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Abstract: The present study reports the development of a deep learning artificial intelligence (AI)
model for predicting the thermal performance of evaporative cooling systems, which are widely
used for thermal comfort in different applications. The existing, conventional methods for the
analysis of evaporation-assisted cooling systems rely on experimental, mathematical, and empirical
approaches in order to determine their thermal performance, which limits their applications in
diverse and ambient spatiotemporal conditions. The objective of this research was to predict the
thermal performance of three evaporation-assisted air-conditioning systems—direct, indirect, and
Maisotsenko evaporative cooling systems—by using an AI approach. For this purpose, a deep
learning algorithm was developed and lumped hyperparameters were initially chosen. A correlation
analysis was performed prior to the development of the AI model in order to identify the input
features that could be the most influential for the prediction efficiency. The deep learning algorithm
was then optimized to increase the learning rate and predictive accuracy with respect to experimental
data by tuning the hyperparameters, such as by manipulating the activation functions, the number
of hidden layers, and the neurons in each layer by incorporating optimizers, including Adam and
RMsprop. The results confirmed the applicability of the method with an overall value of R2 = 0.987
between the input data and ground-truth data, showing that the most competent model could predict
the designated output features (Tdb

out, wout, and Eair
out). The suggested method is straightforward and

was found to be practical in the evaluation of the thermal performance of deployed air conditioning
systems under different conditions. The results supported the hypothesis that the proposed deep
learning AI algorithm has the potential to explore the feasibility of the three evaporative cooling
systems in dynamic ambient conditions for various agricultural and livestock applications.

Keywords: evaporative cooling; direct evaporative cooling; indirect evaporative cooling; Maisot-
senko evaporative cooling; artificial intelligence

1. Introduction

The development of low-cost, energy-efficient air-conditioning (AC) systems or de-
vices has received noticeable attention, especially in developing countries due to the fuel
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poverty [1], energy scarcity [2], and inherently perceived environmental problems [3]. In de-
veloped countries, mechanical vapor compression (MVC) based AC (MVCAC) systems are
extensively used in residential and commercial buildings to maintain living comfort with
respect to the temperature. According to estimations, the creation of the prerequisite living
comfort consumes around half of the building’s principal energy supply [4]. However, the
refrigerants that are employed in MVCAC systems for the generation of a cooling load have
a high global warming potential; furthermore, they are profoundly sensitive to operate.
Despite the introduction of advance, environmentally friendly refrigerants into MVCAC
systems, comprehending with admissible carbon footprints and greenhouse gas emis-
sions [5], the MVCAC systems are neither energy-efficient nor sustainable cost-effective
solutions in the longer run, particularly for low-income [6–8].

Thermal vapor compressors (TVCs) have also been investigated as an alternative
option for AC applications [9]. In TVC systems, the adsorbent material is the most crucial
facet [10]. Therefore, researchers have employed various adsorbents to evaluate their
applicability in TVC systems. In this context, silica gel has been extensively studied as
an adsorbent. Similarly, polymer- and carbon-based sorbents have been investigated for
various AC applications for greenhouses and livestock [11–15]. It was reported that hy-
drophilic polymeric sorbents surpassed silica gel in dehumidification applications [16]. In
addition, these materials are regenerated at high temperatures (~70–95 ◦C) [10]. Therefore,
a substantial amount of heat is required to regenerate the adsorbent bed, thus stressing the
need to use renewable energy sources.

Evaporation-assisted air conditioning (E-AC) systems are traditional methods of
propagating cooling at relatively low temperatures and are characterized as highly energy-
efficient systems with zero climatic impact [17–20]. The employment of E-AC systems
has been revived due to the introduction of new concepts/systems for achieving cooling.
Broadly, these E-AC systems are classified as direct evaporative cooling (DEC) [21], indi-
rect evaporative cooling (IEC) [4], or Maisotsenko evaporative cooling (MEC) [2,22–25]
systems. The working principles and open-cycle psychrometric presentations of the E-AC
systems can be elucidated with the help of Figure 1. Concerning their applications, E-AC
systems have been used in greenhouse AC [26,27], building AC [21], agricultural product
storage [28], and livestock and poultry AC [16,29–32]. However, the type of E-AC that
must be employed for a specific application is sensitive to the required thermal comfort.
Various analytical/empirical models have been created in order to anticipate the results
of E-AC systems due to their different cooling capacities/potentials and thermal perfor-
mance [33–37]. These studies resulted in a few mathematical/empirical/numerical models
that were developed based on the heat- and mass-balance strategy. The few limitations
linked with these evolved computational models include detailed heat- and mass-transfer
knowledge and the parametric information of the empirical models. In addition, the ther-
mal performance of E-AC systems outside the operational range of the empirical models
cannot be predicted. The models are also not capable of operating accurately in actual (dy-
namic) settings, thereby leading to the presence of uncertainties and errors in the simulated
results. Thermal performance indicators are unavoidably affected by the lack of optimal
operating conditions.

Software-based simulation packages have also been designed and have been broadly
utilized by energy communities all over the globe. These programs/packages (including
TRNSYS, ANSYS, and EnergyPlus) were developed based on energy- and mass-balance
equations in order to investigate the transient states of AC systems. Additionally, such
software programs have the potential to estimate the capacities of AC systems that could
be feasible for specific applications based on the measurement of their heating and cooling
loads. However, detailed professional knowledge and knowledge of the technicalities of
the software are required to make these useful. Moreover, computer simulation models
have reportedly been developed by considering predefined assumptions in order to solve
analytical equations, which limits their utilization. However, developed software packages
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impact the thermal performance prediction of AC systems due to neglecting the complex
interaction of AC systems with the installed locality in real scenarios [38].
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Artificial intelligence (AI) is a data-learning methodology for constructing deep learn-
ing algorithms that reliably predict the results of complicated systems without knowing
the actual processes incorporated inside the systems. Artificial neural networks (ANNs)
and supervised data learning models can fit complex nonlinear relationships. Therefore,
they are trained based on past experiences or records obtained from lab-scale experiments.
Statistical error-minimizing models are used to evaluate the prediction accuracy of a con-
structed AI algorithm. In addition, the hyperparameters of an AI model, such as the
activation functions for the input features, hidden layers, the number of neurons in each
layer, weights, biases, and transfer functions, are tuned for reliable estimations.

With the influx of data-learning modeling techniques, researchers and scientists world-
wide have incorporated them in order to find solutions to complex problems based on
historical experiences. Certainly, work regarding the prediction of the thermal performance
of an E-AC system has been performed. Sohani et al. [39] employed three soft computing
techniques—ANN, multivariate regression modeling (MVR), and genetic programming
(GP)—for the prediction of two variables, such as the pressure drop and outlet air tem-
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perature, by passing ambient air through a DEC system. Cellulose pads were employed
as evaporative media. The results were compared with those of analytical models of
DEC systems. The results tended to show that the ANN and MVR modeling algorithms
had more precise anticipation potential for the DEC system. Likewise, studies regarding
IEC AC systems were also conducted, and the thermal performance was evaluated by
using deep learning algorithms [40]. In order to predict the thermal performance of an
IEC system, Kiran et al. [40] utilized a fuzzy interface system (FIS), ANN, and adaptive
neuro-fuzzy interface (ANFI). The Levenberg–Marquardt (LM) training algorithm was
employed to develop intricate patterns and compare them with lab-scale experimental
records published in renowned journals. According to Kiran et al. [40], the ANN was the
superior algorithm, as it had a good agreement (R2 = 0.9999) with the thermal performance
found with the lab-scale prototype model. In the same context, Sohani et al. [41] focused
on developing an AI-based model in order to predict the thermal performance of an MEC
system. The cooling capacity and coefficient of performance (COP) of the MEC prototype
(with reference to [42]) were modeled by using a type of group method of data handling
(GMDH) neural network. The GMDH neural network escapes the concerns regarding
the optimization of the hyperparameters for model regression. Based on the results, the
optimized rating conditions for the MEC system could improve the COP and CC by 8.1%
and 6.9%, respectively.

However, a research gap is present in previous work and is addressed in this study
through the development of a generic algorithm that enables the simultaneous anticipation
of the thermal performance of different E-AC systems, i.e., DEC, IEC, and MEC systems.
The model was trained with experimental data and with models of the empirical effective-
ness coefficient, which were recorded by using prototypes that were designed, fabricated,
and installed in the Agricultural Engineering Department of Bahauddin Zakariya Univer-
sity (Multan). Furthermore, the governing hyperparameters for the model regression were
optimized in order to accurately and effectively forecast the outcomes. Lastly, the predicted
values were compared with the experimental and simulated results.

Motivation of the Study

E-AC systems have great potential in agricultural, livestock, and industrial applica-
tions, which urged us to develop an AI model that can assess their thermal performance
under various ambient conditions. Notably, it is very crucial to evaluate the thermal perfor-
mance of E-AC systems used for different applications with various operating conditions.
To our knowledge, there are no empirical/mathematical models available in the literature
that can accurately predict the thermal performance of various E-AC and cooling systems.
Therefore, this study aims to use an AI algorithm (e.g., deep learning) to accurately predict
the thermal performance of different evaporative cooling systems—DEC, IEC, and MEC
systems—under any climatic conditions. The novelty in this study is the development of a
generic algorithm that can precisely anticipate the performance of the three E-AC systems.

The detailed applications of the proposed method in terms of the ambient conditions,
inlet velocity, surface area, and type of E-AC system can be seen in Figure 2. The wide range
of applications and highly accurate predictions make the proposed method quite beneficial
for researchers and industries that work in a similar area. The proposed method should be
extended for a wide range of climates and dual cooling systems, as well as for different
operating conditions and applications. In addition, the most influential parameters of the
thermal performance of the different E-AC systems are identified.
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Figure 2. Applications of the proposed model.

2. Methodology

In this section, the data collection, data normalization, data visualization, and evalua-
tion of the DEC, IEC, and MEC systems are accomplished through feature engineering and
are specifically provided. However, the results regarding optimization of the model are
presented in Section 2.5. After finding the optimal neural network, unseen data were used
as input in order to anticipate the thermal performance of the E-AC systems. The predicted
results were validated with lab-scale experimental records. Figure 3 presents a flowchart
that depicts the development of the deep learning algorithm.
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2.1. Data Collection

For the training of the AI model, the experimental data were obtained from E-AC pro-
totype models that were developed and tested at the Agricultural Engineering Department
of Bahauddin Zakariya University (Multan). The details regarding the experimental results
can be found in the published literature [16,29]. Models of the empirical effectiveness
coefficient were also used accordingly. The empirical model was developed by using the
experimental results [16,29]. The cited literature mostly employed steady-state analyses
that used effectiveness coefficients. The effectiveness of the DEC system ranged between 75
and 95%, whereas it ranged between 50 and 65% for the IEC and MEC systems. However,
the effectiveness was considered as 0.95 in this case for all E-AC systems. Consequently,
the governing equations of the effectiveness coefficients are provided in Equations (1)–(3).

(εwb)DEC =
Tdb

in − Tdb
out

Tdby
in − Twb

in

(1)

(εwb)IEC =
Tdb

in − Tdb
out

Tdby
in − Twb

in

(2)

(
εdp

)
MEC

=
Tdb

in − Tdb
out

Tdb
in − Tdp

in

(3)

where ε shows the effectiveness coefficient based on the wet-bulb and dew-point temper-
atures for the DEC/IEC systems and MEC system, respectively. The collected data were
grouped into training, testing, and validation datasets after normalization. The technique
employed to normalize the datasets is discussed in its respective section. A database of up
to 1095 experimental data points (daily average input features of the three E-AC systems)
was produced for the cooling assessment of the DEC, IEC, and MEC systems. The ranges
of all of the investigated parameters (both input and output) are presented in Table 1. It
was observed that the investigation extended to a wide range of ambient inlet conditions.
It included nearly every categorization of the Köppen–Geiger climate classification [43],
emphasizing the applicability of the developed AI model in several climates.

Table 1. Ranges of the considered parameters.

Feature E-AC System Type Parameters Minimum Maximum

Input features of E-AC
system

For DEC, IEC, and
MEC

Tdb
in , (°C) 8.1 37.5

Twb
in , (°C) 5 31.8

RHin, (%) 30 93.3
Vin, (m/s) 2.001 4.999
Area, (m2) 0.087 0.103

Output features of
E-AC system

DEC
Tdb

out, (°C) 4.093 31.673
wout, (g/kgDA) 6.120 30.308
Eair

out, (kJ/kgDA) 19.470 109.448

IEC
Tdb

out, (°C) 6.73 37.54
wout, (g/kgDA) 4.50 28.10
Eair

out, (kJ/kgDA) 18.08 106.31

MEC
Tdb

out, (°C) 11.21 31.34
wout, (g/kgDA) 4.5 28.10
Eair

out, (kJ/kgDA) 22.62 102.92

2.2. Data Normalization

Data normalization is a technique of rescaling datasets into a range between 0 and 1
in order to improve the performance efficiency of a developed AI model. From Table 1, it
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can be observed that the input and output features fell into different ranges. Therefore, the
dataset considered here was normalized by using Equation (4), which is termed the Min-
Max scaler. In addition, historical experience has shown that data normalization is more
effective in minimizing the computation time, training mistakes, and data redundancies
and in omitting outliers during the development of AI algorithms [44]. After developing
an optimized AI model, the datasets were denormalized into their actual values by using
Equation (5). Similarly, when testing the AI model, unseen datasets were first normalized
and then passed to the AI model. The predicted results were denormalized for user
understanding.

Xnorm =
Xact − Xmin
Xmax − Xmin

(4)

Xact = Xnorm × (Xmax − Xmin) + Xmin (5)

where X shows all of the considered input and output features that need to be normalized
prior to their feeding into the AI model for data learning. The max and min subscripts
show the maximum and minimum values recorded for each input and output feature.

2.3. Data Visualization and Analysis of the Correlation Matrix

Feature engineering was performed to select the most suitable input features for devel-
oping a simplified AI model that is capable of accurate prediction of thermal performance.
The ambient conditions in which the system performed, such as the dry-bulb temperature
(Tdb

in ), dew-point temperature (Tdp
in ), wet-bulb temperature (Twb

in ), relative humidity (RHin),
humidity ratio (win), and enthalpy (Eair

in ), were taken into consideration. Similarly, the
physical parameters of the E-AC systems, including the velocity and area through which
the ambient air flowed, were assumed to be influential parameters. On the other hand,
among the output features, Tdb

out, wout, and Eair
out were selected for feature engineering. The

numbers of neurons in the input and output layers were adjusted based on the results ob-
tained from the featured engineering. Only the most influential input and output features
were used to develop the deep learning (DL) algorithm.

In order to show the dependency of the predefined input and output features on each
other, a data visualization approach, i.e., a heat map, was used. Figure 4 shows the clusters
in a heat map developed using the Seaborn library. With higher correlation values, more
statistically significant relationships were found between the input and output features.
The correlation values between −1 and +1 displayed an inverse and direct association
of the variables with the adjacent axis, respectively. However, a value of zero indicated
that the variable did not statistically affect the output conditions. From Figure 4, it can
be observed that, in the principal diagonal, the maximum positive correlation value was
calculated, which expressed the relationship of the variable with itself. It is obvious that the
same variables possess direct associations with each other. A positive correlation signals
direct proportionality between variables (one variable increases, resulting in its increasing
impact on the other variables), whereas the correlation magnitude explains the degree
of impact.

A correlation chart was drawn to present the dependence of various input variables
on the considered output parameters. Figure 5 contains a correlation graph that represents
the dependence of the input features on each output feature. The correlation chart shown in
Figure 5 was plotted by using Pearson parametric correlation [45]. The ambient conditions
(Tdb

in , Tdp
in , Twb

in , win, Eair
in ) are depicted to have a positive correlation with varying magni-

tudinal impact corresponding to Tdb
out, excluding RHin, which shows a minute negative

correlation. This means that high RHin values collectively have a detrimental impact on
the thermal performance of E-AC systems by decreasing the cooling capacity. Ideally, DEC
and IEC systems achieve 100% relative humidity through the constant enthalpy pathway.
However, in IEC systems, the humidity ratio does not increase, which distinguishes IEC
systems from DEC systems, but the cooling potentials of both systems are nearly equal. On
the other hand, in MEC systems, the cooling potential borders the dew-point temperature
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of the system’s operating conditions. Thus, higher RHin values have an adverse influence
on the thermal performance of E-AC systems. Similarly, the Eair

out and wout values of E-AC
systems have a negative correlation with the Area and Vin.

To develop a generalized model, six ambient parameters (Tdb
in , Tdp

in Twb
in , RHin, Eair

in ,
win) and two system-dependent variables (Vin and Area) were chosen to train the AI
model. To predict the applicability of the E-AC systems under different climatic conditions,
meteorological data points were regularly captured and made readily available on the
server’s end. However, meteorological and environmental factors depend on time and
copious natural processes. The other influential parameters were ignored here because they
are functions of the selected ambient conditions and can be calculated by using well-known
psychrometric equations. In the same way, three psychrometric variables (Tdb

out, wout, Eair
out)

at the output end were adequate for evaluating the adequacy of the E-AC systems for the
particular zones and application types.

To observe the dispersion of the recorded dataset, scatter plots were drawn between
the output parameters and the input features, as shown in Figure 6. The most crucial
output feature (Tdb

out) of the DEC, IEC, and MEC systems was plotted against the ambient
features for 365 days of operation (1095 data points). Here, a linear increment in Tdb

out
versus Tdb

in and Twb
in was observed, whereas in the case of RHin and Vin, a fuzzy dispersion

of the data was observed in all of the studied E-AC systems (DEC, IEC, and MEC). Thus,
Figure 6 displays the wide dispersions of the data points, which needed to be normalized
prior to the development of the AI model. Furthermore, no noticeable outliers that could
affect the AI model’s prediction of the E-AC systems thermal performances were observed.
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Figure 6. Plotting of the E-AC systems’ output dry-bulb temperatures with respect to the inlet (a) dry-bulb temperature,
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2.4. Developing and Training the AI Model

The details regarding methods of training AI algorithms can be found in the litera-
ture [46,47]. However, in this section, a few generic steps are covered. In the first step,
the experimental data were loaded and then normalized. Prior to the development of the
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AI model, the records to be fed into the model were normalized by using the Min-Max
scaler [48]. The value of each variable was then rescaled to a number ranging from 0 to 1.
Upon the normalization of all of the variables, the data were separated into three classes:
training, testing, and validation. Up to 80% of the data were used to train the algorithm,
whereas 20% of the data were reserved for the testing. It should be highlighted here that the
unseen dataset was used to test the AI model and to compare its results with the outcomes
of the experimental lab-scale prototypes. In order to find the optimized model for the
prediction of the considered output, the hyperparameters were tuned by varying the sets
of neurons in the hidden layers, the batch sizes, the number of iterations or epochs, the
activation functions, the step size, and the model learning rate.

Moreover, three activation functions—the hyperbolic tangent (tanh) [49,50], radial
basis (RB) [51], and rectified linear activation (ReLU) functions [52]—were tried. In addition,
various optimizers (such as Adam and RMSprop) were investigated, along with different
learning rates. Furthermore, the iterations were varied from 100 to 3000 in order to mimic
the loss. Lastly, various batch sizes were tried. The detailed procedure for finding the optimal
AI model for the anticipation of the performance of the considered E-AC systems is presented
in Figure 7. The optimal model for the estimation of the investigated output parameter had an
input layer (08 neurons), two hidden layers (58–58 neurons), and an output layer (03 neurons).
The optimization criteria and associated figures are presented in the next section. The learning
rate was varied from 0.1 to 0.0001, whereas the tested batch sizes ranged from 200 to 10. The
optimal learning rate and batch size were 0.0001 and 20, respectively.
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RMSprop and ReLU were chosen as a suitable optimizer and activation function,
respectively. During the training period, the iterations were changed from 100 to 3000.
As a result, the required accuracy was achieved by 1400 iterations, and training was
stopped there.

2.5. Correlation and Statistical Error Minimization Analysis

The artificial neural networks (ANNs) were trained to find the relationships between
variables (dependent and independent) of the E-AC systems regardless of the actual pro-
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cess involved. In order to find the optimal AI algorithm, weights and biases were tuned in
successive iterations. Various loss functions/statistical error minimization models, includ-
ing the coefficient of determination (R2), mean absolute error (MAE), mean square error
(MSE), and absolute average relative deviation (AARD), were used in this study to evaluate
the accuracy of the predicted results. The general mathematical representations of the
statistical error minimization models are presented in Equations (6)–(9), respectively. The
optimization of the developed AI model was merely to reduce the outliers and uncertainties
during prediction However, to select the optimal AI model, the hyperparameters were
tuned based on the number of hidden layers, and the neurons in each layer were mapped
to optimize the AI model. Correspondingly, the variations in the errors in R2, AARD%, and
MAE% were calculated to acquire the model with the most precise predictions. Figure 8
presents the different combinations of neurons in hidden layer 1 and hidden layer 2. The
higher the number of neurons in the hidden layers is, the deeper the AI model is; conse-
quently, more computational time will be required for learning and predicting the thermal
performance. Figure 9 displays the structure of the tuned AI model.

R2 = 1 − ∑n
i=1

(
Xact − Xpre

)2

∑n
i=1

(
Xact − Xavg

)2 (6)

MAE =

∣∣Xpre − Xact
∣∣+ . . . . . . . . . +

∣∣Xpre,n − Xact,n
∣∣

n
(7)

MSE =
1
n

n

∑
i=1

(Xpre − Xact)
2 (8)

AARD (%) = 100 ×
n

∑
i=1

∣∣∣∣ (Xpre−Xact)
Xact

∣∣∣∣
n

(9)

where n indicates the number of data points.
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3. Results and Discussion

The study focuses on the development of a generic model that accurately predicts
the outcomes of E-AC systems for use in multiple applications. By using statistical error
minimization models, the most optimal parameters were adopted in order to predict
unseen data points. In this section, the results obtained during the data learning operation
of the AI model are provided to highlight its prediction efficacy. Figure 10 showcases the
iterative results obtained in order to minimize the mean square error. It is observed that the
AI model learn the data well by considering the optimized hyperparameters, as discussed
in the previous section. Consequently, the AI algorithm approached a mean square error
value of zero at 100 iterations; then, a constant error value was seen up to 1400 iteration,
and after that, the iterative loop was terminated.
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From Figure 11, it is observed that a high number of neurons in the hidden layers
caused the AI model to overfit. Therefore, minimum statistical errors (R2, AARD%, and
MAE%) are measured in the developed AI model having attributes of 58 neurons in both
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hidden layers, which can be observable in Figures 8 and 11 with mapped number 9. The
overall correlation measured for predicting the thermal performance of the E-AC systems
with the optimized AI model was found to be 0.986. At the same time, AARD% = 4.4, 0.88,
and 1.93 and MAE% = 4.44, 0.74, and 1.81 for Tdb

out, the outlet wout, and Eair
out, respectively,

with a number of mapped neurons of nine, as shown in Figures 8 and 11.
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Figure 12 presents the results of the trained AI model containing the optimized
hyperparameters. A linear relationship between the experimental and predicted values
was observed with the output features (Tdb

out, wout, and Eair
out) of the E-AC systems, which

shows the excellent fitting and good learning of the experimental data. Furthermore, the
kernel error density plots show the convergence of the error baskets towards the zero value.
Thus, this configuration was selected as the final model for the prediction of the unseen
datasets. It can be observed in Figure 12 that approximately all of the data points (except a
few) converged to zero in the error density plots. In addition, by increasing the number of
neurons in the hidden layers after a certain limit (mapping no. 09), the predictive accuracy
decreased, thus increasing the value of the loss function. This was merely due to the
overfitting caused by the development of the deep neural network. The error densities of
Tdb

out and Eair
out ranged from −4 to +2 and −4 to +4, respectively, as opposed to wout, which

ranged from −0.6 to +0.8.
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Figure 13 shows the predicted output features (Tdb
out, wout, and Eair

out) of the E-AC
systems anticipated by the developed deep learning algorithm. It was observed that the AI
model accurately predicted the output characteristics and followed an essentially linear
trend between the experimental and expected results. The details showed that the model
was not very promising in the prediction of Tdb

out for the IEC and MEC systems. The range
of errors was explained by the kernel error density plots, as shown in Figure 14. The
x-axis of the error density plots contains the range of errors that could happen during the
prediction of the unseen dataset. The normalized data points of the corresponding input
features of the plots are arranged on the y-axis. The smooth curve shows the value of the
error in the respective normalized data points. It is noteworthy that the maximum error
in the prediction of Tdb

out ranged from −1.0 to +0.5 for the IEC system. This means that
the predictive model contained a variation of ~±1 ◦C with respect to the experimental
results for Tdb

out. However, regarding the MEC E-AC system, the actual Tdb
out was in a range

of ~±2 ◦C. However, this limit is acceptable compared to the estimations of the other
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numerical models reported in the literature. In the same pattern, the results obtained from
the AI model when predicting wout are presented in Figure 13. It was observed that the
predictions were in decent agreement.

Furthermore, the error density plots in Figure 14 show the accuracy of the prediction
of wout; the maximum error ranged between −0.25 and +0.75, whereas for the IEC and MEC
systems, the prediction error further decreased to ±0.1, highlighting the more accurate
prediction of the humidity ratio. Similarly, it was noticed that the predicted values of Eair

out
were well correlated with the actual values. Furthermore, the kernel error density plots
showed a prediction error in a range of ±1 for the DEC system. However, for the IEC and
MEC systems, the error was in a range of ±2 from the experimental values. The precise
anticipation of the performance of the E-AC systems (~99%) proves the feasibility and
utility of the developed AI model under dynamic conditions. The error density of most of
the predicted points converged to zero, which shows the great accuracy of the proposed
method in the investigation of E-AC systems. Thus, the AI model developed here can be
used for a wide range of applications.
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4. Impact of the Input Features on the Model Output

The SHAP library was used to determine the influence of several input functions
on the output of the designed model, i.e., to forecast the output temperature, moisture,
and enthalpy of the three E-AC systems. The black box technique does not consider
actual natural processes, so it was not directly imposed. Therefore, the Shapley Additive
exPlanation (SHAP) values were used to break down the predictions in order to highlight
the influence of each parameter for explaining the developed AI model. It was apparent
that the ambient conditions, inlet velocity, and surface area were the most important criteria
in the prediction of the systems’ thermal performance. Figure 15 depicts the impacts of the
input features on the AI model by using SHAP visualization. It was underlined that the
most influential input feature with the greatest impact on the developed AI model was the
enthalpy of the air (Eair

in ), which ranked top in the SHAP diagram. Large enthalpy values
(the red gradient on the right side of the SHAP diagram from the center point) had a direct
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impact on the output features of the E-AC systems. On the other hand, small enthalpy
values (the blue color on the left side of the SHAP diagram from the center point) were
not shown to have a significant impact on the output features of the E-AC systems. In
other words, the wider the color strip on the right side, the greater the tendency of an
input feature to affect the AI model, and vice versa. A similar pattern was observed by
decreasing the degrees of impact in sequence, such as those of the dry-bulb temperature,
wet-bulb temperature, dew-point temperature, humidity ratio, and surface area. However,
the inlet velocity and relative humidity displayed the inverse phenomenon. Higher values
of the parameters mentioned above contributed to an inverse impact on the efficacy of the
prediction of the output features with the developed AI model and vice versa. Therefore,
these parameters can be modeled in order to attain a quick and accurate estimation of the
thermal performance of an E-AC system. In this way, a comparison between the thermal
performance of different evaporative cooling systems can be made, and the most suitable
and efficient cooling system for a particular application can be selected. Moreover, this
investigation can be extended to any evaporative cooling system (even to dual systems)
operating in any climate.
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5. Conclusions

In this study, an artificial intelligence (AI)-based deep learning (DL) algorithm was
developed in order to assess the thermal performance of evaporation-assisted air condi-
tioning (E-AC) systems. This study employed three E-AC systems—direct, indirect, and
Maisotsenko—to assess the thermal performance of systems for multiple applications.
Prior to the development of the generic AI model, the most influential input features were
selected based on a correlation analysis. A database of 1095 points was used and was split
80/20 for training/testing. The AI model was trained and optimized, resulting in a suit-
able learning rate and batch size of 0.0001 and 20, respectively. In addition, the RMsprop
optimizer was found to be suitable for optimizing the AI model to anticipate the thermal
performance of the E-AC systems. The AI model developed here was evaluated with an
unseen database. The results showed a good agreement. Moreover, the simplicity and
high accuracy of the model’s predictions make it valid for any E-AC system. An accuracy
of R2 = 0.986 could be achieved when predicting the thermal performance of DEC, IEC,
and MEC systems. The simple, fast, and accurate predictive ability of the model makes it
suitable for cooling applications that involve evaporative cooling systems.

Author Contributions: Conceptualization, H.M.A., U.S., M.S., K.H., C.-C.W. and R.R.S.; Data cura-
tion, H.M.A., U.S., M.S., I.H., K.H., R.R.S. and M.U.K.; Formal analysis, H.M.A., U.S., M.S., I.H. and
R.R.S.; Funding acquisition, M.S. and R.R.S.; Investigation, H.M.A., U.S., I.H., K.H., M.A. and M.U.K.;
Methodology, U.S., M.S., I.H., K.H., M.A., R.R.S. and M.U.K.; Project administration, U.S., M.S., and
C.-C.W.; Software, U.S., M.S., I.H., K.H., M.A. and R.R.S.; Supervision, M.S. and C.-C.W.; Validation,
U.S., I.H., K.H. and C.-C.W.; Visualization, M.A., R.R.S. and M.U.K.; Writing—original draft, H.M.A.,
U.S. and M.S.; Writing—review and editing, I.H., K.H., M.A., C.-C.W., R.R.S. and M.U.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Acknowledgments: The authors acknowledge the financial support from the Open Access Publica-
tion Fund of the Leibniz Association, Germany, as well as the partial research funding and editorial
support from Adaptive AgroTech Consultancy International.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Looney, B. Statistical Review of World Energy, 2020 | 69th Edition. Bp 2020, 69, 66.
2. Mahmood, M.H.; Sultan, M.; Miyazaki, T.; Koyama, S.; Maisotsenko, V.S. Overview of the Maisotsenko cycle—A way towards

dew point evaporative cooling. Renew. Sustain. Energy Rev. 2016, 66, 537–555. [CrossRef]
3. Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398.

[CrossRef]
4. Shahzad, M.W.; Lin, J.; Xu, B.B.; Dala, L.; Chen, Q.; Burhan, M.; Sultan, M.; Worek, W.; Ng, K.C. A spatiotemporal indirect

evaporative cooler enabled by transiently interceding water mist. Energy 2021, 217, 119352. [CrossRef]
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