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Abstract: Inducing spanwise motions in the vicinity of solid boundaries alters the energy, mass
and/or momentum transfer. Under some conditions, these motions are such that drag is reduced
and/or transition to turbulence is delayed. There are several possibilities to induce those spanwise
motions, be it through active imposition a predefined velocity distribution at the walls or by careful
design of the wall shape, which corresponds to passive control.In this contribution, we investigate the
effect that wavy walls might have on delaying transition to turbulence. Direct Numerical Simulation
of both planar and wavy-walled channel flows at laminar and turbulent regimes are conducted. A
pseudo laminar regime that remains stable until a Reynolds number 20% higher that the critical is
found for the wavy-walled simulations. Dynamic Mode Decomposition applied to the simulation
data reveals that in these configurations, modes with wavelength and frequency compatible with
the surface undulation pattern appear. We explain and visualize the appearance of these modes. At
higher Reynolds numbers we show that these modes remain present but are not dominant anymore.
This work is an initial demonstration that flow control strategies that trigger underlying stable modes
can keep or conduct the flow to new configurations more stable than the original one.

Keywords: transition; turbulence; direct numerical simulation; wavy wall; flow control

1. Introduction

Flows over wavy boundaries are of great relevance in both geophysics and engineer-
ing [1,2], e.g., the dynamics of sand dunes in deserts and sediment dunes in rivers or the
interaction of the oceanic wind and surface waves and their impact on energy-generating
devices. Flows over an undulated boundary are more involved than those past flat surfaces,
but at the same time offer richer phenomena: for a specified Reynolds number, an ade-
quate choice of the amplitude and wavelength of the undulation may lead to either an
enhancement or an inhibition of heat, mass and/or momentum transfer [3].

Several authors have already addressed flows over wavy configurations; in the incom-
pressible [1,4] and in the compressible [5–7] regimes. In either case, the induced pressure
gradient created by the wall waviness modifies the flow behavior. Larger amplitude undu-
lations lead to scenarios with multiple separations and reattachments. The intermittent
nature of the locally separated area beyond a surface peak affects the turbulent production;
under certain conditions the coherent structures can be inhibited, and streaks might even
disappear then.

The relative angle between the wavy pattern and the bulk velocity also plays a role on
the flow behavior. Chernyshenko [8] hinted that a fluid moving obliquely over a sinusoidal
undulated surface might experience a reduction in drag, which would derive from the
spanwise motions in the wall vicinity induced by the traverse pressure gradient. Indeed,
the drag reducing effect of spanwise/streamwise periodic velocity enforced at the wall had
been already investigated using Direct Numerical Simulation (DNS): [9–11] showed how
the spatial Stokes layer disrupts the turbulent production cycle, resulting into a positive
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shift of the logarithm layer (much as riblets do, [12]). They went further as to identify com-
binations of forcing amplitudes, wavelengths and frequencies for the wall velocity leading
to net-energy savings of up to 23%. However, this impressive figure is obtained for velocity
perturbations of the order of the bulk velocity, hence difficulty in the practical implemen-
tation of this active control approach. This motivated the interest in wavy walls, a fully
passive means to achieve drag reduction. Departing from DNS data [10], Chernyshenko de-
rived a first estimate of the angle and the wavelengths involved. The study was completed
later using DNS [3] considering different Reynolds numbers, wave lengths and amplitudes
(a sketch of the configuration is shown in Figure 1). The spanwise shear-strain profiles
obtained were shown to resemble closely those associated with in-plane wall motions.
Unfortunately, since the spanwise velocities were moderate, only a limited drag reduction
efficiency was attained: a maximum net drag reduction of about 0.7% was reported at
Reτ = 360 for a wavy wall with amplitude 20+, wavelength 920+ and flow angle θ = 70◦,
where the + represents wall units. However, the authors mention that: “although net drag
reduction levels of 1–2% were observed for the three Reynolds number tested (180, 360 and
1000), the value is not quantifiable with any greater degree of precision”.

Despite the mild drag reduction attained, the facts that no power supply is required,
and the easier manufacturing and posterior maintenance make of wavy walls an interesting
technique. However, the majority of the studies here referenced are in turbulent conditions
and to the author knowledge, the effect of the waviness in transition to turbulence has
not been reported yet in detail. As noted in [13], well-designed perturbations introduced
in a boundary layer can potentially inhibit the growth of the most unstable disturbances.
This has been recently confirmed by [14], who experimentally described how spanwise
perturbation introduced by a 3D wavy-walled roughness is more effective in delaying
transition than its 2D counterpart (transition Re = 120,000 vs. 50,000). This experiment
is performed in boundary layer flow and a not detailed explanation of the reason of this
delay is concluded.

To shed some light about the physical reasons, in this contribution, we investigate
the effect of wavy walls in delaying the transition to turbulence. To do that, we conduct
DNS of planar and wavy-walled channels, and compare the results. Dynamic Mode
Decomposition (DMD, [15]) is applied then to the DNS channel data [16,17], in an attempt
to discern the effect of the wall undulation on the flow field. The document is structured as
follows: next section describes the methodology employed. Section 3 describes the different
computations conducted and offers a first analysis. Section 4 investigates the impact that
wavy wall has on transition delay. The conclusions are stated then in the last section.
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(a) Generic flow configuration

(b) Computational setup A (c) Computational setup B

Figure 1. Computational domains considered for DNS simulation (upper walls not shown). (a) shows
a generic flow configuration used in this work and in reference [3]. Most computations conducted
considering a slanted inlet velocity profile (b) with θ = 70◦; one verification computation has been con-
ducted on a slanted domain (c). Additionally, in (b), one of the spectral domains used for discretization
is shown.

2. Methodology
2.1. Description of the Flow Solver

All the flow computations conducted in this work used our in-house High Order Dis-
continuous Galerkin Spectral Element solver, extensively described and validated in [18–21].
Direct Numerical Simulation of transitional and turbulent flows requires tracking accu-
rately a wide range of spatio-temporal scales: high order spectral element methods, given
its low diffusion and dispersion errors, are excellent candidates for this task.

Our solver employs a multidomain approach to discretize the compressible
Navier–Stokes equations:

∂U
∂t

+∇ · F(U) = S,

with U denoting the vector of conserved variables (density, momentum and energy).
The flow domain Ω (Figure 1) is partitioned into non-overlapping hexahedral elements

Ωe (one of them shown in Figure 1). Inside every element, the unknown U is expanded on a
spectral basis constructed as the tensor product of Gauss-Legendre polynomials of degree
pxj . The different subdomains are connected in a weak sense by a Roe Riemann solver.
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For the channel flow configurations considered in this work, periodic boundary con-
ditions are considered along the streamwise and spanwise homogeneous directions x-y.
A constant unitary mass flow rate is enforced through a homogeneous, time-dependent
volumetric force/source term S that is imposed at the Navier–Stokes equations:

Sk
ρ = 0, Sk

ρ u =
α

∆ t
εk

u + (1− α)Sk−1
ρ u , (1)

Sk
ρ v =

α

∆ t
εk

v + (1− α)Sk−1
ρ v , Sk

ρE = u Sk
ρu + v Sk

ρv,

where εk
u = cos(θ) − ρuk and εk

v = sin(θ) − ρvk penalize the instantaneous imbalance
between the computed space average flow rate (ρuk, ρvk) and the desired (cos(θ), sin(θ)).
The constant α is taken as 0.9 in all the simulations considered in this work. This source
term is a mathematical artefact (although equivalent to a physical force or external pressure
gradient) that forces the “average” streamwise and spanwise momentum components to
be, respectively, (cos(θ), sin(θ)). It is important to highlight that although the integration
of the Navier–Stokes in time and space is accurate with our methods, at the initial stages of
the computation, the average momentum is far from the prescribed, and that difference can
be positive or negative. This explains why the source terms (Equation (1)) could oscillate
until the flow achieves its statistically steady state and the momentum converges (see
e.g., Figure 2, more details in Section 2.1).

The source term Equation (1) driving the flow is intimately related to the friction.
In that sense, it will be used has a direct sensor to detect transition to turbulence, since
drag undergoes a large increase when the flow turns turbulent. For the planar channel,
this relation is direct, whereas for the wavy wall the total drag force splits into friction
and pressure contributions. Friction and pressure may be further segregated through
integration over the wavy surface and projection along the flow-direction, yielding the
drag coefficients D f and Dp, respectively. In this work, however, we are interested only in
global drag, regardless the origin. Accordingly, we resort to the temporal average of the
source term to compare the different configurations here studied:

Cd =
(S̄ρ u cos(θ) + S̄ρ v sin(θ))

1
2 ρ||~Ub||

, (2)

with ||~Ub|| the average bulk velocity.

Figure 2. Wavy wall channel flow at Re = 2820: evolution of Cd (Equation (2)). Observe that during
the initial steps of the simulation the average momentum is far from the prescribed (cos(θ), sin(θ)),
and taking into account that the source term is divided by ∆t, (Equation (1)), this produces unphysical
strong oscillations of the drag.
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To conclude, for the wavy-walled channel simulations, adiabatic wall boundary
conditions are enforced at surfaces given by the expressions zw = Awsin(2πx/λ) (Figure 1).
An amplitude of Aw = 0.1 has been considered in this work, equivalent to A+

w = 18 in wall
units at Reτ = 180. The computational setup has the mesh aligned with the λx/λy direction
(wall crests/troughs along x, see Figure 1b). which makes the computation statistically
more homogeneous. The spectral accuracy of the scheme is maintained through mapping
from elements Ωe to a reference hexahedron Ω̂ using transfinite interpolation.

2.2. Dynamic Mode Decomposition

To uncover the physical feature causing the stabilization effect induced by the wavy
wall, we make use of the Dynamic Mode Decomposition (DMD, [15]) technique, which
we summarize here.

DMD works with a sequence of instantaneous flow fields numbered from 1 to ns
(e.g., taking one or all recorded variables, denoted here generically by v at different time
steps of the simulation). The following data matrix is then constructed:

Vns
1 = {v(t1), v(t2), . . . , v(tns)}, (3)

where the subindex and superindex identify, respectively, the first- and last-time instances
of the sequence. The data are ordered in time, and separated by a constant sampling
time interval ∆ts such that: tj+1 = tj + ∆ts for all j = 1, . . . , ns − 1. In the case of linear
stability analysis and within the exponential growth region, it is possible to define a linear
operator A (i.e., a numerical approximation of the linearized Navier–Stokes operator)
such that v(tj+1) = A v(tj). For non-linear systems, A represents the Koopman operator.
Equation (3) can be rewritten as a Krylov sequence:

Vns
1 = {v(t1), Av(t1), .., Ans−1v(t1)}. (4)

For an ordered sequence, Equation (4) can be equated to Equation (3):

A{v1, v2, . . . , vns−1} = {v2, v3, . . . , vns}, (5)

which can alternatively written in matrix form:

AVns−1
1 = Vns

2 . (6)

Next, the Singular Value Decomposition (SVD) of the snapshot matrix Vns−1
1 = LΣRT

is used into Equation (6), leading to A LΣRT = Vns
2 . Further manipulation leads to the

reduced matrix:
Ã = LTAL = LTVns

2 RΣ−1. (7)

The reduced matrix Ã, which is the projection of the matrix A onto the space spanned by
the left singular vectors matrix L, conveys most of the information codified into operator
A. Solving the eigenvalue problem Ãyj = µjyj provides the reduced DMD modes yj and
the associated eigenvalues µj. The approximated eigenmodes of the matrix A can then
be recovered via a projection onto the original space, using relation φj = Lyj. Relation
λj = log(µj)/∆ts allows recovery of the growth rate <(µj) ≡ λj,r and the frequency
=(µj) ≡ λj,i.

Finally, note that the DMD decomposition allows reconstruction of the original data
sequence as:

v(t) =
ns−1

∑
i=1

αi φie
λi t. (8)
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In this contribution, the amplitudes αi are computed following the formulation in [22].
That is, the αi’s stem from the minimization problem in the Frobenius norm:

min
αi
‖Vns−1

1 −ΦDαT‖2
F, (9)

where the columns in matrix Φ are the dynamic modes φi, diagonal matrix Dα contains
the unknown amplitudes αi and T is a Vandermonde matrix whose columns are generated

by the successive powers of the column vector
[
µk

1, . . . , µk
ns−1

]T
, with k = 0, . . . , ns − 1.

Since matrix U is unitary, it does not affect the norm in Equation (9), and the optimization
problem actually solved is:

min
αi
‖ΣWH − YDαT‖2

F, (10)

with the columns in matrix Y the eigenvectors yi of matrix Ã.

3. Numerical Validation: Direct Numerical Simulation of Planar and Wavy-Walled
Channel Flows
3.1. DNS of Planar Walled (Canonical) Turbulent Channel Flow

To validate the current solver and our numerical methodology a Direct Numerical
Simulation (DNS) of a turbulent Poiseuille flow between two parallel planes is performed.
Similar to other authors, here we address a configuration at a Reynolds number based on
the centerline mean velocity and channel half-height Re = Uc h/ν = 2820. For this flows

the associated Reynolds number based on the friction velocity uτ =

√
τw

ρ
corresponds

approximately to Reτ = 180 [23,24].
The domain extent and the discretization details are summarized in Table 1, where the

+ indicate wall viscous scales. Please note that two different meshes are employed: a external
(h) mesh consisting of nx × ny × nz elements and an internal spectral (p) mesh of order
px × py × pz. For Reτ ' 180 values of ∆ x+, ∆ y+ ' 10− 15 and ∆ z+wall < 1 are proposed.
To achieve this resolution, the multidomain mesh is stretched in the normal direction
following a cosine law between −1 and 1. This leads to a wall normal distribution of points
where for polynomial order 8, the first and second points are located at z+ = 0.07 and 0.7
respectively. Finally, since our Discontinuous Galerkin solver discretizes the compressible
Navier–Stokes equations, compressibility effects are minimized by setting a Mach number
of 0.1 for all the computations described. In this regard, no distinction is made between
velocities and momentums along the paper.

Table 1. DNS computations: channel flow configurations and discretization details. Lengths have been made dimensionless

with the friction velocity uτ and kinematic viscosity ν and Reτ ' 180. uτ =

√
τw

ρ
, τw is the wall shear stress and ρ

the density.

Lx/h Lz/h Ly/h Re Reτ Ma θ A+ λ+ λ+
x λ+

y

5.1 2 10.2 2820 180 0.1 70◦ 18 918 2684 977

nx ny nz px py pz ∆ x+ ∆ z+|wall ∆ y+ ∆ t+

10 20 10 8 8 8 11.3 0.07 11.3 3× 10−3

For the planar wall case, the simulation is initialized from a laminar Poiseuille profile
superposed with a random perturbation with amplitude of 50% of the central velocity.
Statistics are obtained averaging over 300,000 time steps taken at ∆ t+ = 100. The simu-
lation takes approximately 12 h running in 80 Intel Xeon Gold 6230 cores at 2.1 GHz in
the CESVIMA-UPM supercomputer center. Figure 3 shows the average and r.m.s. veloc-
ities, obtained by projecting along the edge aligned with the input streamline (θ = 70◦).
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The profiles obtained practically overlap those reported in [23] (Reτ = 178.12) and [24]
(Reτ = 186.33).

(a) (b)

Figure 3. Canonical (planar walled) channel flow at Re = 2820 (Reτ ' 180): (a) velocity average
and (b) r.m.s. in wall units compared against results in the bibliography. u+ is the dimensionless
velocity: the velocity u parallel to the wall as a function of z (distance from the wall), divided by the
friction velocity.

3.2. DNS of Wavy Wall Turbulent Channel Flow

The validation of the wavy wall configuration is performed by comparing our results
with those obtained by [3], details also in Table 1. The same external mesh with 2000
elements has been reused, but the polynomial degree pxj has been progressively increased
as the simulation proceeds. A degree of 8 has been finally set as a good compromise
between accuracy and computational costs (see Table 2).

The simulation is initialized from a laminar Poiseuille profile adjusted to the passage
section. No perturbation has been necessary to trigger transition: as observed in Figure 2,
the flow tends towards a laminar solution with Cd ' 1.120 · 10−3, which is slightly above
the laminar drag for a planar configuration, Cd ' 1.063 · 10−3. This increase is due to the
pressure drag introduced by the undulated surface. The transition to turbulence is clearly
visible around time ' 330, where the drag increases suddenly to finally stabilize around
Cd ' 4.222 · 10−3. The drag reduction from the planar wall channel is about 1.2% (Table 2),
which is comparable to the 0.7% reported by [3] for the incompressible case.

Table 2. DNS computations: drag prediction for canonical and wavy-walled turbulent channel flows.

Polynomial order 10× 10× 10 8× 8× 8 6× 6× 6 6× 6× 6 (Mesh B)

Planar walls (canonical) 4.193 × 10−3 4.275 × 10−3 4.397 × 10−3 4.594 × 10−3

Wavy walls 4.145 × 10−3 4.222 × 10−3 4.346 × 10−3 4.549 × 10−3

Drag Reduction 1.1% 1.2% 1.1% 1.0%

Table 2 summarizes the sensitivity of drag reduction figures to polynomial order pxj :
the specific values remain consistently around 1%, even when considering the compu-
tational setup B, Figure 1c. As a final comparison, an additional computation has been
conducted on a domain longer along x, i.e., Lx × h× Ly = 10.2× 2× 10.2, with external
mesh density nx × ny × nz = 20× 20× 10 and polynomial order pxj = 8 (thus doubling
the number of degrees of freedom). The results obtained do not differ significantly from
those in Table 2 and are not included here for conciseness. The consistency of the results
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obtained confirms then that at Ma = 0.1, the wavy wall considered brings a drag reduction
which exceeds the pressure drag penalty and agrees with those obtained by [3].

4. Delay of the Transition to Turbulence

After the validation of our methodology, we address now the main part of this work;
the impact that the wavy wall has on transition to turbulence. All the computations
reported in this section reuse the 10× 10× 20 element meshes with pxj = 8 considered in
Section 3: since the Reynolds numbers are lower, a higher accuracy is expected. In order to
make a fair comparison between both configurations, planar and wavy, the simulation is
initialized from a laminar Poiseuille profile superposed with a random perturbation with
amplitude of 50% of the central velocity.

Transition to turbulence in channel flows has been reported to occur for Re ∈ (900, 1000),
with some turbulent spots appearing even for Re < 900 [25]. In the simulations conducted
in this work, a value between Re ' 975− 1000 has been found for the planar case, where
the friction drag experiences a large increase from Cd ' 3.08× 10−3 − Re = 900 for the
laminar regime to Cd ' 4.95× 10−3 − Re = 1000 for the turbulent regime. However,
for the wavy-walled channel and θ = 70◦, this increase is observed at a higher Reynolds
number Re ' 1175− 1200, with Cd ' 2.80× 10−3 and Cd ' 5.00× 10−3 in the laminar and
turbulent cases, respectively. Specifically, the transition to turbulent is delayed around a
20% in terms of the Reynolds number.

The effect of the wall undulation is shown in Figure 4, where it is clearly shown the
differences between the average vertical velocities. The magnitude of the vertical velocity
is an order of magnitude higher for the turbulent case, which is consistent with a higher
forcing (drag) term and penetrates much deeper into the channel core compared with the
laminar case. Indeed, inspection of the instantaneous vertical velocity, Figure 5, discovers a
persistent, organized structure connected to the wavelength of the wavy wall.

(a) ρw (b) ρw

Figure 4. Wavy wall channel flow: comparison of the average vertical velocity/momentum for the laminar (Re = 1150, a)
and turbulent (Re = 1200, b) cases.

(a) (b)

Figure 5. Wavy wall channel flow at Re = 1150. Illustrative spanwise (a) and normal (b) sections of
the instantaneous vertical velocity field.
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The connection of the increased level of organization with the delay of the transition is
investigated next using DMD. Two data sequences, laminar at Re = 1150 and turbulent at
Re = 1200 respectively, are considered. Each sequence consists of 3D velocity vector fields
acquired at a uniform time step of ∆ ts = 0.03 over the non-dimensional time intervals
t ∈ (470, 510)—for Re = 1150—and (400, 510) for Re = 1200. For illustration, Figure 6
shows the vertical velocity at a tracer point located at z = −0.935. As expected, the laminar
case shows a periodic and well-organized behavior with Strouhal St0 = 2π/δt ' 15.9,
as opposed to the irregular, chaotic, of the turbulent regime. Please note that time step
related to this Strouhal (δt) is twice the time taken by the flow to traverse the wavelength
λx = 5.1, so that the wavy wall introduces passive excitation of a frequency given by the
average velocity and the wavelength of the wavy wall. The critical issue here is that this
excitation promotes a stable mode able that maintain the laminarity further.

Figure 6. Wavy wall channel flow: vertical velocity at a tracer point at z = −0.935 at
Re = 1150 and 1200.

The application of the DMD algorithm returns ns − 1 = 1199 modes φj, eigenvalues
λj and amplitudes αj per data sequence. As usual [16,17], the major difficulty is to discern
among all the modes obtained those most relevant for the process investigated. According
to Equation (8), the temporal evolution of φj is controlled by the product αje

λj t. Here, we
introduce a new parameter γj, defined as:

γi ≡
∣∣αj
∣∣ eλj,r∆T − 1

λj,r
. (11)

and exploit it to categorize the modes according both to its amplitude αj and growth rate.
Figure 7 summarizes the DMD analysis for the Re = 1150 data sequence. The γj-λj,i

spectrum is shown in Figure 7a: apart from the average value, a dominant mode (highlighted
in red) at λi = 15.93 ≈ St0 and its harmonics are clearly visible. The streamwise and
spanwise components of this dominant mode are visualized in Figure 7b,c. The streamwise
perturbation velocity presents a z-uniform, streaky structure, with maximum (minimum)
acceleration at the inflection points before (after) the crest. The spanwise component, which
is an order of magnitude smaller is clearly modulated and attain more extreme values in
the regions close to the wall and the crest of the wave. This spatial structure is better visible
in Figure 7d: the positive (crest are, close to the wall) and negative (in the troughs but
far from the boundary layer) forces the fluid to move from the troughs to the crest in the
spanwise direction.
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(a)

(b) (c)

(d)

Figure 7. DMD analysis of the laminar Re = 1150 wavy wall channel flow. Relevance of the different
modes, measured by Equation (11), in (a). Streamwise (b) and spanwise (c) fields of the dominant
mode (in red in a); (d) shows (c) cut at z = −0.9.

The Re = 1200 flow is more involved, as different structures begin to interact creating
complex non-linear patterns. Inspecting the drag evolution (Figure 8a) in t ∈ (400, 510)
-just before transition- three different phases can be distinguished. In region ∆T1 (in blue)
the solution is still “quasi-laminar” and the mode with St0 = 15.93 dominates the evolution
(and the drag) of the fluid. However, inspection of the DMD spectra (Figure 8b) reveal
other incipient modes with a non-negligible relevance (note especially the mode with λi ' 3)
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which may start interacting with other modes. The region ∆T2 (in red), with a sharp rise in
drag, shows that the transition to turbulence is taking place. The original mode at λi = 15.9
remains present, but DMD picks up also new relevant features, λi = 3, 5.2 and harmonics.
As the time progresses, non-linear interactions gain more and more relevance. This effect
becomes clearer in region ∆T3, where many new dominant nodes appear as a result of
non-linear combinations, showing the path to turbulence.

(a) (b)

Figure 8. Wavy wall flow at Re = 1200. (a): drag evolution (Equation (1)) before reaching statistical
convergence, considering three successive temporal ranges. (b): associated DMD spectra.

As a final analysis, all the computations so far used θ = 70◦ [3]. We have been
able to show that a fluid moving obliquely to an undulated wall is subject -provided the
parameters are well adjusted- to a Stokes layer that delays transition and brings drag
reduction. The following question arises then naturally: how important is the sweep angle? To
answer this question, three more computations at Re = 1150 and θ = 50, 60, 65 have been
conducted. As Figure 9 shows, at θ = 50 the solution is turbulent whereas it is laminar at
θ = 60, confirming the fact that a threshold in the skew angle is necessary to create enough
spanwise velocity to trigger the stable mode.

(a) θ = 60◦ (b) θ = 50◦

Figure 9. Wavy-walled channel flow at Re = 1150: 3D view of the average spanwise veloc-
ity/momentum at two different sweep angles. At θ = 60◦, ρv velocity shows a laminar-shaped profile,
resembling a typical parabolic Poiseuille flow. At θ = 50◦, it is a typical flattened turbulent profile.
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5. Conclusions

In this contribution, we have investigated the effect that wavy walls have on delaying
transition to turbulence. Direct Numerical Simulation of both planar and wavy-walled
channel flows at laminar and turbulent regimes has been conducted, using our in-house
solver based on Discontinuous Galerkin Spectral Element Method.

The validation of the numerical methodology has been performed on the simulation of
a turbulent channel at Reτ ' 180, where we have observed a good agreement between our
results and those reported on the bibliography, confirming the moderate drag reduction of
about 1%.

In the wavy wall configuration, we have observed a pseudo laminar regime that remains
stable until a Reynolds number 20% higher that the critical one of the planar walled channel.
Dynamic Mode Decomposition applied to the simulation data revealed that in the wavy-
walled configuration, modes with wavelength and frequency compatible with the surface
undulation pattern are triggered. The relative inclination of the flow over the wavy surface
enhances a stable mode that is not shown for the plane wall case. We explained and
visualized the appearance of these modes that are also present at higher Reynolds numbers,
though they are not dominant anymore.

Certainly, this investigation is still preliminary (e.g.no optimal analysis of the wave-
length has been conducted yet). However, the fact that the combination of a wavy surface
and a slanted flow, allows the triggering of a stabilizing mode in a completely passive
manner encourages to pursue further research into the application of wavy surfaces as
passive flow control device.
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