
energies

Article

Heat of Decomposition and Fire Retardant Behavior of
Polyimide-Graphene Nanocomposites

Caroline J. Akinyi and Jude O. Iroh *

����������
�������

Citation: Akinyi, C.J.; Iroh, J.O. Heat

of Decomposition and Fire Retardant

Behavior of Polyimide-Graphene

Nanocomposites. Energies 2021, 14,

3948. https://doi.org/10.3390/

en14133948

Academic Editor: Prodip K. Das

Received: 25 May 2021

Accepted: 24 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Materials Science and Engineering Program, Department of Mechanical and Materials Engineering,
University of Cincinnati, Cincinnati, OH 45221, USA; akinyicj@mail.uc.edu
* Correspondence: irohj@ucmail.uc.edu

Abstract: Polyimide is a high-performance engineering polymer with outstanding thermomechan-
ical properties. Because of its inherent fire-retardant properties, polyimide nanocomposite is an
excellent material for packaging electronic devices, and it is an attractive electrode material for
batteries and supercapacitors. The fire-retardant behavior of polyimide can be remarkably improved
when polyimide is reinforced with multilayered graphene sheets. Differential scanning calorimetry
and thermogravimetric analysis were used to study the heat of decomposition and gravimetric
decomposition rate, respectively, of polyimide-graphene nanocomposites. Polyimide/graphene
nanocomposites containing 10, 20, 30, 40, and 50 wt.% of multilayered graphene sheets were heated
at a rate of 10 and 30 ◦C/min in air and in nitrogen atmosphere, respectively. The rate of mass
loss was found to remarkably decrease by up to 198% for nanocomposites containing 50 wt.% of
graphene. The enthalpy change resulting from the decomposition of the imide ring was found to
decrease by 1166% in nitrogen atmosphere, indicating the outstanding heat-shielding properties of
multilayered graphene sheets due to their high thermal conductivity. Graphene sheets are believed to
form a continuous carbonaceous char layer that protects the imide ring against decomposition, hence
decreasing initial mass loss. The enthalpy changes due to combustion, obtained from differential
scanning calorimetry, were used to calculate the theoretical heat release rates, a major parameter in
the determination of flammability of polymers. The heat release rate decreased by 62% for composites
containing 10 wt.% of graphene compared to the neat polyimide matrix. Polyimide has a relatively
lower heat of combustion as compared with graphene. However, graphene significantly decreases
the mass loss rates of polyimide. The combined interaction of graphene and polyimide led to an
overall decrease in the heat release rate. It is noted that both mass loss rate and heat of combustion
are important factors that contribute to the rate of heat released.

Keywords: nanocomposites; polyimide; graphene nanosheets; flame-retardant; differential scanning
calorimetry; thermogravimetry

1. Introduction

Polymer nanocomposites are a class of flame retardant technology that was discov-
ered in the early 1990s and has been shown to result in dramatic decreases in peak heat
release rates [1,2]. Nanocomposites also enhance other properties of the final system,
such as mechanical properties, unlike most flame retardants that are known to decrease
the mechanical properties. However, nanocomposites have to be used in combination
with other flame retardants in order to meet flame retardancy regulatory requirements [3].
Nanocomposites enhance flame retardancy by forming a barrier around the underlying
polymer, which slows down the mass degradation and heat release rates [4–7]. Polymers
containing graphene and layered silicates have been the focus of extensive research [8–10].
Even at low loadings (<20 wt.%), these nanofillers significantly change the properties of
the materials [11,12].

Graphene, a one atom thick, two-dimensional sheet of sp2 bonded carbon atoms
arranged in a honeycomb structure, has generated great interest amongst material scientists
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because of its exceptional intrinsic properties [13]. Single-layered graphene has been
reported to have Young’s modulus of 1 TPa and ultimate strength of up to 130 GPa [14].
Thermal conductivity of 5000 W/(mK) [15] and electrical conductivity of 6000 s/cm [16]
have been reported. It also has an extremely high surface area and has permeability [17].
When used in the fabrication of polymer nanocomposites, it results in the improvement of
mechanical, electrical, thermal, and gas barrier properties of the polymers.

Aromatic polyimide is a high-performance thermosetting polymer with excellent
thermal and thermooxidative stability, radiation and chemical resistance, and mechanical
properties. Fiber-reinforced polyimide composites have found applications in the aerospace
industries where they are used to replace metal counterparts, resulting in fuel savings due
to reduced weight. It is also used to avoid corrosion issues often encountered by metals
or ceramics. However, their use as replacement parts for metals or ceramics means that
they have to withstand extreme operation temperatures [18]. Polyimide still suffers from
thermal oxidative degradation that slowly wears off the materials, resulting in structural
failure of the composites [19–22]. The addition of nanofillers, such as graphene, to organic
polymers has resulted in the improvement of thermal stability because of the mass transport
barrier to volatiles generated during thermal decomposition and thermal isolation effect of
sheets [23,24].

The pyrolytic degradation of an organic polymer in the condensed phase to yield
combustible volatile products can be regarded as the first stage in the flaming combustion
of the polymer. The presence of flame retardants in the polymer can affect the rate and
mode of pyrolysis of the polymer in the condensed phase [25]. The use of DSC and TGA
techniques can provide insight into the stages of pyrolytic breakdown of polymers, their
thermal stability, and the nature and amount of solid residues and volatile products [25].
The role played in combustion by the initial condensed phase burning of the polymer can,
therefore, be well understood from these studies.

Direct measurement of the flammability and fire behavior of materials requires large
quantities of materials and can be prohibitively expensive. In this work, the thermal stability
and combustion properties of milligram-sized samples were obtained using differential
scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

2. Materials and Methods

Graphene powder with the characteristics listed in Table 1 was purchased from Global
Graphene Group, Dayton, OH, USA.

Table 1. Characteristics of graphene powder.

Average
Lateral

Dimension
(mm)

Thickness
(nm)

Oxygen
Content

(%)

Specific
Surface

Area m2/g

Density
(g/cm3)

Carbon
(wt.%)

Hydrogen
(wt.%)

Nitrogen
(wt.%)

Oxygen
(wt.%)

7 70–100 <1 10–15 0.1–0.3 ≥97 ≤1 ≤0.5 ≤2

As shown in Table 1, the graphene used is not single-layer and is relatively cheaper in
terms of production cost than the single-layer graphene. The samples fabricated used up
to 50 wt.% graphene powder, while maintaining good dispersibility within the polymer
matrix with no need for chemical functionalization.

Pyromellitic dianydride (99% purity), 4,4-oxydianiline and N-methyl-pyrrolidone
(99% purity), were purchased from Sigma-Aldrich.

2.1. Synthesis of Graphene/Polyamic Acid

5.2 g of 4,4-oxydianiline (ODA) was added to 100 mL of N-methyl-pyrollidone (NMP)
contained in a round-bottomed flask followed by mechanical stirring until the solid com-
pletely dissolved in the solvent. Graphene quantity corresponding to 10 wt.% of total
solids was added to the solution and stirring continued for 8 h. Pyromellitic dianhydride
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(PMDA) was then added to the mixture, followed by stirring for 12 h, the temperature was
maintained at 10 ◦C. Subsequent mixtures containing 20, 30, 40, and 50 wt.% graphene
were synthesized.

2.2. Fabrication of Graphene-Polyimide Films

The mixture was solution casted on a glass substrate followed by thermal imidization
in a vacuum oven at 120 ◦C for 2 h and 200 ◦C for 1 h to form polyimide-graphene
composite films (PI-NGS).

2.3. Thermal Analysis

The films were subjected to heating rates of 10 ◦C/min from 25 ◦C to 725 ◦C in nitrogen
and air atmospheres in a DSC Q20 thermal analyzer purchased from TA instruments, New
Castle, Delaware, USA. In TGA, the films were heated from 25 ◦C to 1000 ◦C in nitrogen
and air at a heating rate of 30 ◦C/min in a TGA Q50 Thermal Analyzer purchased from TA
Instruments, New Castle, DE, USA.

3. Results and Discussion

Figure 1 shows the TGA weight loss curves of neat polyimide obtained at 30 ◦C/min
in air and in nitrogen. Degradation of polyimide in nitrogen occurs in a single step resulting
in the formation of approximately 60% char, as has also been reported by Lua et al. [26].
Reaction mechanism proposed by Hatori et al. [27] and also reported by Cella [28] indicates
that the imide ring is the site of initial degradation. This is evidenced by the production of
carbon monoxide in large quantities. The cleavage of the imide ring leads to the formation
of isocyanate groups as intermediates, with the release of carbon monoxide. With further
heat treatment, the isocynate groups combine, leading to the release of carbon dioxide.
Other fragments in the residue combine to form aromatic and heteroaromatic rings, with
hydrogen released as a by-product. Volatile by-products detected by various groups are:
Phenol, aniline, cyanobenzene, dicyanobenzenes, and pthalimide, in addition to CO, CO2,
H2, and N2.
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Burger et al. [29] concluded that the residual char comprised mostly planar polyaro-
matics. Their proposed degradation mechanism is shown in Figure 2 Evolved gas analysis
was used to predict the degradation mechanism.
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Figure 2. Predicted pyrolysis mechanism [29].

Two main weight loss stages occur in degradation in air (Figure 1). The first one begins
around 550 ◦C and stops around 660 ◦C. This initial reaction stage overlaps with the stage
observed in nitrogen. The second reaction in air appears between 660 and 770 ◦C. This
corresponds to the degradation of the pre-graphitic char at the initial stages and degrada-
tion of the more crystalline and highly graphitized graphene char at higher temperatures
(for the composites) as reported by Akinyi et al. [30]. The modes of degradation in air
and nitrogen are similar, and oxygen only serves to further oxidize the products that were
initially formed by the thermal bond-breaking process. Elemental analysis of the char
shows that for degradation in air, H and C decreases while O increases. The reverse trend
is observed in nitrogen, indicating that the residues obtained in the two atmospheres are
vastly different [31].

Figure 3a,b shows the derivative mass loss profiles of PI and PI-NGS composites.
Three major decomposition peaks can be identified in Figure 3a. The first decomposition
peak occurs between 600 and 650 ◦C and is attributed to the decomposition of the imide
ring. The second and third decomposition peaks occur around 700 and 800 ◦C, due to
the decomposition of polyimide char and graphene, respectively. The first peak shown in
Figure 3b, corresponding to the degradation of the cyclic imide ring, decreases in height in
the presence of graphene. The rate of degradation of this peak decreases drastically in the
presence of multilayer graphene sheets, as shown in Figure 4. At 50 wt.% of graphene, a
198% decrease in rate was calculated. This decrease can be attributed to the high thermal
conductivity of graphene that makes it effective as a heat sink, hence, transporting heat
away from the flame and slowing down the initial degradation of the material. Its layered
structure also makes it effective as a barrier, blocking the diffusion of pyrolysis by-products
and the transfer of oxygen [17].
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The rate of degradation of the polymer char is also shown to decrease in the presence
of graphene. From SEM and EDX analysis, it was ascertained that graphene does not
undergo appreciable degradation in inert atmosphere. It, therefore, densifies and fortifies
the polymer char, hence, decreasing its propensity to degrade.

The SEM images in Figure 5 show that the char structure of neat polyimide and
the composites degraded in nitrogen atmosphere to a temperature of 900 ◦C. The neat
polymer char shows a highly porous morphology, however, for composites with increasing
graphene content, the porosity significantly decreases and completely disappears, forming
a strong dense char layer. The formation of a dense char layer and reduction in porosity
inhibits the evolution of volatile components and slows down polyimide degradation.
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NGS at 50,000×.

Table 2 presents the summary of EDX area analyses from selected areas of the SEM
images for the char residue. Based on the molecular weight of one repeat unit of polyimide,
the percentage of carbon, nitrogen and oxygen in the non-degraded polymer is 70.97%,
7.53%, and 21.5%, respectively. The EDX analysis of neat polyimide char shows that the
carbon percentage increased by 26% to 98.2%, while the oxygen percentage decreased
by 20% to 1.8%. Following the degradation mechanism proposed in Figure 2, the planar
polyaromatics structures in the char are expected to comprise mainly of carbon with
negligible quantities of oxygen, nitrogen, and hydrogen. The fact that hydrogen and
nitrogen are not observed in the EDX analysis of the neat PI char may indicate that their
quantities are below the lower limit of detection of the instrument.
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Table 2. SEM-EDX analysis of char from neat polyimide, grapheme, and composites containing 10,
30, and 50 wt.% graphene.

Sample Carbon (%) Oxygen (%) Nitrogen (%) Silicon (%)

Neat PI 98.2 1.8 - -
PI-10 96.2 1.6 2.2 -
PI-30 96.7 1.5 1.9 -
PI-50 96.7 1.1 1.6 0.7

Graphene 96.7 2.3 0.3 0.7

The composites containing graphene show some detectable levels of nitrogen, indi-
cating that there is some protection of the polymer char from the extensive degradation
observed in the neat polymer. This explains the higher levels of nitrogen-containing groups
in the composite. The composite containing 10 wt.% graphene has a higher percentage
of nitrogen compared to the composites with higher loadings of graphene. This indicates
better protection of the polymer char at lower loadings, which can be attributed to better
dispersion of the graphene in the polymer matrix at lower loadings.

The planar polyaromatic structures formed as residue in the initial degradation stage
undergo complete degradation at the second stage in air atmosphere, followed by the degra-
dation of the more crystalline and highly graphitized graphene char at higher temperatures
(Figure 3a).

DSC thermograms (Figure 6) show the heat flow during the degradation of the samples
in nitrogen. This is the heat released because of cleavage of the imide ring followed by
recombination reactions of the intermediate products leading to a stable char comprised of
planar polyaromatics.
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Total enthalpy change for the degradation process was obtained by numeric integra-
tion of the DSC peak over the temperature interval and expressed in kJ/g. At constant
pressure, the heat capacity equals the change in enthalpy, as expressed in Equation (1) [32].

Cp =

(
∂H
∂T

)
p

(1)
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The total enthalpy change over the temperature range (T1, T2) is given by Equation (2).

∆H =
∫ T2

T1

(
∂H
∂T

)
p
dT =

∫ T2

T1

CpdT (2)

PI-NGS composites release significantly less heat upon degradation than the neat
polymer, a 1100% decrease is observed between the neat PI and the composite containing
50 wt.% graphene. The trend is shown in Figure 7. This trend suggests that graphene acts by
shielding the imide ring, leading to a decreased extent of degradation of the matrix, hence,
preserving its structural integrity. The retention of substantial amounts of carbonaceous
protective layer due to the presence of graphene leads to lower rates of heat transfer and
significantly less mass loss of polymers [33,34].
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heating rate of 10 ◦C/min.

DSC thermograms in air, shown in Figure 8, show two distinct peaks for the neat PI
and slightly broadened and staggered peaks for the PI-NGS composites. Multiple peaks
indicate that the mechanism of degradation in air is different from that in inert atmosphere.
The intermediates formed from the cleavage of the imide ring react with oxygen to form
an oxidized product that is more stable and requires higher activation energy for its
decomposition, hence, it decomposes at higher temperatures. Pramoda et al. [35] did a
kinetic study of the degradation of polyimide in air and in nitrogen atmospheres. They
reported that the activation energies were stable in nitrogen and air for the initial weight
loss. However, there was a jump at 40% weight loss in air, which they postulated was due
to the formation of a more stable oxidation product that required higher activation energy
for its decomposition.
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Onset degradation temperature is a measure of ignitibility of a sample. Fuel consump-
tion and volatiles generation begin at this temperature. This is determined in DSC by the
first detected deviation from the baseline. Graphene is shown to have little to no effect on
the ignitability of the polymer. This is reflected in the nearly constant onset of degradation
temperature both in air and in nitrogen atmospheres. The imide bond, which is the site for
initial degradation, has a lower bond enthalpy (average bond enthalpy = 293 kJ/mol), and
therefore, easily degrades at elevated temperatures.

Enthalpy change due to degradation of the imide ring in nitrogen was compared to
that in air, as shown in Figure 9. There is a 70% decrease in the heat of degradation of the
imide ring in nitrogen compared to that in air. This might be due to the formation of more
stable oxidation products that protect the imide bond from further degradation. The heat of
degradation of the PI-NGS composites is slightly higher in air than in nitrogen, but constant
across the different compositions, as is observed in nitrogen atmosphere too. Polymer
degradation occurs faster in air or oxygen than in an inert atmosphere. Reactions between
oxygen and alkoxy radicals (RO•) released from initial degradation products accelerate the
degradation of the polymer matrix. This leads to an increased concentration of polymer
alkyl radicals (R•) that lead to high levels of scission and cross-linked products. [36].

Mass loss rates obtained from TGA measurements and enthalpy changes calculated
from DSC thermograms were used to estimate the theoretical heat release rates. With the
knowledge of the enthalpy changes due to degradation in air, the theoretical heat release
rate is calculated by:

.
q = ∆H × .

m f uel (3)

where ∆H is the enthalpy change due to combustion and
.

m f uel is the mass loss rate [37].
The uncertainty analysis of this method leads to an error of <10%, assuming complete
combustion. This method has few parameters, hence, less propagation of errors.

From Equation (3), the theoretical heat release rates of neat polyimide, grapheme, and
polyimide-graphene composites were obtained and graphed in Figure 10. The trend shows
that the heat release rate decreases by 62% at 10 wt.% graphene.
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The enthalpy change due to the combustion of graphene is reportedly higher than
that of neat polyimide [38,39]. Both graphene and polyimide contribute to the decreased
heat release rate of the composites. Graphene significantly decreases the mass loss rate
of the composites, while the polymer contributes to a lower net enthalpy change of the
composites because of its relatively lower individual enthalpy change.

4. Conclusions

The effect of graphene on the thermal stability and decomposition of polyimide was
investigated. It was observed that the initial stage of degradation of polyimide follows
the same pathway in both nitrogen and oxygen and this is not affected by the presence of
graphene. Graphene was shown to lower the rate of mass loss of the composites by up to
198% at PI-50 wt.% graphene as it acts as a heat shield, protecting the underlying polymer
matrix from external heat flux. It was also shown that the enthalpy of degradation of the
polymer matrix was remarkably decreased by up to 1164% at 50 wt.% graphene.

The theoretical heat release rates were calculated from DSC thermograms. Results
indicate that the heat release rate initially decreases by 62%, followed by a gradual increase
as the graphene content in the composites increases. This was attributed to the higher heat
of the combustion of graphene. Graphene lowers the rate of degradation of the polymer
matrix, hence, the observed initial decrease in the heat release rate. However, increasing
the graphene content also increases the heat of combustion of the composite, negating
the effect of the reduced mass loss rate and leading to an overall increase in heat release
rate. The onset temperature of degradation is observed to remain constant as the graphene
content in the composites increases, hence, the ignitability of the polymer is presumed to
remain unaffected by the presence of the graphene.
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