have experimentally and
theoretically confirmed [35,38–42] that nanobubbles can possibly be formatted around the
nanoparticles when the temperature is high [43], especially under intensive laser heating
(>1000 MW/m2). Moreover, simulations have [44] indicated that the interfacial thermal
resistance between the volume and the particles increases with the surface temperature,
which may further increase the surface temperature of the nanoparticles. If the laser power
and pulse are controlled at a good state, the nanobubble generation rate and steam produc-
tion quantity can be dramatically increased. Moreover, for medical applications, the cells
closing to the nanoparticles can be significantly damaged by the pressure waves from the
nanobubbles, which has attracted intensive attention from researchers [45].

However, researchers have verified that the generation of nanobubbles is nearly
impossible when the concentrated solar intensity is low [46]. Under such conditions, the
probable reason for bubble formation is local boiling in the overheated area caused by the
uneven distribution of temperature and solar radiation, as discussed previously [10,12].
For the experiments [47] with low solar intensity, which is less than 50 kW/m2, it is difficult
for the nanofluids to attain the boiling point. Consequently, the steam generation should
be closely related to the surface evaporation, when the localized boiling is impossible
inside the volume. Most of the previous investigations focus on the vaporized mass change
and evaporation efficiency. However, the difference in the efficiency of steam generation
between different nanofluids combined with the characteristics of bubble formation is not
investigated. Additionally, determining whether the mechanism of steam generation in
nanofluids under solar radiation is identical for nanofluids with different nanoparticles
warrants further investigations.

In our previous research [10,12], the steam generation can be dramatically enhanced
when Au nanoparticles participate, which is mainly due to the localized boiling and surface
evaporation. However, whether or not the material of nanoparticles affects the steam gen-
eration process is still unknown. Therefore, in this study, we experimentally investigated
different nanofluids as working fluids that directly absorb solar energy for steam gener-
ation. The temperature distribution of the working fluid and the generated steam were
analyzed using an infrared thermal imaging camera, and the bubble generation processes
were compared based on videos captured by a high-speed camera. Different concentrations
of Ag, Au, and multiwalled carbon nanotube (MWCNT) nanofluids were prepared, and
the effect of various concentrations and types of nanofluids on steam generation was
studied. Additionally, we discuss the photothermal conversion characteristics for different
nanofluids with varying concentrations. Furthermore, the energy harvesting efficiency of
volume heating of the fluids and steam generation has been investigated.

2. Materials and Methods
2.1. Preparation of Nanofluids

We used both one-step and two-step methods to synthesize different types of nanoflu-
ids. The Au nanofluid was formulated through the one-step method. The detailed informa-
tion can be seen in our previous research [10,11]. Table 1 depicts the transmission electron
microscopy (TEM) image of GNPs indicating the morphology information. Most of the
small-sized and large-sized Au nanoparticles are spherical and oval, respectively, with an
average size of approximately 20–30 nm.
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Table 1. Overview of the nanofluids.

Type of
Nanoparticles

Concentrations
(wt‰)

Particle Size
(nm)

Preparation
Method

Micro-Nano
Structure

Au
0.02
0.1
0.5

20~30 One-step
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2.2. Experimental Setup

Figure 2 illustrates the experimental setup. The experiments were conducted using
natural sunlight, wherein a Fresnel lens of dimensions 0.5 m × 0.5 m was employed to
concentrate the sunlight by 500 times. The solar radiation was maintained at approximately
500 kW/m2 in all experiments, and we assumed that uniform radiation was generated from
the focused sunlight. A high-precision infrared camera (Fluke TiX640 with 30 mm lens) was
used to capture the temperature distribution of different samples. Additionally, we used
a high-speed camera (Canon 70D with 18–135 mm lens) to record the bubble generation.
Seven K-type thermocouples with a precision of±0.1 ◦C (Omega 5TC-TT-K-30-36, Norwalk,
CT, USA) were connected to a data acquisition system (National Instruments PIXe-1073).
T1 to T5 thermocouples were placed inside the sample fluid to measure the temperature
within the fluid, whereas the remaining thermocouples, T6 and T7, were placed above the
fluid–air interface to measure the temperature variation of the steam above the sample
fluid. Furthermore, a solar intensity sensor with a measurement uncertainty of 2.0% was
placed near the Fresnel lens to measure the variation of solar intensity with time. The
images, temperature data, and solar intensity data were stored in a personal computer
connected to the high-speed camera, infrared camera, data acquisition system, and solar
intensity sensor. Figure 2B depicts the schematic of the experimental system.Energies 2021, 14, x FOR PEER REVIEW 6 of 20 
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3. Results and Discussion
3.1. Temperature Profile of Nanofluids under Concentrated Sunlight

Previously, we observed that the sunlight absorption enhances significantly when
nanoparticles are inside the working fluid [10,11,21], which is water in this study. When
concentrated sunlight illuminates the nanofluid, the temperature at different positions
immediately increases, as illustrated in Figure 3. Initially, the temperature increases rapidly
owing to a large amount of input solar energy. However, the increment in temperature
declines after attaining the boiling point, which can be attributed to the increased heat loss
at a high ambient temperature. At approximately 80 s, the temperature of areas near T3
and T4, which are close to the focal point of sunlight, is approximately 100 ◦C owing to the
focused sunlight. Conversely, certain other areas require more time to boil as T1 and T5
attain the boiling point at approximately 200 s. This non-uniform temperature distribution
inside the nanofluid is primarily caused by the localized solar energy input of 500 kW/m2

at the focal point. Consequently, the temperature attains the boiling point rapidly, which
explains the generation of steam despite certain parts of the nanofluid being subcooled.
This has been discussed in our previous research on the impossibility of nanobubbles [10].
The steam temperature indicated by T6 and T7 in this study increases sharply when the
temperature of most parts of the nanofluid attains the boiling point. This occurs after
approximately 230 s when pool boiling transpires and generates steam efficiently at this
stage. Section 3.5 discusses the energy consumption of bulk volume heating and steam
generation further.
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Figure 3. Temperature variations of 0.1 wt‰ Ag nanofluid under concentrated sunlight of 500 suns.

3.2. Effect of Nanofluid Concentrations on Solar Energy Absorption Performance

According to the radiative heat transfer theory [48], the photothermal conversion
performance of the working fluid can remarkably change by adding a few nanoparticles.
Figure 4 depicts the temperatures of different concentrations of Ag nanofluid tested in this
study. When highly diluted Ag nanofluids (Figure 4A,B with concentrations of 0.01 wt‰
and 0.02 wt‰, respectively) are illuminated under concentrated sunlight, the bulk tem-
perature of the nanofluid increases slower than that of the highly concentrated nanofluid
(Figure 4D with a concentration of 0.2 wt‰). Additionally, the temperature of steam (T6
and T7) in the 0.02 wt‰ Ag nanofluid is approximately 100 ◦C at 240 s, whereas that of
the 0.01 wt‰ Ag nanofluid is not close to the boiling point. This can be attributed to the
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increase in photothermal conversion efficiency with the increase in the concentration of
nanofluids, which in turn accelerates the steam generation rate after the bulk temperature
attains the boiling point. Therefore, increasing the concentration of a nanofluid accelerates
the heating of the bulk fluid owing to the sunlight and enhances the steam generation
efficiency (Section 3.5). Interestingly, when the concentration of Ag nanofluid attained a
certain level (0.2 wt‰), the temperature profile increased more uniformly at the heating
stage, as illustrated in the initial 40 s in Figure 4D. Furthermore, steam generation occurs at
approximately 200 s when the bulk temperature attains the boiling point uniformly and
the nanofluid starts bubbling violently, which is discussed in Section 3.4.
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3.3. Effect of Different Nanofluids on Solar Energy Absorption Performance

To further understand the influence of material characteristics on the performance of
solar harvesting and steam generation, we used the Mie scattering model [48] to investigate
the absorption efficiency of solar radiation. In the existing model, the characteristic size in
the following equations is calculated as xλ = πD/λ, where D is the size of nanoparticles.
The following original Mie scattering equations are employed.

an =
mψn(mx)ψn

′(x)− ψn(x)ψn
′(mx)

mψn(mx)ξn ′(x)− ξn(x)ψn ′(mx)
(1)

bn =
ψn(mx)ψn

′(x)−mψn(x)ψn
′(mx)

ψn(mx)ξn ′(x)−mξn(x)ψn ′(mx)
(2)

Qsca(λ) =
2
x2

∞

∑
n=1

(2n + 1)
[
|an|2 + |bn|2

]
(3)
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Qext(λ) =
2
x2

∞

∑
n=1

(2n + 1)Re(an + bn) (4)

Qabs = Qext −Qsca (5)

where the functions ψn(x) and ζn(x) denote the spherical Bessel functions [48] of order
n (n = 1, 2 . . .), the primes represent the derivatives with respect to the argument, and m
indicates the ratio of refractive indices calculated using

m =
nparticles

nfluid
(6)

where nparticles and nfluid denote the complex refractive indices [49] of particle material and
base fluid (water) relative to the ambient medium, respectively. Considering the relatively
low concentrations of nanofluids used for solar thermal applications, particles should
absorb and scatter light independently based on the scattering map [48].

The solar harvesting efficiency of nanofluid relays on its optical properties. Typically,
the photothermal conversion efficiency of sunlight varies for different nanofluids of identi-
cal concentrations owing to distinct radiative heat transfer characteristics. As depicted in
Figure 5B, the absorption factors of different nanofluids vary in terms of wavelength with
distinct peak efficiency factors. Although the peak absorption factor of Ag nanoparticles of
diameter 20 nm is more than 14, the efficient absorption efficiency of solar radiation may be
lower than that of Au nanoparticles with the same diameter. This is because the solar spec-
tra emissive power peaks at approximately 500 nm, which is close to the peak absorption
factor of Au nanoparticles. Hence, the absorption efficiency of Au nanofluid is higher than
that of Ag nanofluid, which has been investigated in our previous research [21]. Figure 6B
illustrates the steam temperature of the 0.02 wt‰ Au nanofluid attaining the steady state
after approximately 130 s, indicating efficient vapor generation. Conversely, the steam
temperature of the Ag nanofluid with the same concentration is relatively low despite the
temperature of certain parts of the volume attaining the boiling point (Figure 4B).
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Figure 6. Temperature variations of water, Au nanofluid with different concentrations, and the air above the fluid under
concentrated sunlight of 500 suns. (A) Deionized water. Au nanofluid with mass fractions of (B) 0.02 wt‰, (C) 0.1 wt‰
and (D) 0.5 wt‰.

As depicted in Figure 6A, the maximum temperature attained by the DI water is
less than 90 ◦C after illumination of 280 s, and the temperature appears to reach a steady
state subsequently. The energy absorbed from the solar radiation equilibrates with the
convective heat loss when the ambient temperature is high. Although it is difficult for
the DI water to attain the boiling point under existing experimental settings, the bulk
temperatures of all other nanofluids attained boiling points.

Figure 5B illustrates the absorption factor of the MWCNT nanofluid, which exhibits
a flat variation along the spectrum wavelength and is relatively lower than that of Au
nanoparticles. We compared the steam temperatures of 0.5 wt‰ Au and 0.4 wt‰ MWCNT
depicted in Figures 6D and 7B, respectively, as the mass concentrations are nearly identical.
We observed that the steam temperature attains a steady state after approximately 80 s
and 130 s in the case of Au and MWCNT nanofluids, respectively. If the concentration
of MWCNT nanofluid increases to a certain level (1.6 wt‰), the bulk temperature drasti-
cally increases to the boiling point, efficiently generating steam after approximately 100 s.
Although the heating process of MWCNT nanofluid was substantially faster than that
of Au nanofluid, the generation of steam was slightly slow as the former required 100 s,
whereas the latter required 80 s to generate steam. This is associated with the volume ex-
pansion and concentration dilution when illuminated by solar radiation, which is discussed
in Section 3.4.
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Figure 7. Temperature variations of the multiwalled carbon nanotube (MWCNT) nanofluid with different concentrations
and the air above the fluid under concentrated sunlight of 500 suns. MWCNT with mass fractions of (A) 0.2 wt‰, (B) 0.4
wt‰, (C) 0.8 wt‰ and (D) 1.6 wt‰.

3.4. Temperature Distribution and Bubble Formation in Different Nanofluids
3.4.1. Ag Nanofluid

Figure 8 depicts the bubble formation process and infrared images of Ag nanofluid
with different concentrations captured under concentrated sunlight. As illustrated in
Figure 8A, the bubble formation in low concentration Ag nanofluid (0.01 wt‰) occurs after
165 s, and the temperature increment is relatively slow. During the entire testing process,
the steam temperature represented by the infrared image was maintained low owing to the
high transparency of the sunlight. Additionally, the bubble formation turned more violent
when the mass concentration increased. Figure 8B depicts the generation of numerous
small bubbles in the 0.02 wt‰ Ag nanofluid after 130 s. However, although the boing
point was attained after 40 s (Figure 8B), only a few bubbles were observed. This is similar
to the initial process of pool boiling, wherein the localized heat input was responsible for
the temperature attaining the boiling point at the focal area.

3.4.2. Au Nanofluid

Figure 9 depicts the bubble formation process of DI water and Au nanofluids of vari-
ous concentrations. In the case of DI water, the temperature of the working fluid increases
slowly and no bubbles generate until 240 s, as illustrated in Figure 8A. Conversely, the
temperature increases rapidly in Au nanofluids, and the working fluids of all three con-
centrations begin to generate bubbles within 90 s. Furthermore, adding a small number of
nanoparticles to the water can improve its photothermal conversion efficiency significantly,
which increases with the concentration of nanofluids. Moreover, for high concentrations
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of Au nanofluids, such as 0.1 wt‰ and 0.5 wt‰, it can enter the stage of violent bubble
generation within 90 s and the temperature of the steam reaches approximately 90 ◦C.
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3.4.3. MWCNT Nanofluid

Figure 10 illustrates the bubble formation process of different concentrations of
MWCNT nanofluid under concentrated sunlight. We observed that all concentrations
of MWCNT nanofluids attained the highest temperature above 120 ◦C, which is 20 ◦C
higher than the boiling temperature of the water, within 44 s. Additionally, the internal
temperature of the fluid varied significantly. However, although the internal temperature
reached the boiling point or higher temperatures, the phenomenon of bubble formation
was not observed. This is consistent with the conclusion obtained in Section 3.3, wherein
the bubble generation in MWCNT nanofluid was slower than that of Au nanofluid despite
the rapid increase in temperature. Furthermore, we observed a volume expansion in
the 1.6 wt‰ MWCNT nanofluid when illuminated by the concentrated solar radiation.
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This causes the calculation error in the energy consumption of steam generation, which is
discussed in Section 3.5. The volume increase can be attributed to the high concentration of
nanoparticles within the fluid.
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3.5. Energy Harvesting and Efficiency Analysis

Figure 11 illustrates the volume variations of DI water and Au nanofluid of different
concentrations under concentrated sunlight. As the experiment progressed, the internal
temperature of the working fluid continued to increase, generating bubbles that escaped
from the fluid and thereby reducing its volume. As the concentration of nanofluid increased,
the working fluid generated steam earlier, and the rate of steam generation was higher.
This is because an increase in the concentration of nanofluids increases the solar thermal
conversion efficiency of the working fluid. In other words, the working fluid receives more
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heating power, and higher power is required to overcome the latent heat when the rate
of bubble generation is high. However, it is not clear whether the proportion of power
used for latent heat increases with the increase in the heating power. This implies that
more power is consumed to generate bubbles. This is discussed further after calculating
the energy consumption.
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Figure 11. Volume variations of deionized water and Au nanofluid of concentrations 0.02 wt‰, 0.1 wt‰,
and 0.5 wt‰.

The latent heat power and sensible heat power of the working fluid in the experiment
can be calculated using the following equations.

Psensible = (cwmw + cnmn)∆T/t ≈ cwmw∆T/t = cwmw

n=5

∑
n=1

∆Tn/5t (7)

UPsensible

Psensible
=

√√√√(Um

mw

)2
+ 5

(
UT

∑n=5
n=1 ∆Tn

)2

(8)

Psteam = L∆
.

mw = L∆mw/t (9)

UPsteam = LUm/t (10)

Pheat = Psensible + Psteam (11)

UPheat =
√

UPsensible
2 + UPsteam

2 (12)

where, mw and mn denote the masses of water and nanoparticles, respectively, and L repre-
sents the latent heat of evaporation of water. The power of each group of experiments can
be obtained via calculations. Figure 12 depicts the heating power (increasing the tempera-
ture) and steam generation power of DI water and Au nanofluid of various concentrations.
The heating power and steam generation power increase with the nanofluid concentration,
which is consistent with the results of our previous studies [10,12]. The heating power of
Au nanofluid with concentration of 0.5 wt‰ is around 6 times higher than that of pure
water. What’s interesting, for the same nanofluid, the absorbed solar energy for steam
generation is 143.88 W, which is more than 40 times higher than that of pure water (i.e.,
3 W). Furthermore, the ratio of latent heat power to heating power gradually increases with
the increasing concentration, which indicates that the increase in nanofluid concentration
renders the steam generation easier. This can be closely associated with heat loss, which is
relatively large when the heating power applied to the nanofluid is high. Additionally, the
convective and radiative heat losses increase with the increase in temperature.
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mated in the current experiment. 
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Figure 12. Heating power and latent heat power of deionized water and Au nanofluid of concentra-
tions 0.02 wt‰, 0.1 wt‰ and 0.5 wt‰.

Figure 13 depicts the calculated heating power and steam generation power of
MWCNT nanofluids under concentrated sunlight. Herein, the behavior of energy consump-
tion is different from that observed in Au nanofluids. The heating power of the working
fluid increases as the concentration increases, as illustrated in Figure 13. However, the
latent heat power (Psteam) increases slightly with the increase in concentration, although the
latent heat power of 1.6 wt‰ MWCNT nanofluid is lower than that of 0.8 wt‰ MWCNT
nanofluid. This is because when the concentration of MWCNT is extremely high, the
volume expansion cannot be ignored when illuminated under concentrated solar radiation,
as mentioned in Section 3.4. Additionally, the steam generation power was calculated based
on the volume reduction of the fluid, which was underestimated in the current experiment.
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Based on the comparison of volume heating and steam generation efficiency of dif-
ferent nanofluids, we determined that the Au and Ag nanofluids can absorb solar energy
efficiently when the concentration is low. However, the concentration of MWCNT nanofluid
needs to be extremely high to have the same performance, which can be attributed to the
efficiency factor calculated in Section 3.4. Moreover, the volume expansion dilutes the
concentration of MWCNT nanofluid when the concentration is high. This requires further
investigations in the future.

It’s natural to wonder if the cost of the nanomaterial can fit the energy outcome. As
introduce in our previous work [50], the cost of nanoparticles for each kilo nanofluid
producing each kW thermal energy has been calculated through the equation below:

Cost =
C·Costnp

P
(13)

where Costnp($/kg) is the cost of 1 kg of the nanoparticles. Overall, $43,000 is used for
gold nanoparticles, which represents the price of gold in the global stocks market, and
$180 is used for carbon-based nanoparticles, which represents the supplier price. C is the
mass concentration of nanofluids, P is the steam generation power. For Au nanofluid
with mass concentration of 0.1 wt‰, Cost = 63($/(kg·kW)). For MWCNT nanofluid with
mass concentration of 0.2 wt‰, Cost = 0.79($/(kg·kW)). It can be concluded that even
the steam generation efficiency for Au nanofluids is high, and the cost is still high when
compared with carbon based nanomaterial.

4. Conclusions

To investigate the effective generation of steam, Ag, Au, and MWCNT nanofluids of
different concentrations were prepared and illuminated under concentrated solar radiation.
The temperature distribution was recorded using an infrared camera, whereas the volume
change and bubble formation process were captured using a high-speed camera. Addi-
tionally, we investigated the increase in temperature and steam generation combined with
radiative heat transfer calculation of the efficiency factor. The heating power and steam gen-
eration power of different nanofluids and the same nanofluid with different concentrations
were compared. The conclusions of our analysis can be summarized as follows.

(1) The temperature increases rapidly under concentrated solar radiation when the
concentration of the nanofluids increase. Typically, steam generates excessively when
the bulk temperature attains the boiling point in the case of different nanofluids.

(2) The volume heating and steam generation efficiency vary for different nanofluids with
identical concentrations, which can be attributed to the efficiency factor of different
nanoparticles. The absorbed solar energy for heating the volume and generating
steam is 6 and 40 times higher than those of pure water, respectively, when the Au
nanofluid concentration is 0.5 wt‰.

(3) The bubble formation initiates at the focal point under concentrated solar radiation,
indicating the localized boiling that causes the rapid steam generation of nanofluids.

(4) The heating power and steam generation power of different nanofluids increase with
concentration. However, an extremely high concentration of MWCNT nanofluids
is not recommended for efficient steam generation owing to the volume expansion,
which requires further investigations in the future.
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